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Wir haben oben bereits festgestellt, daBl bei dem Polynom f(x)=2x*—1 die sin-
guliren Punkte im Intervall [—1, 1] dicht liegen. Fiir die Funktion g(x, y)=
=4y—4(1 —x*)?* ist

g(x,y) =4,

d. h. die Gleichung (15) erfiillt die Voraussetzungen unseres Eindeutigkeitssatzes.
Wie man leicht bestitigt, ist ¢@(x)=1—x* eine stetige Losung der Gleichung (15),
und nach dem Eindeutigkeitssatz ist dies auch die einzige. Hieraus ergibt sich nun,
daB ¢(cos t)=sin*¢ die einzige stetige Losung der Gleichung (14) ist.
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Covering groups and presentations of finite groups II.
By SIEGFRIED MORAN (Canterbury)

§ 3. Presentations of Finite Groups

3.1 Notation. By Z,(y,; y¢I') we denote the free associative algebra with
unit element on set of free generators y,, y€I', over the field Z,. If we are working
with a specific algebra, then #( ) will denote the ideal generated by the elements
exhibited within the brackets in this algebra.

3.2 Lemma. Let p be a fixed prime number and, for every yerI', let (x,) be a cyclic
group of order p*.. Then there exists an algebra isomorphism @ between the algebra

Z,(y,; YD) F(y; yeI)
and the group algebra Z,([]* (x,)) which is defined by
7
o(y,+F(I; yeN) = x,—1
for all y in I.
PRrROOF. It is well known that there exists a natural isomorphism
Z,(IT* (xp) = Z,(F(X))[# (<= 1; y€D),
¥
where F(X) is the free group on the set of symbols X={x , ycI'}. Further it is
well known (see for instance M. LAzArD [11]) *) that the mapping
o(y,) =x,—1, forall yin I,
induces an algebra isomorphism ¢ of Z,(y,: yeI) into Z,(F(X)). Now
(1" = (x,— 1) = xP™—1.
So ¢ induces an algebra homomorphism
@: Z,(vy; YED|F Y5 y€D) ~ Z,(F(X))[F (x5"—1; ye).

Suppose that
() +F (™ yED)) = L (x27—1; y€D),

*) See References in 1.
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where f(y,) belongs to Z,(y,; yeI'). We now show that
f(y,) belongsto J(yr; yer).

Let MM denote the Magnus completion of Z,(y,; y€I), that is, the algebra of all
formal power series in the non-commuting variables y,, y€I', with coefficients in
Z, (see for instance M. Lazard [11]). Then it is well known (and follows easily
from the isomorphic embedding of F(X) in 9 due to W. Magnus) that the mapping

Ve Z_,(F(X)) - M
defined by

Y(x,) =14y, and Y(x;") =3 (=D},

k=0

for every y in I', is an algebra isomorphism into. Hence we know that
Y(f(x,—1)) belongs to y(F(xF"—1; y€D)).

This gives that f(y,) belongs to the topological closure of #(y?™; y€I) in 9,
where we consider Z,(y,; y€I') to be a subset of 9. Hence

f(»,) belongs to J(y"; yel)
in Z,(y,; y€I), since j(y;’"; y€r) is closed in Z,(y,; y€I'). So the mapping
@ is injective.
In order to show that @ is surjective we need to find an inverse image of
x; 14 (xP"—1; y€T) under @. We have that

32 Covrsorven) =2 C -y e S 1 ven) -

= x; (= )P X (x, — )P+ I (P — 1 pED) = x; 1+ I (B =15 y€T).
3.3 Lemma. If, in the notation of Lemma 3.2, we let A denote the augmentation
ideal of Z,([[*(x,)), then @' maps A* onto
7
Z}(yy; YED)+F (55 vED)F (35 yeD),

where Z%(y,; y€I) is the ideal of Z,(y,; yeI') which consists of all associative
polynomials whose homogeneous components of degree less than k are equal to zero.
This is so0 for k=1,2,....

PROOF. It is easy to see that A* is generated as an ideal in Z,(JT*(x,)) by all
elements of the form v

k
”(gj_l)i
j=1
where every g; belongs to J[* (x,). Now on using the fact that
ab—1=(@-1)(b-1)+@-1)+(b-1)
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and
p*r—1

x;l=1= 3 (—1Y(x,—1y
=1

in Z,(IT* (x,)), one obtains that ¢ ~*| is the required mapping into. The fact that
it is onto follows from the assertion that if f,(y,) belongs to Z%(y,; y€rI), then

¢ (fulx, = 1) = fur)+F 053 vel)
and fi(x,—1) belongs to 4*.

