On certain graphs composed of algebraic integers of a
number field and their applications I.

By K. GYORY (Debrecen)

In [8] we solved, for a large class of irreducible polynomials g(x), an old prob-
lem of A. BRAUER, R. BRAUER and H. Hopr [4] concerning the reducibility of
polynomials of the form g( f(x)) where g, f€ Z[x]. In [8], [9], [10], [12], [13] and [21]
we considerably generalized and improved this result. To formulate and prove our
irreducibility theorems we associated to every pair f, g in question a certain graph
with vertex set consisting of the roots of f. As it turned out, the question of reducibility
of g(f(x)) over Q is closely connected with the structure of the corresponding
graph. Namely, we proved [8] that if this graph has a connected component with
s vertices then the number of irreducible factors of g(f(x)) is not greater than

[desgf_..] and this estimate is in general best possible (see [9]). To generalize our

earlier irreducibility theorems, in [9] and [10] we studied these graphs in the following
more general form. Let K be an algebraic number field with ring of integers Zj.
Let o/ ={o,,...,,} be a finite subset of Z; and, for given N=1, define the
graph ¢ with vertex set &/ so that [«;, «;] is an edge of 4 if and only if

| Nxsg(@;—a;)| = N.

By solving some diophantine problems and using certain deep effective results on
diophantine equations we proved in [9] (see also [10]) that if m is sufficiently large,

; m+ 1 5
then ¥ has a connected component with at least [%] vertices. Further, we

m+1

2
proved (i.e. that for g considered in [9] g(f(x)) is always irreducible over Q if f
has distinct real roots and degf is sufficiently large).

Some of our recent investigations showed that some further properties of
the graphs defined above (e.g. the completeness of 4 or %, the existence of large
complete subgraphs in ¥, the connectivity and the maximum degree of @’T) play
an important role in the resolution of several other number-theoretic problems as
well. We discovered many specific properties of these graphs (and their p-adic
analogues) and with the aid of these properties (but without using graph terminol-

conjectured ([9], p. 311) that here the lower bound [ ] can be further im-
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ogy ') we obtained general and effective results among others on polynomials and
algebraic integers with given discriminant [11], [12], [13], [14], [15], [16], on algebraic
integers with given index [13], [15], [16], on the arithmetical structure of dis-
criminants and of indices of algebraic integers [16], on power bases and on
the number of generators of the ring of integers of a number field [13], [15], on dio-
phantine equations of discriminant type [13], [14], on discriminant form, index
form and norm form equations in an arbitrary number of unknowns and on their
generalizations [13], [14], [29], [18], [20] and on the prime factors of decomposable
forms [29], [18]. We mention that these results enabled us to solve, in effective and
more general forms, certain problems of DELONE and FADDEEV [7], NAGELL [36]
and NArkiewicz [38], respectively. Further, our results generalized a number
of earlier theorems of the above mentioned domains, among others some well-
known theorems of NAGELL [34], [35], [36], [37], MAHLER [32], BAKER [1], COATES
[5], [6], SPriNDZUK [44], [45], KoTovV [30], SPRINDZUK and KoTov [46] and SHOREY,
VAN DER POORTEN, TUDEMAN and SCHINZEL [43], respectively.

In the present paper we generalize the above graphs 4 to the p-adic case. As
a considerable generalization and improvement of our earlier results on the graphs
% (obtained with or without the use of graph terminology) we give such a descrip-
tion of these graphs which proves very useful from the point of view of applications.
Our main results (Theorems 1 and 2) have many various number-theoretic applica-
tions. From our Theorems 1 and 2 it follows e.g. an affirmative answer to our con-
jecture mentioned above and the resolution of the Brauer—Hopf problem in a more
general form (see [21]). Moreover, all our results quoted above can be obtained
(in more general and improved forms) as consequences of our main theorems (see e.g.
[21], [22], [23]). Further new applications are given in our papers [25], [26] and [27].

