Wir haben oben bereits festgestellt, daß bei dem Polynom $f(x)=2x^2-1$ die singulären Punkte im Intervall [-1, 1] dicht liegen. Für die Funktion $g(x, y) = 4y - 4(1-x^2)^2$ ist

$$g_{\nu}(x, y) = 4$$

d. h. die Gleichung (15) erfüllt die Voraussetzungen unseres Eindeutigkeitssatzes. Wie man leicht bestätigt, ist $\varphi(x)=1-x^2$ eine stetige Lösung der Gleichung (15), und nach dem Eindeutigkeitssatz ist dies auch die einzige. Hieraus ergibt sich nun, daß $\varphi(\cos t)=\sin^2 t$ die einzige stetige Lösung der Gleichung (14) ist.

Literatur

- [1] B. Barna, Über die Iteration reeller Funktionen I, II, III. Publ. Math. (Debrecen) 7, (1960) 16—40; 13, (1966); 169—172; 22 (1975), 269—278.
- [2] E. Jacobsthal, Über vertauschbare Polynome, Math. Z. 63, (1955), 243-276.
- [3] M. Kuczma, Functional equations in a single variable, Warszawa, 1968.
- [4] M. KRÜPPEL, Beiträge zur Theorie der vertauschbaren Funktionen, Math. Nachr. 56 (1973), 73—100.
- [5] Über nichtmonotone, vertauschbare Funktionen, (In Vorbereitung)
- [6] Über die Verteilung der singulären Punkte bei Polynomen, Wiss. Zeitschr. der PH Güstrow, Jahrgang 1977, Heft 1.

(Eingegangen am 30. Juli 1976.)

Covering groups and presentations of finite groups II.

By SIEGFRIED MORAN (Canterbury)

§ 3. Presentations of Finite Groups

- 3.1 Notation. By $\mathbf{Z}_p(y_\gamma; \gamma \in \Gamma)$ we denote the free associative algebra with unit element on set of free generators $y_\gamma, \gamma \in \Gamma$, over the field \mathbf{Z}_p . If we are working with a specific algebra, then $\mathcal{I}()$ will denote the ideal generated by the elements exhibited within the brackets in this algebra.
- 3.2 **Lemma.** Let p be a fixed prime number and, for every $\gamma \in \Gamma$, let $\langle x_{\gamma} \rangle$ be a cyclic group of order $p^{\alpha_{\gamma}}$. Then there exists an algebra isomorphism $\overline{\varphi}$ between the algebra

$$\mathbf{Z}_p(y_{\gamma}; \gamma \in \Gamma)/\mathscr{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)$$

and the group algebra $\mathbf{Z}_p(\prod_{\gamma}^*\langle x_{\gamma}\rangle)$ which is defined by

$$\bar{\varphi}(y_{\gamma} + \mathcal{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)) = x_{\gamma} - 1$$

for all γ in Γ .

PROOF. It is well known that there exists a natural isomorphism

$$\mathbf{Z}_p(\prod_{\gamma}^* \langle x_{\gamma} \rangle) \cong \mathbf{Z}_p(F(X))/\mathscr{I}(x_{\gamma}^{p^{\alpha_{\gamma}}}-1; \gamma \in \Gamma),$$

where F(X) is the free group on the set of symbols $X = \{x_{\gamma}, \gamma \in \Gamma\}$. Further it is well known (see for instance M. LAZARD [11]) *) that the mapping

$$\varphi(y_{\gamma}) = x_{\gamma} - 1$$
, for all γ in Γ ,

induces an algebra isomorphism φ of $\mathbb{Z}_p(y_\gamma; \gamma \in \Gamma)$ into $\mathbb{Z}_p(F(X))$. Now

$$\varphi(y_{\gamma}^{p^{\alpha_{\gamma}}}) = (x_{\gamma} - 1)^{p^{\alpha_{\gamma}}} = x_{\gamma}^{p^{\alpha_{\gamma}}} - 1.$$

So φ induces an algebra homomorphism

$$\overline{\varphi} \colon \mathbf{Z}_p(y_{\gamma}; \gamma \in \Gamma) / \mathcal{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma) \to \mathbf{Z}_p(F(X)) / \mathcal{I}(x_{\gamma}^{p^{\alpha_{\gamma}}} - 1; \gamma \in \Gamma).$$

Suppose that

$$\overline{\varphi}\big(f(y_{\gamma}) + \mathcal{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)\big) = \mathcal{I}(x_{\gamma}^{p^{\alpha_{\gamma}}} - 1; \gamma \in \Gamma),$$

^{*)} See References in I.

where $f(y_{\gamma})$ belongs to $\mathbb{Z}_{p}(y_{\gamma}; \gamma \in \Gamma)$. We now show that

$$f(y_{\gamma})$$
 belongs to $\mathcal{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)$.

