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1. Introduction

We say of the function f(z) of the complex variable z that
(i) f(z) belongs to class I, if f(z) is rational,

(ii) f(z) belongs to class II, if f(z) is entire transcendental, and

(iii) f(z) belongs to class III, if it is regular in the complex sphere punctured
at a, b(a=b) and has an essential singularity at b and a singularity at a (which
may be a pole or an essential singularity) and if f(z) omits the values @ and b ex-
cept possibly at a.

We can normalise the functions in class III, to make a=0 and b=<=. In the
following we shall consider only such normalised functions, whenever we deal
with functions in class III.

The iterates f,(z) of f(z) are defined inductively by

fﬂ(z) = I fl(z) =f(2), “'!fi'l+1(z) =f(fn(z)); n= 0’ Is 2! s

A fixpoint o of order n of f(z) is a solution of f,(z)—z=0, it has exact order

n if
fi(D)-z =
for j=n, but not for j<n.
In [1] BAKER proves the following theorem.

Theorem A. (BAKER) If f(z) belongs to class 11, then f(z) has fixpoints of exact
order n, except for at most one value of n.

Baker’s proof of theorem 4 depends on a lemma of Poélya [see BAKER 1] and
on Nevanlinna’s second fundemental theorem.

Pélya’s lemma, which is true for function in class II, does not apply to func-
tions in class IIT and the second fundemental theorem needs to be restated in
this case.

The object of this note is to extend theorem A to functions in class III. We prove

Theorem B. If f(2) belongs to class 111, then f(z) has an infinity of fixpoints of
exact order n, for every positive integer n.

The theory of iteration of functions belonging to classes I and II was developed
by Fatou [3] and by JuLia [5]. RADSTROM [6] showed that the Fatou—Julia theory
exists precisely for functions in classes I and IT considered by them and for class
IIT. He showed that the theory does not apply to any other class of functions.
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2. Preliminaries

We use the following notations (c.f. 2., p. 88].
Let f(z) be meromorphic in ry=|z|<e=, r,=>0 n(t, a)=number of roots of f(z)=a
in ro<|t|=r

" n(t,a
N(r,re; f,a) = N(r,a) = [ (: )

To

dt,

When a=:o, we write n(f,e)=n(r) to denote the number of poles in ry<|t|=r
counted with due regard to multiplicity and write N(r,==)=N(r, f).
We set

m(,f) = 5= [ log*|f(r®)| a0

do.

¥ o 1
m(r, a) = -2_"_0'[ log* ’f__(réo)-a

With these notations we can write Jensen’s formula for a function meromorphic
in ry=|z|<r as follows [c.f. 2., p. 88]

1 1
()] m(r, )+ N(r, f) = m[r, —f-]+N[r, }-]+O(log r).
If we set
(2 m(r, )+ N(r, f) = T(r, f),
then (1) becomes
3) (v, f) = T[r, ‘-;.-] +0(logr).

Then the first fundemental theorem of Nevanlinna takes the form
4) m(r,a)+ N(r,a) = T(r)+0(logr)

where T(r)=T(r, f) and it is understood that we are referring to the region
re=|z|<ee.

In the usual development of the second fundemental theorem [see e.g. 4., p. 32]
it is assumed that the function is meromorphic in |z|<r. If however, it is assumed
that the function is meromorphic in 0=r,=|z|<<e it can be seen that the proof
carries through with only trivial adjustiments. Thus we find that the theorem 2.1
of [4, p. 31] becomes the following.

Suppose that f(z) is a nonconstant meromorphic function in 0<ry<|z|<eo.

Let a4, a,, ..., a,, q=2, be distinct finite complex numbers, =0 and suppose
that |a,—a,|=6 for I=p=v=q.
Then

) m(r, )+ g m(r, a,) = 2T(r, f)— Ny (1) + S(r)
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where N,(r) is positive and is given by

(6) Ny(r) = N[r, }-.!-;]+2N(r, ND=N([),
and

= LYy & " g
™ s0)=m(r L)+ Zm(r. L) +ot0gn

The proof is identical with that given in [4, p. 32] except that use of (4) instead of
the usual form of the first fundemental theorem introduces the O (logr) term.