In order to prove our main results in the present form we had to resolve some
difficult diophantine problems (see e.g. [19] or Lemma 5 in the present paper).
To solve these problems we used, among other things, two recent explicit estimates
[41], [42] for linear forms in the logarithms of algebraic numbers. We remark that
the earlier weaker estimates concerning the linear forms in logarithms do not enable
one to prove our Theorem 2.

2. Notations, definitions and preliminary remarks

Let again K be an algebraic number field of degree k=1 with ring of integers
Zg. Denote by Ry, hy and Dy the regulator, the class number and the discriminant
of K. Let Rz=max (Rg,e) and let r be the number of fundamental units in K.
Let p,, ..., p, denote s(=0) distinct prime ideals of K lying above rational primes
not exceeding P(=2). Let S be a finite set of normalized valuations |...|, of K contai-
ning the set S.. of the archimedean valuations and suppose that the valuations of
S\.S.. belong to the prime ideals p,, ..., p,. We denote by U, the group of S-unitsin
K. If S=8S., (i.e. if s=0) U, obviously coincides with the group Uy of units of K.
Denote by A" the set of those elements fcZg for which 0<|Ng,(f)|=N where

1) In our paper ([12], p. 129) we remarked that in the proofs of Theorems 2 and 3 of [12] we
used our graph method.
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N=1. We suppose throughout this paper that K, S and .4" are fixed (except possibly
in the examples given after our theorems).

If o/={a,, ..., 2,} is a set of algebraic integers in K, let ¥=%(Z, S, A") denote
the graph whose vertex set is .o/ and whose edges are the pairs [o;, 2;]%) satisfying

o, —o; § N (UM Zg).

As we mentioned in the introduction, in the special case s=0 the above graphs
were introduced in our papers [8] and [9] (see also [10], [12], [13]).

The graphs ¥ defined above have many specific properties. It is easy to see
that if m=|9| (i.e. the order of %) is large then the number e of edges of ¥ is also
large. To formulate this statement in a quantitative form we denote by L the smallest
integer for which L=N()>N with an integral ideal 2 in K relatively prime

to pl; cees P
Proposition. With the above notations we have

m(m—L)
2L )

To prove this, let «(%) denote the maximum of the orders of the complete

subgraphs of the complementary graph % of %.%) Since a;—o ;€A implies
L=N(U)|Ngo(2;—2;), hence a«(¥)=L. On the other hand, by a theorem of

2
TURAN [48] (see also [49]) Zerill-m

For s=0, L=(NY*41)*. Thus, in the special case s=e=0, N=1, (1) gives
m=L=2* (where L denotes now the smallest positive integer which is norm of
a prime ideal of K). This latter estimate was proved (without using graphs and
graph terminology) by LENSTRA [31] in connection with his results on euclidean
number fields.

In some number-theoretic investigations (see e¢.g. WASEN [50] and LENSTRA [31])
it is important to have good bounds (in our graph terminology) for «(%). As we
showed above, L is a universal upper bound for «(#). On the other hand, there
exist algebraic number fields K of arbitrarily large degree k and graphs ¥ defined
g : log k
in K with the property a(@):-w.
lynomial fi(x)=(x—¢))...(x—g_,)—1 for i=2,...,m, &={e,...,&,} and m is
large then ¥=%(4, S, A") possesses the required property in K=Q(g;, ..., &)
for every S and A7 This example has a consequence [27] in connection with a
problem of Browkin and Schinzel.

(1) e=

=a(%) and so (1) is proved.

Indeed, if & =0, g; is a root of the po-

3. The main results

Keeping the notations of Section 2, we describe now the structure of the graphs
G=% (o, S,A) of given order. To state our Theorem 1 we need some further
definitions.

) We use the notations and terminology of [3].
3) In other words «(%) denotes the stability number of ¥ (see e.g. [3]).
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Let 9=% (4, S, A) be a graph as above with at least one edge. Consider
the hypergraph *) whose vertices are the edges of ¢4, and whose edges are the triples
of edges of ¥ that form a triangle. This hypergraph is called the triangle hyper-
graph of % and is denoted by %7 (see e.g. [3], p. 440). In ¥ a connected subgraph
H of order =2 will be called triangular connected component of % if #7 is a con-
nected component of 7. Evidently any subgraph of 4 which has no isolated vertices
can be covered ®) with edge disjoint triangular connected components of % (i.e.
with connected components of %7).