Let \mathfrak{M} denote the Magnus completion of $\mathbf{Z}_p(y_\gamma; \gamma \in \Gamma)$, that is, the algebra of all formal power series in the non-commuting variables $y_\gamma, \gamma \in \Gamma$, with coefficients in \mathbf{Z}_p (see for instance M. Lazard [11]). Then it is well known (and follows easily from the isomorphic embedding of F(X) in \mathfrak{M} due to W. Magnus) that the mapping

$$\psi \colon \mathbb{Z}_p(F(X)) \to \mathfrak{M}$$

defined by

$$\psi(x_{\gamma}) = 1 + y_{\gamma}$$
 and $\psi(x_{\gamma}^{-1}) = \sum_{k=0}^{\infty} (-1)^k y_{\gamma}^k$,

for every γ in Γ , is an algebra isomorphism into. Hence we know that

$$\psi(f(x_{\gamma}-1))$$
 belongs to $\psi(\mathcal{I}(x_{\gamma}^{p^{\alpha_{\gamma}}}-1; \gamma \in \Gamma)).$

This gives that $f(y_{\gamma})$ belongs to the topological closure of $\mathscr{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)$ in \mathfrak{M} , where we consider $\mathbf{Z}_{p}(y_{\gamma}; \gamma \in \Gamma)$ to be a subset of \mathfrak{M} . Hence

$$f(y_{\gamma})$$
 belongs to $\mathscr{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)$

in $\mathbf{Z}_p(y_{\gamma}; \gamma \in \Gamma)$, since $\mathscr{I}(y_{\gamma}^{p^{\alpha_{\gamma}}}; \gamma \in \Gamma)$ is closed in $\mathbf{Z}_p(y_{\gamma}; \gamma \in \Gamma)$. So the mapping $\overline{\varphi}$ is injective.

In order to show that $\overline{\varphi}$ is surjective we need to find an inverse image of $x_{\gamma}^{-1} + \mathscr{I}(x_{\gamma}^{p^{\alpha_{\gamma}}} - 1; \gamma \in \Gamma)$ under $\overline{\varphi}$. We have that

$$\bar{\varphi}\left(\sum_{j=0}^{p^{\alpha_{\gamma}}-1}(-1)^{j}y_{\gamma}^{j}+\mathscr{I}(y_{\gamma}^{p^{\alpha_{\gamma}}};\,\gamma\in\Gamma)\right)=\sum_{j=0}^{p^{\alpha_{\gamma}}-1}(-1)^{j}(x_{\gamma}-1)^{j}+\mathscr{I}(x_{\gamma}^{p^{\alpha_{\gamma}}}-1;\,\gamma\in\Gamma)=$$

$$= x_{\gamma}^{-1} + (-1)^{p^{\alpha_{\gamma}}+1} x_{\gamma}^{-1} (x_{\gamma}-1)^{p^{\alpha_{\gamma}}} + \mathscr{I}(x_{\gamma}^{p^{\alpha_{\gamma}}}-1\,;\,\gamma \in \Gamma) = x_{\gamma}^{-1} + \mathscr{I}(x_{\gamma}^{p^{\alpha_{\gamma}}}-1\,;\,\gamma \in \Gamma).$$

3.3 **Lemma.** If, in the notation of Lemma 3.2, we let Δ denote the augmentation ideal of $\mathbf{Z}_p(\prod_{\gamma} {}^*\langle x_{\gamma} \rangle)$, then $\bar{\varphi}^{-1}$ maps Δ^k onto

$$\mathbf{Z}_p^k(y_\gamma;\,\gamma{\in}\Gamma) + \mathscr{I}(y_\gamma^{p^{\alpha_\gamma}};\,\gamma{\in}\Gamma)/\mathscr{I}(y_\gamma^{p^{\alpha_\gamma}};\,\gamma{\in}\bar{\Gamma}),$$

where $\mathbf{Z}_p^k(y_\gamma; \gamma \in \Gamma)$ is the ideal of $\mathbf{Z}_p(y_\gamma; \gamma \in \Gamma)$ which consists of all associative polynomials whose homogeneous components of degree less than k are equal to zero. This is so for $k=1, 2, \ldots$