3.4 Remark. Let G be an arbitrary group and 4(G) be the augmentation ideal
of the group algebra Z,(G). Then the normal subgroup

GN(1+44(G))

is denoted by D, ,(G) and is called k-th dimension subgroup of G modulo p. It is
known (see S. A. JENNINGS [8] and M. Lazarp [11]) that

Dk'p(G) = Gk.p!

where G, ,=((‘G)""; jp"=k), for k=1,2,..., and /G denotes j-th member of
lower central series of G.

3.5 Theorem. Let the group G have a p*-smooth presentation on X={x,, ..., x,}
with a set of defining relations R and d=2. Suppose that xP™ belongs to R, where
o; is an integer =A(=1), for i=1,2,...,d. Let

d
R=U {xf"}UR*
i=1
be a partition of R. Let F(X) be the free group on the set of symbols X and
d
4 =1E* (s A

with 0 being the natural homomorphism of F(X) onto #. Suppose that, for each in-
teger k, we take ry to be the number of elements of O(R*) which belong to ¢, , but
not to fy..,, plus the number of x; with the property that p*=k. If G is a finite
group, then the power series

o) =1—dt+ 5’ ret* =0
for O0<t<1. e
PrOOF. The natural homomorphism
0: F(X) ~ ¢
extends in a natural way to a surjective algebra homomorphism

0: Z,(F(X)) -~ Z,(5)
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with ker 0=4(xf"—1; i=1,2,...,d). Now
Z,(G) =~ Z,(F(X))/#(R—1)
(Z,(FX)/F (=15 1 =i = d))/(F(R—1)/F (xP—1))
= Z,(5)/7(0(R")~1)
=(Z,(y; 1=i=d))s0r; 1=i=d))e~"(F(ORY)-1)),

IR

where @ is the algebra isomorphism given by Lemma 3.2. Hence, by Lemma 3.3
and Remark 3.4, we have that

Z2,6)=Z,(y; 1=i=d)s(S-1),
where S—1 is a subset of Z,(y,, ..., y,) with
IS—DNZE(yys s Y = S 14
izk

for k=2,3,.... The required result now follows from the celebrated theorem
of E. S. Gorop and I. R. SArARevi¢ [2] as refined by E. B. VINBERG [14] and
H. KocH [9], § 7. :

3.6 Theorem. Let a finite group G have a p*-smooth presentation (A=1) on set
X of d generators and r(k)+r(n) defining relations all of which belong to F(X), ,,
while r(n) of them belong to F(X), ,, where k and n are positive integers satisfying
l<k=n. We also assume that among the above defining relations are the relations

xPP=1 for all x; in X, where every p =k and P;=1. Then

r(n) = ((d/2)—r(k)) - (d/2)"*.

Proor. We consider the finite factor group of G which has the same generators

and the same defining relations as G except that xP""%i=1 is replaced by x/"=1
for every i. By Theorem 3.5,

0<eq()=1—dt+rk)-t*+r(n) -
for 0<r<=1. Suppose that contrary to the above assertion

r(n) = ((d/2* —r(K)) - (d/2"*.

Then @(1)=1—=dt+(d/2)" - 1"+ r(k)-(t*—(d/2)"*-1"). If d=3, then 0<=¢(2/d)=0
and 0=(2/d)<1. This contradiction establishes the theorem for d=3. The case
when d=1 is trivially true. The case when d=2 follows from the fact that the
free product of two non-trivial groups is infinite.

3.6.1 Corollary. If the above finite group G is such that r(n)=d, then

r(k) = (d/2)—d-(2/d)"~*.
In particular
r(2) = (d*/4)—d-(2/d)y"~2.
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3.6.2 Corollary. If the above given finite group G is such that the defining rela-
tions
(3.6.2.1) Aih=1,.. d"0=1,..x5%e=1]
have the property that px=nz=k for all i, then there are more than
(d/2)—d-(2/d)"~*
other defining relations taken from F(X), ,.
3.6.2.1 Corollary. Suppose that one of the following conditions hold:

p*=4 and d is even # 4,

p*=S5 and d is even,

p*=4 and d is odd = 17,
pP*=15 and d is odd =7,
p*=17 and d is odd = 5,
p* =28 and d is odd = 5,
p*=9 and d is odd = 3, where o = Min {«,, oy, ..., %}.