Let m=2 be a fixed integer, and let # =% (4, S, /") be a graph vith vertex
set B={P,, ..., B} from Zy, 2=n=m. We say that # and # have the property (P,)
if there exist e€ Us\ Zg and B,;€ Zg such that f,—f,=ef;; for all distinct i, j and

(2) max |Bj| < exp {10k3m2c}(s+1)2 P*(log 2P)* -

“[s(Rx+hglog P)log (1+sRxhg)+ 11 Rk ((s+ 1) Rg +shy log P)*(Rk+ hg log P)* -
[log Rx +slog (1+ Rghglog P)I* [Rx+shg log P+log N]} =

with 61=(25(r+s+3)k)20r+135+2:s+36_
With the above notations and definitions we have the following *)

Theorem 1. Let $=%(s4, S, N) be a graph with m=3 vertices. Then at

least one of the following cases holds:
(1) ¥ is connected and, if ¥ is not complete, all triangular connected components

of 4 have the property (P,), : .
(ii) ¥ consists of two connected components 4,, 9,, %, is not connected, |%,/=1

and #\J%, has the property (P,) for each connected component # of %,

(iii) 4 consists of two connected components 9,, 9., both are complete and
(%], |92 =2,

(iv) 9 has the property (P,).

As will be apparent from the proof, each triangular connected component of
% has the property (P,) with mC, in place of C, (where mC, is less than C,; see
Section 4).

It is easy to see that up to the obvious multiplications by elements of Ug/ Zg
and the translations by algebraic integers of K the number of graphs ¥ =% (s, S, A")
having the property (P,,) is finite and all these graphs can be effectively determined.
Except for these graphs, by our Theorem 1 all graphs ¥=% (s, S, .4) of order
m=3 possess the property (i), (ii) or (iii).

Theorems 1 and 2 together with (14) show that if in Theorem 1 (iii) holds
then max (|9, |9.))=y*(N)(r+4s+1) with the Y (N) defined in Section 4 or ¥
has the property (Ppsc,;)) with N replaced by N** of (13) in C;.

It follows from our Proposition that in the case (iv) the number of connected
components of % is at most L. Thus, if in particular L=2, by Theorem 1 every
graph ¥=%(o/, S, /") has at most two connected components.

HIf X={xy, ..., x,} is a finite set and &'=(E|icI) is a family of subsets of X such that
E#0 (icl), then H=(X, &) is called a hypergraph. x, are the vertices and E, are the edges of H.

%) In other words every edge of the subgraph in question is in at least one triangular connected
component of %.

*) Added in proof. In my paper “On certain graphs composed of elements of an integral domain
and their applications’’ (to appear), I extended some results of the present paper to integral domains.
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It is easy to construct graphs with the property (P,). We shall now show that
in Theorem 1 each of the cases (i), (ii) and (iii) really occurs. Further, in the following
examples we can choose the vertex sets so that the constructed graphs % have not
the property (P,,).

Examples for the case (i). 1) Clearly there are infinitely many complete graphs ¥
of order m.

2) Let now of={w,,...,,} where a,=0 and a, ..., 4N (UsNZg) for
a given k<=m. We can choose &/ so that o, —o; ¢ N (Us(1Zg) for any i, j with
|=i=k and k<j=m. In this case for ¥=% (o, S, A") (i) holds and the degree
of «, is m—k. Here m—k can take any value between 1 and m—2. Further, ., ..., a,,

can be chosen so that & contains no triangle.

3) Let m=4, o,=0,0,=1 and o;=1+¢g3+...+¢ with units g, ..., g
(i=3,...,m) so that a;§ A/ (UsNZy) for i=3 and o,—o§ A (U Zg). Then
Y=9(A, S,N) with F={, ..., x,} is connected and ¥ has a hamiltonian
path. We can construct in a similar manner graphs % such that % contains several
kinds of trees.