PROOF. It is easy to see that Δ^k is generated as an ideal in $\mathbb{Z}_p(\prod_{\gamma}^* \langle x_{\gamma} \rangle)$ by all elements of the form

$$\prod_{j=1}^{k} (g_j - 1),$$

where every g_i belongs to $\prod^* \langle x_y \rangle$. Now on using the fact that

$$ab-1 = (a-1)(b-1)+(a-1)+(b-1)$$

and

$$x_{\gamma}^{-1} - 1 = \sum_{j=1}^{p^{\alpha_{\gamma}} - 1} (-1)^{j} (x_{\gamma} - 1)^{j}$$

in $\mathbb{Z}_p(\Pi^*\langle x_{\gamma}\rangle)$, one obtains that $\overline{\varphi}^{-1}|_{A^k}$ is the required mapping into. The fact that it is onto follows from the assertion that if $f_k(y_{\gamma})$ belongs to $\mathbb{Z}_p^k(y_{\gamma}; \gamma \in \Gamma)$, then

$$\overline{\varphi}^{-1}(f_k(x_{\gamma}-1)) = f_k(y_{\gamma}) + \mathscr{I}(y_{\gamma}^{p\alpha_{\gamma}}; \gamma \in \Gamma)$$

and $f_k(x_{\gamma}-1)$ belongs to Δ^k .

3.4 Remark. Let G be an arbitrary group and $\Delta(G)$ be the augmentation ideal of the group algebra $\mathbb{Z}_p(G)$. Then the normal subgroup

$$G\cap (1+\Delta^k(G))$$

is denoted by $D_{k,p}(G)$ and is called k-th dimension subgroup of G modulo p. It is known (see S. A. JENNINGS [8] and M. LAZARD [11]) that

$$D_{k,p}(G)=G_{k,p},$$

where $G_{k,p} = \langle ({}^{j}G)^{ph}; jp^{h} \ge k \rangle$, for k=1,2,..., and ${}^{j}G$ denotes j-th member of lower central series of G.

3.5 **Theorem.** Let the group G have a p^{λ} -smooth presentation on $X = \{x_1, ..., x_d\}$ with a set of defining relations R and $d \ge 2$. Suppose that $x_i^{p^{\alpha_i}}$ belongs to R, where α_i is an integer $\ge \lambda(\ge 1)$, for i=1,2,...,d. Let

$$R = \bigcup_{i=1}^d \{x_i^{p^{\alpha_i}}\} \cup R^*$$

be a partition of R. Let F(X) be the free group on the set of symbols X and

$$\mathscr{J} = \prod_{i=1}^{d} {}^*\langle x_i; \, x_i^{p^{\alpha_i}} \rangle$$

with θ being the natural homomorphism of F(X) onto \mathcal{J} . Suppose that, for each integer k, we take r_k to be the number of elements of $\theta(R^*)$ which belong to $\mathcal{J}_{k,p}$ but not to $\mathcal{J}_{k+1,p}$ plus the number of x_i with the property that $p^{\alpha_i}=k$. If G is a finite group, then the power series

$$\varphi(t) = 1 - dt + \sum_{k=2}^{\infty} r_k t^k > 0$$

for 0 < t < 1.

PROOF. The natural homomorphism

$$\theta \colon F(X) \to \mathscr{J}$$

extends in a natural way to a surjective algebra homomorphism

$$\theta \colon \mathbf{Z}_p(F(X)) \to \mathbf{Z}_p(\mathcal{J})$$

with ker $\theta = \mathcal{I}(x_i^{p\alpha_i} - 1; i = 1, 2, ..., d)$. Now

$$\begin{split} \mathbf{Z}_{p}(G) &\cong \mathbf{Z}_{p}(F(X))/\mathscr{I}(R-1) \\ &\cong \big(\mathbf{Z}_{p}(F(X))/\mathscr{I}(x_{i}^{p^{\alpha_{i}}}-1;\ 1 \leq i \leq d)\big)/\big(\mathscr{I}(R-1)/\mathscr{I}(x_{i}^{p^{\alpha_{i}}}-1)\big) \\ &\cong \mathbf{Z}_{p}(\mathscr{I})/\mathscr{I}\big(\theta(R^{*})-1\big) \\ &\cong \big(\mathbf{Z}_{p}(y_{i};\ 1 \leq i \leq d)/\mathscr{I}(y_{i}^{p^{\alpha_{i}}};\ 1 \leq i \leq d)\big)/\bar{\varphi}^{-1}\big(\mathscr{I}(\theta(R^{*})-1)\big), \end{split}$$