Then besides the relations (3.6.2.1) the above given finite group G has not less than
d*/4 other defining relations.

3.6.3 Corollary. Suppose that the above given finite group G is such that all
the r(k)+r(n)—d defining relations, other than the relations (3.6.2.1), belong to
F(X),, ,- Then

r(n) = (d/2y"—d -(d/2)" ¥,

provided every p*=k and taking r(k)=d.

3.7 Lemma. Suppose that a finite group G has a p*-smooth presentation (.=1)
on a set X of d generators with all the defining relations belonging to F(X), , and
among them are the relations

i h=1,.. . x0h=1,.. 38 =1,

where X={x,, ..., x;}, every p=k=2 and every P;=0. Then there are more
than

(dfk)k«(k—1)y-1—d
other defining relations taken from F(X) ,.

PrOOF. We consider the finite factor group of G, which has the same defining

relations as G expect that xP" % =1 is replaced by xP"=1 for every i. Now the
required result follows at once from Theorem 3.5 and proof of Satz 7.21 of H.
Koch [9].
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3.8 Theorem. Let /. be a positive integer. Then every finite group G has a pre-
sentation of the form

x A
s Xy = sxflosy = sysy=. .=y=1),

where p is any fixed prime number, every B;=0, X={x,, X, ..., X4}, every u; belongs
to F(X)?*. F(X), no y; belongs to F(X)**-F(X) and d=2. Furthermore in any
such presentation

s = (d*/4)—d - (2/dyP*—*

and thus in particular *
s=d¥4 for p*=9,

where p* is the largest power of p dividing every p*.p,. Here t denotes the minimal
number of generators of the finite abelian group ,.(G, X). If every u; is known to
belong to F(X),, ,, then

s = Max {(d/2)* —d - (2/d)>~*, (d/k)*(k—1y—" —d}
for p*=k=2.

Proor. We form the p*-smooth covering group G,.(X™) of G with respect to X.
Then, by Note 2.4 and Definition 2.14, we have that

G (X*)/n,2(G, X) = G,

where 7,.(G, X) is a finite abelian group of exponent dividing p*. Now obviously
G;:(X*) has a presentation of the form

(s s X 6P, mxiPlemy ()= =4 (") =1),

where X={x,,...,x;} is a set of generators of the group G. Also every u;(x*)
belongs to F(X*)**. F(X*)’, where X*={x{, ..., x}}. The required inequalities
for s now follow from Corollary 3.6.2 and Lemma 3.7.

3.9 Lemma. Suppose that a finitely generated group G has a presentation on
a set X of d generators with a set R of defining relations. If for k=2

R g -F(X)k,p
and r, denotes the number of elements of R which do not belong to F(X),., ,, then
re = e (F(X))—e(G),
&(G) = dimz,, (Gi, p/ G 1, p)s
for k=2,3,.... It is always possible to go over to a presentation of the above type
so that
Ty = ek(F(X))_ek(G)

and the total number of defining relations remain unaltered.

where

*) For more detailed bounds on p so that s=d*/4 holds, see Corollary 3.6.2.1.
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PRrOOF. Let K be the normal subgroup generated by R in the free group F(X)=F.
Then

G = F/K.
Hence
g Gk'p =) F(X)hp/K and GHM, = F(X)Hl’p-K/K.
o
Gk.p/Gkﬂ,p = (Fk.p/Fk+:.;)/(K—Fn+1,p/Fk+1,p)—
Hence

e = (F(X))—e(G).

In order to go over to a presentation of the above type on X, in which the
above inequality becomes equality, one can proceed as follows. First one takes
a set R, of elements of which form a basis for

K.F,;,, modulo Fy, ,.

Now it is straightforward to construct, by means of ‘linear combinations’, a set
of elements R,,,< Fy.,, so that

(R URy 4| = |Ri|+ Ry 14| = |R|
and R,UR, ., is a set of defining relations for G.
3.10 Theorem. Suppose that a finite group G has a p*-smooth presentation

(with .=1) on a set X of d generators with a set R of defining relations. If x?*"P.
belongs to R for every x; in X with every B,=0 and

RS F(X),, with k=2,
then
1
|R| > (d/2)"“—(3 d—1) (e (F(X))—e(G)),

where
ek(G) = dimzp (Gk,p/Gk‘i'l.p)’ for k= 2, 3, veea

Proor. This follows at once from Lemma 3.9 and Theorem 3.6 with n=k+1.