4) Suppose that K has an exceptional unit ¢ (i.e. ¢ and 1—g€Uy) %), and let
my, ...,m,=2 be integers with m+...4+m,+2= m. Let #,=# (s, S, A) with
vertex set &;={0, ¢, &, ..., g;e™m~1} for i=1, ..., 1, where the units ¢; are chosen
so that g=1 and for all distinct 17 sfa" —g; el ¢ N (UsNZy) if 0=k=<m;,
0=l<m;. Let a be an algebraic integer in K with «, g;e*—ad A (UsZg) for all i
and k<m;. Consider the graph 4= (s, S, A) with vertex set s/, U...Us U{a}.

Then % is connected and .#’1, o Ji" are the triangular connected components of %.

Examples for the case (ii). 1) Let o/={0, oy, ..., %} and &' =/\{0} where
®p, ...y %, are units such that %, =% (o, S,#) is complete. Then for
4G=%4(o, S, N) (ii) holds. _

2) Consider again the above example 4) with 7=2. Let now &=
={e;, 8;8, ..., a,-a"'a-l}, K, =K[(A/, S,N) for i=1,..,t, 4=%(A, S, ) with
vertex set /=g U...Ua/ U{0} and consider the subgraphs %,,%, with vertex
sets oy U.. Ud’ and {0}, respectwely Then n %, and ¥, are the connected com-

ponents of ¥, %, is not complete, #;, ..., #, are the connected components of

91 and o/ | U%, are the triangular connected components of 4. Thus, by our Lemma 3
all these components have the property (P,,).

Examples for the case (iii). 1) If K contains a real quadratic subfield, then our
Proposition 5 in [9] shows that there are infinitely many graphs ¥ =% (<7, S, A") with
|%|=4 for which (iii) holds.

2) For every even m=2n=>2 there exist algebraic number fields K and graphs
Y=% (o, S, A) of order m in K with the property (iii). To vcrify it we consider
distinct rational integers @,=0, a,, ..., a, such that m}in la;—ay| is large relative

to N and n. As is known (see e.g. [39] or [40]) the polynomial f(x)=x(x—a,)...

%) For any k=3 there exist number fields K of degree k which have exceptional units. E.g.
for large and distinct positive integers as, ..., a, each root & of the irreducible polynomial
x(x—1)(x—ay)...(x—a,)—1 is an exceptional unit in K=Q(g).

4 D
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...(x=a,)—1 is irreducible over Q and, by a theorem of Weisner [51], |¢)—¢'/|

are also large for any distinct roots &, g of f. Let K=Q(eW,...,e"). It is

easily seen that if o/={a,, ..., a,, &V, ..., ™} then, for any S2S. for which

the prime ideals belonging to S\ S.. do not divide D(f)- [ (a;—a), the
1si<j=n

graph ¥=%(, S, A") has only two connected components ¥,,%, with vertex

sets {a,, ..., a,} and {7, ..., e™} respectively and ¥,,¥, are complete.

As remarked in the introduction, the main results of the present paper have
a number of applications. By using our Theorem 1 (or its certain particular cases 7)
we obtained general and effective results among others on irreducible polynomials
[8], [9], [10], [21], on polynomials and algebraic integers with given discriminant
[11], [12], [13], [14], [15], [16], [22], on power bases and on the number of generators
of the ring of integers of a number field [13], [15], [22], on discriminant form equations,
index form equations, norm form equations and their generalizations [13], [14],
[29], [18], [20], [23], on prime factors of decomposable forms [29], [18], [23] and on
prime divisors of certain sequences of algebraic integers [25].

We describe now the structure of those graphs ¥=% (<7, S, #") whose number
of vertices is large. As we shall see, in this case there exist no graphs 4 with the
property (iii) occurring in Theorem 1. This fact plays a role of crucial importance
in some applications (see e.g. [9], [10], [21] and [26]).