where $\bar{\varphi}$ is the algebra isomorphism given by Lemma 3.2. Hence, by Lemma 3.3 and Remark 3.4, we have that

$$\mathbf{Z}_p(G) \cong \mathbf{Z}_p(y_i; \ 1 \le i \le d)/\mathscr{I}(S-1),$$

where S-1 is a subset of $\mathbf{Z}_p(y_1, ..., y_d)$ with

$$|(S-1) \cap \mathbf{Z}_p^k(y_1, ..., y_d)| = \sum_{i \ge k} r_i$$

for k=2, 3, ... The required result now follows from the celebrated theorem of E. S. GOLOD and I. R. ŠAFAREVIČ [2] as refined by E. B. VINBERG [14] and H. KOCH [9], § 7.

3.6 **Theorem.** Let a finite group G have a p^{λ} -smooth presentation $(\lambda \ge 1)$ on set X of d generators and r(k)+r(n) defining relations all of which belong to $F(X)_{k,p}$, while r(n) of them belong to $F(X)_{n,p}$, where k and n are positive integers satisfying $1 < k \le n$. We also assume that among the above defining relations are the relations $x_i^{p^{\alpha_i \cdot \beta_i}} = 1$ for all x_i in X, where every $p^{\alpha_i} \ge k$ and $\beta_i \ge 1$. Then

$$r(n) > ((d/2)^k - r(k)) \cdot (d/2)^{n-k}$$
.

PROOF. We consider the finite factor group of G which has the same generators and the same defining relations as G except that $x_i^{p^{\alpha_i} \cdot \beta_i} = 1$ is replaced by $x_i^{p^{\alpha_i}} = 1$ for every i. By Theorem 3.5,

$$0 < \varphi(t) \leq 1 - dt + r(k) \cdot t^k + r(n) \cdot t^n$$

for 0 < t < 1. Suppose that contrary to the above assertion

$$r(n) \leq ((d/2)^k - r(k)) \cdot (d/2)^{n-k}.$$

Then $\varphi(t) \le 1 - dt + (d/2)^n \cdot t^n + r(k) \cdot (t^k - (d/2)^{n-k} \cdot t^n)$. If $d \ge 3$, then $0 < \varphi(2/d) \le 0$ and 0 < (2/d) < 1. This contradiction establishes the theorem for $d \ge 3$. The case when d=1 is trivially true. The case when d=2 follows from the fact that the free product of two non-trivial groups is infinite.

3.6.1 Corollary. If the above finite group G is such that r(n)=d, then

$$r(k) > (d/2)^k - d \cdot (2/d)^{n-k}$$
.

In particular

$$r(2) > (d^2/4) - d \cdot (2/d)^{n-2}$$

3.6.2 Corollary. If the above given finite group G is such that the defining relations

$$(3.6.2.1) x_1^{p^{\alpha_1} \cdot \beta_1} = 1, \dots, x_i^{p^{\alpha_i} \cdot \beta_i} = 1, \dots, x_d^{p^{\alpha_d} \cdot \beta_d} = 1$$

have the property that $p^{\alpha_i} \ge n \ge k$ for all i, then there are more than

$$(d/2)^k - d \cdot (2/d)^{n-k}$$

other defining relations taken from $F(X)_{k,p}$.

3.6.2.1 Corollary. Suppose that one of the following conditions hold:

$$p^{\alpha} = 4$$
 and d is even $\neq 4$,
 $p^{\alpha} \ge 5$ and d is even,
 $p^{\alpha} = 4$ and d is odd ≥ 17 ,
 $p^{\alpha} = 5$ and d is odd ≥ 7 ,
 $p^{\alpha} = 7$ and d is odd ≥ 5 ,
 $p^{\alpha} = 8$ and d is odd ≥ 5 ,

 $p^{\alpha} \ge 9$ and d is odd ≥ 3 , where $\alpha = \min \{\alpha_1, \alpha_2, ..., \alpha_d\}$.

