Remarks on the exchangeable random variables

By P. BARTFAI (Budapest)

Introduction

Our main goal is to generalize the Kolmogorov’s strong law of large numbers
for exchangeable random variables. In addition we give a simple proof for the
basic theorem of the exchangeable random variables and investigate the exponential
rate of convergence in the weak law. In the sequal we deal with infinite sequences
of exchangeable random variables only.

In order to formulate the main result we have to define the concept of con-
ditional expectation somewhat more generally than it is usual (see e.g. the note
of LOEVE [2], p. 342).

Let (Q, o/, P) be a probability space and &/,C .o/ an arbitrary ¢-algebra. To
any non-negative random variable  we may define the o/,-measurable function
/() by the relation

fqa'P: ff(w)dP (A€o, arbitrary).
A A

The Radon—Nikodym derivative f(w) is always defined a.s., but f(w) can take
the value +-<= too. The conditional expectation M(n|.o7,) exists if this function
f(w) is finite a.s. and then M(n|.o/)=f(w).

For arbitrary random random variable » the conditional expectation exists
if both M(|n|.|=,) and M(|n|_|=,) exist and then

M(n|aty) = M([n|.|s8)—M(|n| - | ).

Usual properties of the conditional expectation are valid in this general case
too. Let us mention some of them being slightly different from the usual ones.

1° Let £ be measurable with respect to <, and suppose that M (n|.2#,) exists.
Then M(En|s/,) exists and

M (En|ety) = M (n| o))

2° If M(n) exists then M (y)=M(M(n|sZ,)). (Here the existence of the right
side does not imply the existence of M(n)).
3° Let &Z,C &,C &/. Then the existence of M(n|<,) implies that of M(y|o7,)
and in this case
M(M(n|oty)|oty) = M(n|oty).
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Basic theorem of exchangeable random variables

Let the random variables ¢,, &,, ... be exchangeable (or with other terminology,
equivalent), i.e. any k& of them have the same distribution. Write %, for the smallest
o-algebra for which the random variables &,, &,.,, ... are measurable and let

F= [ #, the tail g-algebra of the sequence.

n=1

Theorem 1. The exchangeable random variables &,, &,, ... are independent under
the condition F.

This theorem shows that every sequence of exhangeable random variables
is a mixture of independent ones. Firstly RENyt and REvEsz [3] proved the basic
theorem for exchangeable random events, then REvEsz [4] gave a proof for ran-
dom variables.

The lemma used to the present proof, the convergence criterion of Lebesgue
for conditional expectations, can be found e.g. in [1], pp. 23—24.

Lemma. If n,—»n and In,|=C with M({)<e, then M(n,|)—~M(n|o)
with probability 1.

PROOF OF THEOREM 1. Denote by &/} the o-algebra generated by &;, &1y ooy Cp
For Ajca/7~! and 4,67 we intend to prove the equality

(1) P(AgA,|F) = P(A|F)P(A,|F) (n=>1)

which implies the conditional independence.

There exists a Borel set B for which A4,=¢&,;*(B). Because of the exchange-
ability

P(AyA,| oY) = P(Ay{EnE B} AY)

provided that n<m<=N<M. By limits Mo, then N-< we obtain
P(AyA,|F)=P(A,{C€ B} | F).

On the other hand

P(Ay{Sn€ BYF,) = 1s,,c 5 P(Ao| F3)

where X(Em€ B) denotes the indicator of the event {¢,€B}. Let us take conditional
expectation on the both sides under the condition #, then

P(AyA,|F) = M(X{.:,,.e B}P(Aﬂlﬁm)[ﬁ}
According to the lemma
M(X{g,,.en}[P(A|fm)—P(A]§)D -0 (m—+<),
namely y, syl P(4|F,)—P(4|F)|=1. By simple changes we obtain

M(xe,.c B)P(Ao[f)lf) = P(Ay|F) P(§,,€ B|F) = P(Ay|F)P(A4,|F).
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Strong law of large numbers
The total analogon of the classical Kolmogorov’s theorem is the following
Theorem 2. For the exchangeable random variables &y, &, ...

él+€g:--.+é,*q

2

a.s. iff M(&|F) exists and is equal to n.