Theorem 2. Under the above notations let 4=%(sf, S, N) be a graph with
|9|=2C, where

C, = max [N®, [Dy[**(log |2Dx|)*"+ exp {c, P*Ry +
«(Rg+hglog P) (R + shy log P)[s(Rx+h log P)+ 1] log (Rg (1 +shg P))}]

and ¢,;=10(25(r+s+3)k)°C+2+13 Then either

(i) 9 is connected and has at most one vertex with degree =<(|%|—C,)/2,
or

(i) ¥ consists of two connected components 4,,%.,|%.|=1 and all vertices
of 4, are of degree =|%|—C,.

Under the additional hypothesis m=|%|=2C, the examples given for the
cases (i) and (ii) of Theorem 1 are at the same time examples for the cases (i) and (ii)
of Theorem 2 as well. _

In our Theorems 1 and 2 the dependence on N of C; and C, is rather good.
If in Theorem 2 N is sufficiently large, we may take C,=N?%. In consequence of
the application of Baker’s method and because of the generality of our Theorems
C, and C, are very large in terms of the other parameters. It is very likely that
C, and C, can be considerably improved in these parameters. However, the structure
of our graphs % does not depend on the possible improvements of C; or C,.

In proving our Theorems we use some recent results of ours on diophantine
equations [19]. In [9] we reduced our conjecture mentioned in the introduction to
the Tarry-Escott diophantine problem, but this problem has not been resolved
so far. Our Theorem 2 proves our conjecture by showing that every graph

) In some of our papers quoted here (e.g. in [11], [12], [13], [15] and [16]) we applied some
weaker versions of Theorem 1 without using graph terminology.
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G=9(A, S, N) with m=2C, vertices has a connected component with at least
m—1 vertices and this bound is already in general best possible.
Some further properties and applications of the graphs % discussed above are

given in Part 11 [24].

4. The proofs of the main results

To prove Theorems 1 and 2 we shall need some lemmas. We keep the nota-
tions of Section 2.

Lemma 1. If x,, x, and x, are non-zero algebraic integers in K satisfying
X3+ X+ x3=0 and x;, xe, X;€ N (UsNZy)
then we have x;=09; where 6 UsNZg, 0,€2Zg, i=1,2,3, and

(3) max o] < exp {clP“(log P)[s(Rx+hglog P)log (1 4+5sRhg)+ 1]+

1=i=3
* Rg((s+ 1) Rg+shg log P)(Rg+ hy log Py’ [log Rg +slog (1 + R hy log P))*-
«[Rg +shyg log P+log N1} = G,

with the ¢, defined in (2).

This is a special case of Lemma 6 of [19]. In the case s=0 we obtained in
[17] a slightly better estimate.

We remark that in the proofs of Lemmas 1 and 5 we used, among other things,
Baker’s method.

Let #={B,, ..., B} be a system of elements in Zy with m=3. We shall

say that this system 2 is connected if for any distinct i, j with 1=i, j=m there
is a sequence f;=p,, ..., f;,=B; in # such that for each « with Isu=v-1

» ﬁiu+ﬁ‘u+l+ﬁ‘u.u+l=0
with some f; .  €2.

Lemma 2. Let # be as above and suppose that & is connected. If BN (UsM Zg),
i=1,...,m, then B;=0cp,; for each i with some cc N (Us(\Zy) and o€ Ly satisfying

4 max [o < exp {3km(s+1)log Plog Cs} = C;.

1=i=Em

ProOF OF LEMMA 2. We use an idea applied several times in our earlier papers
(cf. [12], [13], [15], [16], [28], [18]). Suppose, for convenience, that for f,, f;, fs

Bi+ B2+ B3 =0

holds. Then, by Lemma 1 we have B,=0¢’d; with some o’c¢Us(\Zg and §;€Zy
such that max |0/ < Cj, where C, denotes the same expression as in (3). Consider

now any f; with 3=j=m. By the assumption there is a sequence f,=8; , ..., B; =P
in 2 such that for each v with 1=u=v—1

ﬁ1u+ﬂfu+l+ﬁju.uu = 0

4.
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Further, we may assume v=m. By Lemma | we have