3.11 Note. It is easy to see that
e(F(X)) = (d*/2)— (= 1)P~*+(d[2).

§ 4. Presentations of finite p-groups

4.1 Note. Some of the results of §3 are new even for finite p-groups. They
can be improved, in a well known way, by considering presentations of a p-group

as a factor group of a free pro-p-group F(X). Then it has presentations
(F(Y); R) as a pro-p-group and {(F(X); R)
with
F=|R|=|Rl=r.
Adopting similar notation to that given in §3, one can establish, in a similar way,
the following results.
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4.2 Theorem. Let a finite p-group have a minimal set of d generators. Then

e i F(n) = ((d/2)* =F(k))-(d/2)"*
or l<k=n.

4.2.1 Corollary. If the finite p-group is such that 7(n)=d, then
F(k) = (d/2)*—d - (2/d)""*~.

F(2) = (d*/4)—d - (2/d)"2.

4.3 Theorem. Suppose that a finite p-group has a minimal set of d(=2) generators
and a presentation of the form

In particular

Gsosipgal =a ==l =nmtn =1
as a pro-p-group, where every u; belongs to mw with every px=k=2. Then
F(k) = Max {(d/2)*—d - (2/d)"~*, (d[k)* - (k—1)*""—d},
where a=Min {a, ..., a,}.
4.3.1 Corollary. F(2)=d*/4 for p*=9 (see Corollary 3.6.2.1 for more details).

4.4 Theorem. Suppose that the finite p-group G has a minimal set of d generators
and a presentation as a pro-p-group of the form (F(X); R), where R is a subset of
F(X),, and k=2. Then

IR| = ex(F(X))—en(G)

and

IRI = (@244 (5 d—1) (e (F(X) 4 (G)),

where
&(G) = dimg, (Gy, ,/Gy441,p) for each k =2.

4.4.1 Note. The particular case when k=2 gives the inequalities of W.
GaAscHUTZ and M. F. NEwMAN [1], since

e(F(X)) = (d*/2)— (=1’ (d/2).

§ 5. A numerical lemma and some examples

5.1 Lemma. Let d and k be integers greater than 1. Then
(d/k)* - (k—=1)*"1—d = (d/2)¥

when k=6 or k=4,5 and d=3 or k=3 and d=7. For all other values of d and
k the above inequality is false. Also

QIR (k—1)-1—2 = —;-k ~34+(/K).



Covering groups and presentations of finite groups 11. 215

ProoOF. The inequality holds if and only if

gl —1/(k—1)
(5.1.1) [U‘ ! s ' :

Now

X = -1/(k-1) =1/(k=1)
[M_l__]. > [ 1 1 <2.(QME-D < 3,

2% ek 2%

for k=5, since 2*-'=ek for k=5. Hence the first inequality in Lemma holds
when k=5 and d=3.
Now let k=3. Then from (5.1.1) it follows that

d=6)6/5 andso d=7.
Now let k=4. Then from (5.1.1) it follows that

d=4-4/11)'® andso d=3, since %<(4/u)'f=<%.

Now

QI - (k— 1) = [1+[1—%]]k; k=244 k(1) [1-242) =

2

1 1 1 3 2
A ol el - Nl SUEES Rt~ ieatel " K 0 v Al & N -
= 1+k=2+ 5 K~ k—2k+2+2—— = 5 =S k+ 1+ (k=1)

= -;-(k—l)(k—z)+7{2~(k—l).

g) E;{ c ;1 check directly that (2/k)*.(k—1)*-'=3 for 6=k=7 and it is false for
5.2 Example. The group

(X y; ¥ =y =(x,y)=1)

is a finite p-group with its minimal set of generators consisting of two elements.

5.3 Example. The group
(xpz X =y =" =(x)=x2=02=1)
is a finite p-group with its minimal set of generators consisting of three elements.

5.4 Example. A. 1. KosTRIKIN [10] has constructed a finite p-group G of class
two on generators
Xy, .05 Xgs Where d=2°

and n is any positive integer. It has defining relations

MH=.=x=1