Then besides the relations (3.6.2.1) the above given finite group G has not less than $d^2/4$ other defining relations.

3.6.3 **Corollary.** Suppose that the above given finite group G is such that all the r(k)+r(n)-d defining relations, other than the relations (3.6.2.1), belong to $F(X)_{n,p}$. Then

$$r(n) > (d/2)^n - d \cdot (d/2)^{n-k},$$

provided every $p^{\alpha_i} \ge k$ and taking r(k) = d.

3.7 **Lemma.** Suppose that a finite group G has a p^{λ} -smooth presentation $(\lambda \ge 1)$ on a set X of d generators with all the defining relations belonging to $F(X)_{k,p}$ and among them are the relations

$$x_1^{p^{\alpha_1.\beta_1}} = 1, \dots, x_i^{p^{\alpha_i.\beta_i}} = 1, \dots, x_d^{p^{\alpha_d.\beta_d}} = 1,$$

where $X = \{x_1, ..., x_d\}$, every $p^{\alpha_i} \ge k \ge 2$ and every $\beta_i > 0$. Then there are more than

$$(d/k)^k \cdot (k-1)^{k-1} - d$$

other defining relations taken from $F(X)_{k,n}$.

PROOF. We consider the finite factor group of G, which has the same defining relations as G expect that $x_i^{p^{\alpha_i} \cdot \beta_i} = 1$ is replaced by $x_i^{p^{\alpha_i}} = 1$ for every i. Now the required result follows at once from Theorem 3.5 and proof of Satz 7.21 of H. Koch [9].

3.8 **Theorem.** Let λ be a positive integer. Then every finite group G has a presentation of the form

$$\langle x_1, \ldots, x_d; x_1^{p^{\lambda}, \beta_1} = \ldots = x_d^{p^{\lambda}, \beta_d} = u_1 = \ldots = u_s = y_1 = \ldots = y_t = 1 \rangle$$

where p is any fixed prime number, every $\beta_i > 0$, $X = \{x_1, x_2, ..., x_d\}$, every u_i belongs to $F(X)^{p^{\lambda}} \cdot F(X)'$, no y_i belongs to $F(X)^{p^{\lambda}} \cdot F(X)'$ and $d \ge 2$. Furthermore in any such presentation

 $s > (d^2/4) - d \cdot (2/d)^{p^{\alpha}-2}$

and thus in particular *

$$s \ge d^2/4$$
 for $p^{\alpha} \ge 9$,

where p^{α} is the largest power of p dividing every $p^{\lambda} \cdot \beta_i$. Here t denotes the minimal number of generators of the finite abelian group $\pi_{p^{\lambda}}(G, X)$. If every u_i is known to belong to $F(X)_{k,p}$, then

$$s > \text{Max}\{(d/2)^k - d \cdot (2/d)^{p^{\alpha}-k}, (d/k)^k (k-1)^{k-1} - d\}$$

for $p^{\alpha} \ge k \ge 2$.

PROOF. We form the p^{λ} -smooth covering group $G_{p^{\lambda}}^{*}(X^{*})$ of G with respect to X. Then, by Note 2.4 and Definition 2.14, we have that

$$G_{p^{\lambda}}^*(X^*)/\pi_{p^{\lambda}}(G,X)\cong G,$$

where $\pi_{p^{\lambda}}(G, X)$ is a finite abelian group of exponent dividing p^{λ} . Now obviously $G_{p^{\lambda}}^{*}(X^{*})$ has a presentation of the form

$$\langle x_1^*, \ldots, x_d^*; x_1^{*p^{\lambda,\beta_1}} = \ldots = x_d^{*p^{\lambda,\beta_d}} = u_1(x^*) = \ldots = u_s(x^*) = 1 \rangle,$$

where $X = \{x_1, ..., x_d\}$ is a set of generators of the group G. Also every $u_i(x^*)$ belongs to $F(X^*)^{p^{\lambda}} \cdot F(X^*)'$, where $X^* = \{x_1^*, ..., x_d^*\}$. The required inequalities for s now follow from Corollary 3.6.2 and Lemma 3.7.