(3) By =06, By=0"0
and
(6) ﬁfu - 0"5;'“, ﬁjl!"‘l = 6“5.}&*1

for u=1,...,v—1 where 9], €Zx with

max ([5_}.‘|, 16%. ..) < Cs

1=u=v—1 Ju+d

and o, Us(Zg. It follows from (5) and (6) that

) Bi=Bj,=d"o;, 3=j=m,
with
v=1 . v=1
P; =0y ]Z Jusa and Y, = q 97,

=

Write Y, =y,=1 and ¢;=9; for j=1,2. It is clear that
max (o l, W) <Cr, j=1,...,m.

We recall that (¢’)=p§r...p%. Denote by pl« the highest power of p; with
b;=a; that divides at least one of the y,, ..., ¥,,. By taking norms we see that

b, = kpi lopCy, @=L s

The ideal p!x is principal for all i. Write b} =min (a;, b,+r;) where 0=r;<hy such
that a;=b,+r,(mod hy). Putting d;=a,—b}, (&)=pii...p%, (0)=ph...pds with
o=0¢" and ¢;=C;/y; we get

ﬁj-_-'olgj, j=l, R

where o€ Us(1Zg and g; are algebraic integers in K. Since by Lemma 3 of [17]
£ can be chosen so that

1€] < exp {2km(s+1) log P log Cy),

hence for g; (4) holds.
Consider again the graphs defined in Section 2.

Lemma 3. Let #=# (4", S, ) be a graph with m=2 vertices. Suppose
that both ¥ and #" are connected. Then there exists o€ UsMNZy such that for all
distinct oy, o;€”

o;—o; = 00;
with some w;;€ Zy satisfying
ng:}x ol = mCy.

PrROOF OF LEMMA 3. By virtue of Lemma 3 of [17], for m=2 our Lemma 3 is
obvious. Suppose now m=3. By definition any triple [u, o], [%;, %], [o, o] of
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edges of # forms an edge in #T. 1t is clear that
(;—a)+(a;—o)+ (4, —2) = 0.
So we may apply Lemma 2 and we get
o —0; = 00
for each edge [, 2] of # where o€ UsNZy and 01;€ Zy satisfies
|?,;| > 4

By hypothesis # is connected. Thus, for any distinct o;, a;€” there exists a path
a;=0, ..., 0, = of length at most m in # and so

ﬁi—ﬂj — (J&—a;1)+...+(di”-—du__l) ==
— G(Qfgl'1+"' +Qi‘,f‘,_1) = agij?

whence ¢;;€ Zy and
IQU! = mCy.

PrOOF OF THEOREM 1. Let o&/={a,, ..., 2,} be the vertex set of ¥. First suppose

that ¥ is connected. If % is not complete, then ¢ has at lcast one edge and by Lemma
3 (i) holds.
Suppose now that ¥ is not connected and let 9,,...,%,, /=2, be the con-

nected components of %. In case /=3 % and %7 are connected. Consequently, by
Lemma 3 and mC,<C,, 4 has the property (P,).
Consider the case /=2. First assume that at least one of 4, and %,, say %,,

is not complete and that |¥,, |4,/=2. Let [2,, %,] be an edge of %, and denote by
F=F (A, §, /) that subgraph of ¥ whose vertex set .&/" consists of =,, o, and of
the vertices of %,. Since # satisfies the conditions of Lemma 3, we have

aj_aj:aéij’ GEUSHZK, O?féuezl\'
and o

for any two vertices a;, a; of 4,. Here
|qu(‘5u)! < (mC)t = N*.

Let 4™ denote the set of Be€Zg with 0<|Ng,,(f)|=N* and consider the sub-
graph ¥*=%*(o, S, /™) of 4. It is easily seen that ¥* also satisfies the conditions
of Lemma 3 with 4" replaced by 4. So, by Lemma 3 % has the property (P,,).

If both 4, and ¥, are complete and |%,/, |9,/=2, then (iii) holds.

