Inequalities for linear combinations of binomial moments

By J. GALAMBOS and R. MUCCI (Philadelphia, Pa.)

Introduction

Let A,, A, ..., A, be a sequence of events on a given probability space. Put
So,»=1 and
Sktﬂ =Z ‘P(‘AHAI& ol Afk)! k = l)

where the summation is over all subscripts satisfying 1=i<i,<...<@=n. It is
easily seen that S, , is the kth binomial moment of the number m, of the 4,
1=j=n, which occur. For r=0, let B,,={m,=r}. Our aim is to investigate
inequalities of the type

(1) aP(B, "’ﬂéi €eSen =0,

where a and ¢,, 0=k=n, are given constants. We permit the value zero for all
coefficients. Therefore, (1) may reduce to an inequality among the binomial mo-
ments. On the other hand, if a0, (I) is an upper or lower bound on P(B,,)
according as a=0 or a=0. Evidently, we can assume that a takes one of the
values 0, 1 or —1. The coeflicients ¢, are, however, arbitrary and they may depend
on r or n or both. Our investigation is an extension of a recent result by one of us
in [4], where the dependence of ¢, on n was implicitly assumed to be of a specific
form. Here, we get rid of such restrictions. Hence, both the method of proof and
the actual inequalities presented are of interest.

The method of polynomials

We present a method of proof of (1), which we term as the method of polynom-
ials. It is related to one of the methods of GALAMBOS [4], in whose work it is im-
plicitly assumed that the coefficients ¢, either do not depend on » or if some of them
do then they are of the same sign and they are monotonic in n. In addition, GALAM-
BOS [4] did not consider the case @=0 of (1), in which case it reduces to a linear
inequality among binomial moments. Our method of proof is given in the follow-
ing theorem, which does not make any precondition on the functions ¢, =c(n).

Theorem 1. In (1), let the coefficients c,=c,(n) be given real numbers which
may depend on n. Then (1) holds on an arbitrary probability space for an arbitrary
sequence Ay, A, ..., A, of events if, and only if, it holds in the following special cases:



264 J. Galambos and R. Mucci

Ay, Ay, ..., A, are independent with P(A;)=p for all j, and c¢,=c,(N), where N
runs through all intégers greater than, or equal to n.

We shall call the sufficiency part of Theorem 1 the method of polynomials.
Namely, by Theorem 1, (1) reduces to a set of polynomial inequalities.

We separate a part of the proof as a lemma. The lemma itself is interesting
in that it shows that one does have to consider the inequalities obtained from (1)
by replacing ¢, (n) by ¢, (N) for all N=n.

Lemma 1. If (1) holds on an arbitrary probability space for an arbitrary sequence
A, 1=j=n, of events when c¢,=c,(n) then it remains to hold with c,=c,(N),
w)’tere N=n is an arbitrary integer.

Proof. Let N=>n. Let A4,, A,, ..., A, be arbitrary events and define 4; to

be the empty set for n<j=N. Since (1) holds for an arbitrary sequence of events,
we obtain

N
aP(B,N)+ 2 e(N)Si,y =0.

But S, y=358,,, and P(B, y)=P(B, ) for our choice of the events A4;, I =j=N.
Hence, the above inequality reduces to (1) with ¢,=¢,(N), what was to be proved.

PrOOF OF THEOREM 1. By an appeal to Lemma 1, the necessity of Theorem I
is obvious. Therefore, only the sufficiency part needs proof. We shall follow the
method of proof of Theorem 3 of [4]. Let /(E) be the indicator of the event E. Let

Jo,»=1 and
Jin =2 1(A)I(4,) ... 1(4,), k=1,

where the summation is defined as for Sy ,. We first observe that (1) is equivalent to

@) aI(B,‘.,)+th' ¢, (n)Jy.n = 0.
=0

As a matter of fact, if we take expectation in (2), we get (1). On the other hand, if
each ; is either the empty set or the sure event then (1) reduces to (2). Hence, it
suffices to show that the conditions of Theorem 1 imply the validity of (2). Let us
thus assume that, in the stated special cases, (1) holds. This means that, for all
0=p=1 and for all integers N=n,

3) a(f)ra —Pr+ 2 (V) (3 =o.
By the choices p=0 and p=1, (3) yields

4) asd, o+¢o(N) =0,

where

{0 if k#t
BTl if k=3
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and
(5) ad, .+ 3 cu(N) ["] =0
rn e k )=

It remains now to notice that (2) in fact is of the form of (4) or (5). Indeed, let m(n)
denote the number of the 4;, 1=j=n, which occur. Then m(n)=n, and

I(B,.) = 0,,mmy> Jin = [mfgn)]'

Thus (4) implies (2) if m(n)=0 and, for m(n)=0, (2) follows from (5). This com-
pletes the proof.

Some specific inequalities

All inequalities which follow will be proved by the method of polynomials.
Some inequalities are known, but, in addition to their new proofs, they will be
placed into a new context. A major result is the reduction of Bonferroni inequalities
with P(B, ,) to those with P(B, ,). This idea will be presented through a concrete
inequality.

Before we start with the list of inequalities, we wish to add that the method
of polynomials can of course be used for proving identities which are linear in
P(B,,) and in S, ,. Namely, an identity can always be considered as a set of two
inequalities (f=g if, and only if, both f=g and f=g).

We now give the inequalities in the form of theorems.