3.9 **Lemma.** Suppose that a finitely generated group G has a presentation on a set X of d generators with a set R of defining relations. If for $k \ge 2$

$$R \subseteq F(X)_{k,p}$$

and r_k denotes the number of elements of R which do not belong to $F(X)_{k+1,p}$, then

$$r_k \geq e_k(F(X)) - e_k(G),$$

where

$$e_k(G) = \dim_{\mathbb{Z}_p} (G_{k,p}/G_{k+1,p}),$$

for k=2, 3, ... It is always possible to go over to a presentation of the above type so that

$$r_k = e_k(F(X)) - e_k(G)$$

and the total number of defining relations remain unaltered.

^{*)} For more detailed bounds on p so that $s \ge d^2/4$ holds, see Corollary 3.6.2.1.

PROOF. Let K be the normal subgroup generated by R in the free group F(X) = F. Then

 $G \cong F/K$.

Hence

 $G_{k,p} \cong F(X)_{k,p}/K$ and $G_{k+1,p} \cong F(X)_{k+1,p} \cdot K/K$.

So

 $G_{k,p}/G_{k+1,p} \cong (F_{k,p}/F_{k+1,p})/(K.F_{k+1,p}/F_{k+1,p}).$

Hence

$$r_k \ge e_k(F(X)) - e_k(G)$$
.

In order to go over to a presentation of the above type on X, in which the above inequality becomes equality, one can proceed as follows. First one takes a set R_k of elements of which form a basis for

$$K.F_{k+1,p}$$
 modulo $F_{k+1,p}$.

Now it is straightforward to construct, by means of 'linear combinations', a set of elements $R_{k+1} \subseteq F_{k+1,p}$ so that

$$|R_k \cup R_{k+1}| = |R_k| + |R_{k+1}| = |R|$$

and $R_k \cup R_{k+1}$ is a set of defining relations for G.

3.10 **Theorem.** Suppose that a finite group G has a p^{λ} -smooth presentation (with $\lambda \ge 1$) on a set X of d generators with a set R of defining relations. If $x_i^{p^{\lambda} \cdot \beta_i}$ belongs to R for every x_i in X with every $\beta_i > 0$ and

$$R \subseteq F(X)_{k,p}$$
 with $k \ge 2$,

then

$$|R| > (d/2)^{k+1} - (\frac{1}{2}d-1) \cdot (e_k(F(X)) - e_k(G)),$$

where

$$e_k(G) = \dim_{\mathbb{Z}_p} (G_{k,p}/G_{k+1,p}), \text{ for } k = 2, 3,$$

PROOF. This follows at once from Lemma 3.9 and Theorem 3.6 with n=k+1.

3.11 Note. It is easy to see that

$$e_2(F(X)) = (d^2/2) - (-1)^{p-1} \cdot (d/2).$$

§ 4. Presentations of finite p-groups

4.1 Note. Some of the results of § 3 are new even for finite p-groups. They can be improved, in a well known way, by considering presentations of a p-group as a factor group of a free pro-p-group $\overline{F(X)}$. Then it has presentations

$$\langle \overline{F(X)}; \overline{R} \rangle$$
 as a pro-p-group and $\langle F(X); R \rangle$

with

$$\bar{r} = |\bar{R}| \le |R| = r$$
.

Adopting similar notation to that given in §3, one can establish, in a similar way, the following results.

4.2 Theorem. Let a finite p-group have a minimal set of d generators. Then

$$\bar{r}(n) > ((d/2)^k - \bar{r}(k)) \cdot (d/2)^{n-k}$$

for $1 < k \le n$.

4.2.1 Corollary. If the finite p-group is such that $\bar{r}(n)=d$, then

$$\bar{r}(k) > (d/2)^k - d \cdot (2/d)^{n-k}$$
.

In particular

$$\bar{r}(2) > (d^2/4) - d \cdot (2/d)^{n-2}$$
.

4.3 **Theorem.** Suppose that a finite p-group has a minimal set of $d(\ge 2)$ generators and a presentation of the form

$$\langle x_1, \ldots, x_d; x_1^{p^{\alpha_1}} = \ldots = x_d^{p^{\alpha_d}} = u_1 = \ldots = u_{\bar{r}(k)} = 1 \rangle$$

as a pro-p-group, where every u_i belongs to $\overline{F(X)}_{k,p}$ with every $p^{\alpha_i} \ge k \ge 2$. Then

$$\bar{r}(k) > \text{Max}\{(d/2)^k - d \cdot (2/d)^{p^{\alpha}-k}, (d/k)^k \cdot (k-1)^{k-1} - d\},\$$

where $\alpha = \min \{\alpha_1, ..., \alpha_d\}$.