Assume now that |%,|=1. If %, is connected, we may apply Lemma 3 to
% and so ¥ has the property (P,,). It remained the case when @, is not connected.
If # is any connected component of %,, by applying Lemma 3 we see that
H U9, has the property (P,).

To prove Theorem 2 we need some further lemmas.
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Lemma 4. Let y,, 7., 74 be non-zero algebraic integers in K with Jmax l=r
and let PeEN (UsMNZy). Then the number of solutions of the equation

(7 T1X1+7eXs = 73p
in xy, X6 (UsNZy) is not greater than C,=4*+"+3(C¥Ct**)® with the Cj, C,
defined below.

Proor oF LEMMA 4. We follow the proof of Lemma 1 (i.e. that of Lemma 6
in [19]) and only a minimal amount of the discussion of that proof will be re-
peated here.

Using the notation of [19], let B= —x,, pfx=(rn,) with m,6Zg and, if r=0, let
M ..., N, be units with the same properties as in [19]. Then

X; = 00, i=],2, 3)

where o=¢g;n{i...7% with g€cUx and q,=0,

0; = Yinyv ... nyrmin ... nli=, miin v, =0 foreachi wy=i.=Wa=
and 7;€Zg with
(8) max [y7] = N'*P"x exp {e;rRy} = G,

where c¢;=(6rk®’. It is clear that the number of solutions of (7) does not exceed
the number of pairs g,, 0,. But it was proved in [19] that *)

131?3.( (Iwyl, log) < ¢4 P*(log P)[s(Rx+ hg log P)log (1+shg Rg)+1]-

* Rx(Rg+ hyglog Py [log Rg+ slog (14 Rghglog P)]*[Rg+shglog P+log (I'N)] = C;
where ¢, =(25(r+s+3)k)or +13s+2s+345 Further, by a result of MAHLER [33] and
BARTZ [2] there is an integral basis @,, ..., @, in K such that
12?;’-‘* WJI = k*|Dgl'.
If
7 =a,+..+agwy, i=1,23,
with suitable a;;€¢Z, by taking the conjugates of y; we get

ok k—2

n;u}x |0.'j| <k 3 IDKIT Cs = Cs.

So, the number of pairs g,, g, is at most [(2C,)*(2C,) **]* which completes the proof.
For a¢K put |a,=|«" where n,=[K,: Q,]. Let o, a;, B be non-zero al-

gebraic integers in K and consider the equation

&) Xy +otp Xy =

in S-units x;, x, of K. We may suppose without loss of generality that m = max (m,, m,)

where m=[] |B|, and m;= [] [o],.
veES vES

%) When s=0, we can use the estimate (22) of [17].
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Lemma 5. Suppose that
logm = ¢ 'log [?2] (25(r+s43)k)*0r+D+13 PAR (R + hg log P)* -

+ (R + shy 1og P)[s(Rg+ hy log P)+ 1]1og (R& (1 +shy P)) = G,

and that min (m,, my)=m'~* for some real number & with 0<=g=1. Then the number
of solutions of (9) in S-units x,, xs of K is not greater than r+4s+1.

ProOF oF LEMMA 5. This is the main result in [19].

Under the conditions of Lemma 5 the number of solutions of (9) does not
depend on my,, m, and m. This fact is of basic importance in the proof of Theorem 2.

Denote by (N) the number of nonassociate numbers f in Z; with
INxjo(B)I=N. Tt follows from certain explicit estimates of Sunley [47] that

(10) W(N) < %D, 77 (log [2D .
Write in (9) f=af* where 6cUsMNZyg, p*€Zg and |Ng,o(f*) is minimal.
Since p¥ | B* implies wu;<hg, hence
INko (B = mP*x,
With the above notation we have
Lemma 6. Suppose that

log | N0 B/ P*x| > Cy
and that
N max (my, my) = |Ng,o(B*)/ P x|*~¢
for some ¢ with 0<e=1. Then the number of solutions of (9) in x;, x,€6 N (Us Zg)
is not greater than Y*(N)(r+4s+1).%)