In [2, p. 94—98] it is shown that m [r, —f}_—] and hence m |r, ff_ a] is
(8) O{max (log* T'(r, f), logr)} as r e

outside a set of r-intervals of finite measure.
Adding N(r, )+ j’ N(r, a,) to both sides of (5) and using (4) we obtain
1

(g—DT(r, ) = N(r, f)+l2q' N(r, a,)—Ny(r)+S(r)+0(logr)

and hence
&) (g-DT(. /)= N(r,f)+§ N(r, a,)+5,(r)
where

" Aty a,)

N(r,a,) = f—r—dr

To

and 7 (t, a,) is the number of distinct roots of f(z)=a, in ro<|t|=r counted singly.
Moreover

(10) 8, (r) = O{max (log* T (r, f), logr)}

as r—o outside a set of intervals of finite measure.
We note [c.f. 2., p. 90] that if f is a function in class III, which must necessarily
have an essential sigularity at o, then

T(r,f)

logr

- oo as r—co,

Thus for functions in class III we can replace (10) by

(11) S,(r) = O(log T'(r, f)).

3. PROOF of theorem B.
We consider the function

5 =22,
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Clearly
(12) T(r,g) =T(r, f)+0(logr).

Now assume that f,(z)=z has only a finite number of solutions, which
(13) {are not also solutions of f;(z)=z for some j<n, i.e. assume that f(z)
has finitely many fixpoints of exact order n.

Now using (9) for g in the region r,<|z|<e where r,=0 is any fixed number,
we have for our modified Nevanlinna theory
T(r,g) = N(r, g, 0)+N(r, g, =)+ N(r, g, )+5(r, 8)

where S(r, g)=0 (log 7(r, g)) out side a set of r intervals of finite total length.
Since
N(l‘,g,(}):O, N(l‘,g, m):o
we have

. n—1
T(r,g) =N, g D+S(r, g = 12‘ N(r, fi(z)—z, O)+S(r, 2)+O0(logr) =

(the O (logr) arises from the possibility that a finite number of solutions of
fi(z2)—=z=0 are of exact order n)

n—1
(14) = ‘12 T(r, fj» O)+S(r, 2)+0(logr) = (1/2)T(r, fu)
by (11) outside a set of r intervals of total finite length, provided we can show that
r(r, f) 1 :
(15) T 1) - = for j<=n

out side a set of total finite length.

Assume for the moment that (15) is true. Then (14) contradicts (12). This
contradiction arises only from our assumption (13). Hence (13) must be false, i.e.
f(2) has an infinity of fixpoints of exact order n. In fact the counting function N(r)

of such fixpoints must clearly satisfy Iim TN(r)
of our theorem. reeT(r, f2)
It remains now to prove (14). This we prove in the following lemma.

=>0. This completes the proof

Lemma. If n, p are positive integers and f is a function in class 111, then for any
ro=0, we have
T'(r, fa+p)
T(r, fo)
where M, is an arbitrarily large constant, outside a set of r intervals of total finite
length, and where T(r, f) is as defined in (2).

Proor. Consider the equation

> M,,

fll'l-p(z) =a, Where a# 0, oo,
This is equivalent to
fp(w) =a, at wy,w,, ...,
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and

fu(z) =WwW; | Er— o SR

(Since 0, <= are the only Picard values of f, there is an infinity of w;.)
Now by (4)

T(r, fusp) = N(, fasp, @)+ O(logr) = _g N(r, fas w)
for any fixed M, say =M,+4. i
By (9) we have
T(?", fn-i-p) - (M_3) T(I’, f4]—S(?’) - (M_-4)T(r! fn)s

outside a set of r intervals of total finite length,

T(r’ fn +p)
T(r, fa)
outside a set of r intervals of finite total length.

This proves the lemma, and hence the statements (14), (15) and theorem B.
I am grateful to Dr. I. N. BAKER for his help in the preparation of this note.

i.e. >M-4=>M,
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