- 4.3.1 Corollary. $\bar{r}(2) \ge d^2/4$ for $p^{\alpha} \ge 9$ (see Corollary 3.6.2.1 for more details).
- 4.4 **Theorem.** Suppose that the finite p-group G has a minimal set of d generators and a presentation as a pro-p-group of the form $\langle \overline{F(X)}; \overline{R} \rangle$, where \overline{R} is a subset of $\overline{F(X)}_{k,p}$ and $k \ge 2$. Then

$$|\overline{R}| \ge e_k(F(X)) - e_k(G)$$

and

$$|\overline{R}| > (d/2)^{k+1} - (\frac{1}{2}d-1) \cdot (e_k(F(X)) - e_k(G)),$$

where

$$e_k(G) = \dim_{\mathbb{Z}_p} (G_{k,p}/G_{k+1,p})$$
 for each $k \ge 2$.

4.4.1 *Note*. The particular case when k=2 gives the inequalities of W. GASCHÜTZ and M. F. NEWMAN [1], since

$$e_2(F(X)) = (d^2/2) - (-1)^{p-1}(d/2).$$

§ 5. A numerical lemma and some examples

5.1 Lemma. Let d and k be integers greater than 1. Then

$$(d/k)^k \cdot (k-1)^{k-1} - d \ge (d/2)^k$$

when $k \ge 6$ or k=4,5 and $d \ge 3$ or k=3 and $d \ge 7$. For all other values of d and k the above inequality is false. Also

$$(2/k)^k \cdot (k-1)^{k-1} - 2 \ge \frac{1}{2} k - 3 + (2/k).$$

PROOF. The inequality holds if and only if

(5.1.1)
$$d \ge \left[\frac{(k-1)^{k-1}}{k^k} - \frac{1}{2^k} \right]^{-1/(k-1)}.$$

Now

$$\left[\frac{(k-1)^{k-1}}{k^k} - \frac{1}{2^k}\right]^{-1/(k-1)} < \left[\frac{1}{ek} - \frac{1}{2^k}\right]^{-1/(k-1)} < 2 \cdot (2)^{1/(k-1)} < 3,$$

for $k \ge 5$, since $2^{k-1} > e.k$ for $k \ge 5$. Hence the first inequality in Lemma holds when $k \ge 5$ and $d \ge 3$.

Now let k=3. Then from (5.1.1) it follows that

$$d \ge 6\sqrt{6/5}$$
 and so $d \ge 7$.

Now let k=4. Then from (5.1.1) it follows that

$$d \ge 4 \cdot (4/11)^{1/3}$$
 and so $d \ge 3$, since $\frac{1}{2} < (4/11)^{1/3} < \frac{3}{4}$.

Now

$$(2/k)^{k} \cdot (k-1)^{k} = \left[1 + \left(1 - \frac{2}{k}\right)\right]^{k} \ge 1 + k - 2 + \frac{1}{2}k(k-1)\left(1 - \frac{4}{k} + \frac{4}{k^{2}}\right) =$$

$$= 1 + k - 2 + \frac{1}{2}k^{2} - \frac{1}{2}k - 2k + 2 + 2 - \frac{2}{k} = \frac{1}{2}k^{2} - \frac{3}{2}k + 1 + \frac{2}{k}(k-1) =$$

$$= \frac{1}{2}(k-1)(k-2) + \frac{2}{k}(k-1).$$

One can check directly that $(2/k)^k \cdot (k-1)^{k-1} \ge 3$ for $6 \le k \le 7$ and it is false for $2 \le k \le 5$.

5.2 Example. The group

$$\langle x, y; x^{p\lambda} = y^{p\lambda} = (x, y) = 1 \rangle$$

is a finite p-group with its minimal set of generators consisting of two elements.

5.3 Example. The group

$$\langle x, y, z; x^{p^{\lambda}} = y^{p^{\lambda}} = z^{p^{\lambda}} = (x, y) = (x, z) = (y, z) = 1 \rangle$$

is a finite p-group with its minimal set of generators consisting of three elements.

5.4 Example. A. I. Kostrikin [10] has constructed a finite p-group G of class two on generators

$$x_1, \ldots, x_d$$
, where $d = 2^n$

and n is any positive integer. It has defining relations

$$x_1^p = \dots = x_d^p = 1$$