PROOF OF LEMMA 6. Let x,, x,6 4 (UgMNZg) be an arbitrary solution of (9).
Then
Xy =011, Xa=05)

where |Ng,o(8)/=N and y,, y.€ UsN Zg. From (9) we get at most Y?(N) equa-
tions

(11) 0y 01 Y, + %0,y = B

in y,, y.€UsN Zg. Since
JT i éill, = m; N

vES

and
|Nx_wa(ﬁ*)[/P’n" =m,

?) It is easy to prove that under certain stronger conditions concerning f the number of
solutions of (9) (and thereby max (|%,/, |%,|) in (iii) of Theorem 1) is =r+1+4(ax(N)+s). But,
using this form of Lemma 6, C, would become much larger in terms of N.
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we may apply Lemma 5 to each of the equations (11) and the assertion follows.
Denote by C,, the expression obtained from C, by taking I'=1.

_ Lemma 7. Let H=H (A4, S, V) be a graph with |#|=3. Suppose that
H'T has a vertex of degree |#|—2.1%) Then :

(12) |#] = Cpo+2.

PROOF OF LEMMA 7. Suppose that [«;, ;] is a vertex of # #7T with the required

property. We have
(ai_au)+(al_aj) = (a:_“j)

for each «,€5/” which is different from o; and «;. Since
o=y, o, — ;€N (UsN Zy),

(12) follows from Lemma 4.

PrOOF OF THEOREM 2. First suppose that ¢ is not connected and let 4,, ..., 9,
(/=2) be the connected components of ¥. Put |4¥/=m and assume |¥|=
=9, q=...=|9,

If /=3, consider that subgraph #F =% (&, S, A4) of ¥ whose vertex set
o/’ consists of those of 4, _,, ..., %, and of «;, o; where o; and «; are fixed vertices

of 4, and ¥,_,, respectively. It is clear that |# |——+2 We may apply Lemma 7
to # and we obtain

m
? B Cl') - C2/3.

But this yields a contradiction.
Assume now that /=2 and |%,|=2. Let

(13) N** = P**'x max (N2, exp {Cy,1})

where C,; is obtained from C, by the choice £=1/2. Denote by A4™** the set of
algebraic integers f in K satisfying 0<|Ng,o(f)|=N** and consider the subgraph
G =" (A, S, N**) of %. First suppose that %, and ¥** have a common edge,
say [«;, a;]. Let a, be an arbitrary vertex of ¢,. Then we can apply Lemma 6 to
the number of solutions of

(ai_au)_{"('xu“aj) — (G!‘-—‘&J)
in (g—a,), (x,—a)eEN (UsZg) and we get
(14) |9, = Y2(N)(r+4s+1).

We obtained (14) without assuming m=2C,. If m=2C,, then, by (10), (14) con-
tradicts the assumption made on m.

Suppose now that all edges of %, belong to ¥** and let [o;, ;] be one of these
edges. Consider that subgraph # =2 (a7, S, A4™**) of %** whose vertex set
/" consists of «;, ; and the vertex set of 4,. Denote by C,, the expression obtained

19) That is, in J# there exist |#°| —2 triangles with a common edge (cf. [3], p. 429)
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from C,, by taking N** in place of N.# satisfies the conditions of Lemma 7 and so
2+§ £ 24Cy <2+ G2,

This gives again a contradiction.

Consider now the case when /=2 and |%,|=1. If %, contains a vertex, say
., of degree =m—C,, then removing the vertices of ¥, which are adjacent to «,
we get a graph with more than C, vertices and with at least three connected com-
ponents. But, as we showed above, it is impossible. Thus, all vertices of ¥, are of
degree =m—C,.

Finally, consider the case when % is connected. Suppose that % has two vertices,
say o; and o, with degrees <(m—C,)/2. Remove those vertices of 4 which are
different from o;, a; and are adjacent to at least one of «;, «;. Denote by %" the
subgraph of % obtained in this way. Then |#|=C, and ¥ has either at least three
connected components or has two connected components with vertices =2.
But we showed above that this gives a contradiction. So, in this case ¥ has at most
one vertex of degree <(m—C,)/2.
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