Theorem 2. The sharpest inequality of the form
(6) CRSI:,JI = Sk+‘l.n9 k = 0!
is obtained by the choice c¢,=(n—k)/(k+1).

ProoF. By the method of polynomials, the sharpest form of (6) is obtained by
finding the sharpest form of the inequalities

¢ (N) [:] pr= [k:}l-l] pktY, 0=p=1, N=n,
which can be simplified to
G(N)(k+1)/(n—k)=p, 0=p=1, N=n.

Evidently, the smallest value of c¢,(n), for which these inequalities hold, is equal
to (n—k)/(k+1). This completes the proof.
The inequality of Theorem 2 can also be written as

n -1 n !
[k Sk.ng[k.'.l] Sk+1,n5

which was established by FReCHET [3]. What is new here is the simple proof as
well as the optimal property.

6 D
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Theorem 3. For each positive integer j,

2 2
s AT Tl
2 i [V s

Hence, the minimum in j leads to the estimate

LS +_._._2....._.
Jo+t 1 "M jo(o+1)

where jo—1 is the integer part of 25, /S, -

() P(By,,) =1-—

(8) P(Bo,n) =1- Ss,m

There is an extensive literature on the inequality (8). It was first proved by
DawsoN and SANKOFF (2], who have shown that (8) implies an earlier result of
CHUNG and ERrDGs [1]. Recently, two optimal properties of (8) were obtained.
KWEREL [7] has shown that the best upper bound on P(B,,) in terms of S, , and
S, , 1s the inequality (8). A considerably simpler and shorter proof was given by
one of us in [5] for the following result. The best upper bound on P(B, ,) in the form of

P(By,,) = co(n)+¢y(n) Sy, n+c3(n) Sy,

is the inequality (8). We give here a new proof for Theorem 3 by the method of
polynomials. The essential part of the proof is Lemma 2 below, which will also
be the essential part of Theorem 4.

Lemma 2. For each pair (n, j) of positive integers, and for each real number p
in the closed unit interval,

©) 1=2np/(j+1D)+n(n-1)p%j(j+1) = (1-p)"

PrOOF. For j=1, (9) is a special case of a polynomial inequality proved in [4].
Henceforth, we assume that j=2.

For n=1, (9) is obvious, while n=2 leads to a simple linear inequality. Let
therefore n=3. Let us define

Jop) = 1=(1=p)"=2np/(j+1)+n(n—1)p*i(j+1),

where =3 and j=2. We have to show that f,(p)=0 on the closed unit interval.
Clearly, f,(0)=0. Furthermore, f,(1)=0 can easily be established by considering
it as a quadratic form in »n. Next we observe that f,(p)=0 means that the func-
tion (1—p)"! intersects a straight line. Hence, f,(p) can vanish at most at two
points. Since f, (0)=0 (recall that j=2), the inequality f,(p)=0 is nontrivial only
if there are exactly two points O<p,<p,<1 where f;(p)=0. In particular, this
implies that f,(1)=0, or, equivalently, that n>j+1. Since f,(p) now has a local
minimum at p,, it evidently suffices to show that f,(p,)=0. However, substitution
of f,(p)=0 into the definition of f,(p,) yields

JG+Dfa(p) = (n=1D)(n=2)pz —2(n—1)(j— D pa+j(j—1).

The right hand side as a function of p, is positive at zero and it has negative discri-
minant. Consequently, it is positive for all possible values of p,. The lemma is thus
established.
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Theorem 3, of course, now follows, since the method of polynomials and (9)
imply (7). For proving (8), it remains only to find the minimum of the right hand
side of (7) in j for given values of S, , and S, ,. Since it is very simple, we omit
the details.

Theorem 4. For integers n=1, r=0 and j=1 with r=n,

i e ). LFUCHD)
P(‘Br,ll) — Sr,n }+1 Sr-l-l,n + j(}+1)

The minimum of the right hand side is achieved if we choose j as the integer part of
l +(r+2) Sr+2.n/Sr+1.n'
ProoF. By the method of polynomials, we have to prove that, for 0=p=1,
pl'-i-i

Jj+1)’

Sr+2,n-

()ra-m—=()r-zesn(} ) Frerveal )

However, after simplifying by [:) p", the above inequality reduces to (9) for the

pair (n—r, j). Thus Lemma 2, together with the method of polynomials, implies
the actual inequality of the present theorem. Since the form of the right hand side
of this inequality is the same as the one in (7), the value of j where the minimum
is achieved can be obtained from Theorem 3. The proof is completed.

The preceding proof represents a general method of reducing a linear bound
on P(B,,) to one on P(B, ,_,). This possibility is due to the method of polynomials,
by which a linear inequality of the form of (1) becomes a polynomial inequality,
in which a simplification by a power of p means a reduction of r. This reduction
method is one of the most significant consequence of the method of polynomials.

Let us conclude the paper with a remark. There are only a few inequalities
which can be applied to P(B, ,) with r=0. Most of them are concentrated around
the method of inclusion and exclusion which have the following disadvantage:
using a few binomial moments only, they are usually larger than one; hence these
bounds become trivial. In our inequality, this is avoided by the arbitrary para-
meter j, which makes it possible to get nontrivial estimates with three binomial
moments. For applications of inequalities of the form (1) to distribution problems
of order statistics from dependent samples, see Chapter I in the book [6] by one
of us.

6*
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