Proor. Sufficiency. We shall say that the sequence {,} is a reversed martingale
with respect to the decreasing sequence of o-algebras #, if

0) M@ )#) exists (n=1,2 ... F = %),

n=1

(li) M(ﬂu|§u+l) = Hn+1 (n = l: 2- ---)-

The convergence theorem for martingales of this type is valid as well, it can
be seen by going through its usual proof. There is a minor difficulty where we get
for the number f, of upcrossings of (ry, r,) the inequality

M(In, || F)+ |ry]
Fo—Ty

M(B,|F) = = Co-

By notation A,={w: {,<k}€F we obtain
[MB,|#)dP = [B,dP= [{,dP =k,
A Ay Ay

hence B,—~p on A, and here f is finite a.s. The same is true on Z A, ie. on Q,
therefore k=

P(l_—'fn":rl{rz":r_rl'n)= ’

Let #,* be the smallest og-algebra for which the random variables S,=¢&,+
+&+...+¢&, and &, 4, €, 49, ... are measurable. Using the exchangeability

ME|F) =ME|F) (k<Il=n),

therefore
x 1 3
) m(Zgn) =2 _>_71M(:,J ) = MEIFAD
and
(4 Senn o 1 pps M ( M
) N+l n+l n+l] l 2 él] +l) — (51[ +1)

(3) and (4) prove that {S"} is a reversed martingal with respect to {#,)}, con-
sequently

Sa e
_"—'""M(éllf)_q

10 D
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a.s. where F*= ﬂ Fr. nis F-measurable and F,,,CF, implies FCF*, so

n=M@F) = MME|F)|F) = ME|F).
Necessity. With notations D,={w: |¢,|>n} and

=k§: (1o, — P(D,|))

the sequence {n,} is martingale with respect to {&/]V.#}. If &/’ is the smallest al-
gebra containing o/ and # then every Ccx/’ has the form

C= ZAka Aked:’ Bkef
k=1
and B,, B,, ..., B,, are disjoint sets. By using (1) we obtain

JPPuial#)dP = > [ PD,..|#)dP =

k=1 A B"

.'.'.Mx

M(;CA,‘P(Bk u+1,§)) = Z M(M(XA..P(Bk u+l!§)|§)) =

M(P(A.]f)P(Bk D,.,|#)) = ZM(P(Aka D,..,|#)) =

“[\di ?M

, PBD, ) = P(CD,) = [ o, dP.

Consequently the two integral is equal for every C€.o/” and then for every CE/VZ,
too, which proves the martingale property. Define another sequence

n. for wé€C,
=]

c+1 for w¢C, =hdod

where C,={w: suquﬁc} {fi.} is a submartingale with respect to {«/1VF},
namely for AEd“Vf

fﬁ.mdP = [ Mus1dP+(c+1)P(AC, )=

n+l

= [MrdP= [ Mup1dP+(c+1)P(AC,,)
AC,

A(Cn"cn- 1)

and since n,=c on the set C,—C,, and therefore here n,,,=c+1, it follows

[ flnsrdP z“fn..dP—(c+l)P(A(€,+,—C,))+(c+I)P(AC,.H) = [ #,dP.



Remarks on the exchangeable random variables 147

Since |fj,|.=c+1, the sequence {fj,} is convergent and thus {y,} is convergent on
the set {w: supm=c} and on its union
k

21' {w: sup = ¢} = {w: Sup 7 < oo},
c=

If 2 %4, <= then the condition w¢€ {w: sup ne=<e=} is fulfilled, therefore n, con-

verges to an a.s. finite limit, consequently ZP(D,‘}}')«:.«»

Because of the exchangeability P(D,,[.?') P(|c_";,|:=—n|.¥") which implies the
existence of M(|¢,||#) like the Kolmogorov’s case.

Exponential rate of convergence

The existence of the moment generating function of &, in generally does not
imply the exponential rate of weak convergence of the mean. We have to suppose
somewhat more.

Theorem 3. To every &=>0 there exists a g<1 such that

5) VP[ Cl+ég+...+§,_ql}8]_,q

n

(n is a fixed random variable) iff
(1) M(&,|F) exists,
(i) there exists a function Ry(t), for which R(0) exists and Ry(0)=1, such that

R(t|F) = e~™M&I#) M (ehs| F) = Ry (1)

in a neighbourhood of the origin.

Proor. If (5) holds then by the Borel—Cantelli lemma 5 is, at the same time,
the strong limit of the mean, therefore, according to Theorem 2, M(&,|#) exists
and n=M(|F).

For the conditional distributions the Chernoff relations hold because of the
Theorem 1, therefore with abbreviation

P(xi%) = p(atototl 415 > xi5)
(6) VE,1%) —~ o(x|F)
and
) P,(x|%) = ¢"(x|#)

10*
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where
e(x|#) = i:}fe‘"‘R(r!f).

By (6) and (7)
VM(P, (7)) ~ ess sup o(x\%)

and essesrglp o(x|F)=1, for every x=0 iff (ii) is satisfied.
w
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