The converse of a generalized Hölder inequality

By JANUSZ MATKOWSKI (Bielsko-Biała)

Abstract

Let (Ω, Σ, μ) be a measure space with two sets $A, B \in \Sigma$ such that $0<\mu(A)<1<\mu(B)<\infty$, and k a fixed positive integer. Suppose that $\phi_{1}, \ldots, \phi_{k}$, are arbitrary bijections of $(0, \infty)$. The main result says that if $$
\int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu \leq \phi_{1}^{-1}\left(\int_{\Omega\left(x_{1}\right)} \phi_{1} \circ x_{1} d \mu\right) \cdot \ldots \cdot \phi_{k}^{-1}\left(\int_{\Omega\left(x_{k}\right)} \phi_{k} \circ x_{k} d \mu\right)
$$ for all μ-integrable nonnegative step functions x_{1}, \ldots, x_{k}, then $\phi_{1}, \ldots, \phi_{k}$ must be conjugate power functions (here $\Omega(x)=\{\omega \in \Omega: x(\omega) \neq 0\}$.

Introduction

For a measure space (Ω, Σ, μ) denote by $\boldsymbol{S}=\boldsymbol{S}(\Omega, \Sigma, \mu)$ the linear space of all μ-integrable simple functions $x: \Omega \rightarrow \mathbb{R}$, and by $\boldsymbol{S}_{+}=$ $\boldsymbol{S}_{+}(\Omega, \Sigma, \mu)$ the set of all nonnegative $x \in \boldsymbol{S}(\Omega, \Sigma, \mu)$. For an arbitrary bijection $\phi:(0, \infty) \rightarrow(0, \infty)$ the functional $\boldsymbol{p}_{\boldsymbol{\phi}}: \boldsymbol{S} \rightarrow \mathbb{R}_{+}\left(\mathbb{R}_{+}:=[0, \infty)\right)$ given by

$$
\boldsymbol{p}_{\phi}(x):=\left\{\begin{array}{ll}
\phi^{-} 1\left(\int_{\Omega(x)} \phi \circ|x| d \mu\right) & \text { if } \mu(\Omega(x))>0 \\
0 & \text { if } \mu(\Omega(x))=0
\end{array}, \quad x \in \boldsymbol{S}(\Omega, \Sigma, \mu),\right.
$$

where $\Omega(x):=\{\omega \in \Omega: x(\omega) \neq 0\}$, is well defined (cf. [3]).

[^0]Note that for $\phi(t):=\phi(1) t^{p}, \quad t>0$, where $p \in \mathbb{R} \backslash\{0\}$ is arbitrary fixed, we have

$$
\boldsymbol{p}_{\phi}(x)=\left(\int_{\Omega(x)}|x|^{p} d \mu\right)^{\frac{1}{p}}, \quad x \in \boldsymbol{S}(\Omega, \Sigma, \mu), \quad \mu(\Omega(x))>0 .
$$

and for $p \geq 1$ the functional $\boldsymbol{p}_{\boldsymbol{\phi}}$ becomes the \boldsymbol{L}^{p}-norm. Let k be a fixed positive integer, and $\phi_{1}, \ldots, \phi_{k}$ bijections of $(0, \infty)$. Suppose that the inequality

$$
\int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu \leq \boldsymbol{p}_{\phi_{1}}\left(x_{1}\right) \cdot \ldots \cdot \boldsymbol{p}_{\phi_{k}}\left(x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \boldsymbol{S}_{+},
$$

holds true. We prove that if $\phi_{1}, \ldots, \phi_{k}$ are multiplicatively conjugate, i.e. there is a constant $c>0$ such that

$$
\phi_{1}^{-1}(t) \phi_{2}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t)=c t, \quad t>0,
$$

and the measure space (Ω, Σ, μ) is not trivial, then $\phi_{1}, \ldots, \phi_{k}$ must be power functions. The main purpose of this paper is to prove that if there are two sets $A, B \in \Sigma$ such that

$$
0<\mu(A)<1<\mu(B)<\infty,
$$

then $\phi_{1}, \ldots, \phi_{k}$ are multiplicatively conjugate power functions.
These results are the converses of a known generalized Hölder inequality (cf. Hardy-Littlwood-Pólya [1], p. 140, Theorem 188, also p. 21, Theorem 10). An analogous result for $k=2$, under a little stronger assumptions, has been proved in [6].

The relevant results for the reversed Hölder inequality are also given.

1. Auxiliary results

A crucial role plays the following
Lemma 1 ([5]). Let a and b be real numbers such that

$$
0<\min \{a, b\}<1<a+b .
$$

If a function $f:(0, \infty) \rightarrow \mathbb{R}_{+}$satisfies the inequality

$$
a f(s)+b f(t) \leq f(a s+b t), \quad s, t>0
$$

then $f(t)=f(1) t,(t>0)$.
For the reversed inequality we have the following

Lemma 2 ([4]). Let a and b be real numbers such that

$$
0<\min \{a, b\}<1<a+b
$$

If a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is bounded in a neighbourhood of $0, f(0)=0$ and

$$
f(a s+b t) \leq a f(s)+b f(t), \quad s, t \geq 0
$$

then $f(t)=f(1) t,(t \geq 0)$.
We need also the following result on a simultaneous system of two functional equations.

Lemma 3 ([2]). Let a, b, α, β be positive real numbers and suppose that $h:(0, \infty) \rightarrow(0, \infty)$ is continuous at least at one point and satisfies the system of functional equations

$$
h(a t)=\alpha h(t), \quad h(b t)=\beta h(t), \quad t>0 .
$$

If $a \neq 1$ and $\frac{\log b}{\log a}$ is irrational then there exists a $q \in \mathbb{R}$ such that $h(t)=$ $h(1) t^{q}$, for all $t>0$.

2. The converse of generalized Hölder's

 inequality for multiplicatively conjugate functionsWe start this section with the following
Theorem 1. Let (Ω, Σ, μ) be a measure space with two disjoint sets $A, B \in \Sigma$ of finite and positive measure, and k a fixed positive integer. If $\left.\phi_{1}, \ldots, \phi_{k}:(0, \infty) \rightarrow 0, \infty\right)$ are bijections such that for a positive c,

$$
\begin{equation*}
\phi_{1}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t)=c t, \quad t>0, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu \leq \boldsymbol{p}_{\boldsymbol{\phi}_{1}}\left(x_{1}\right) \cdot \ldots \cdot \boldsymbol{p}_{\boldsymbol{\phi}_{k}}\left(x_{k}\right), \quad x_{1}, \ldots, x_{k} \text { in } \boldsymbol{S}_{+} \tag{2}
\end{equation*}
$$

then $\phi_{1}, \ldots, \phi_{k}$ are conjugate power functions, i.e. there are $q_{1}, \ldots, q_{k} \in \mathbb{R}$, $q_{1}, \ldots, q_{k} \geq 1$, such that

$$
\phi_{i}(t)=\phi_{i}(1) t^{q_{i}}, \quad t>0 ; i=1, \ldots, k,
$$

and

$$
q_{1}^{-1}+\ldots+q_{k}^{-1}=1 .
$$

Proof. For $k=1$ we have $\phi_{1}^{-1}(t)=c t, t>0$, and the theorem is obvious. A formal proof in the general case $k \geq 2$ requires quite complicated notation. Since the idea of the proof in the general case is exactly the same as in the case $k=3$, we give the detailed argument for $k=3$. For the simplicity of notations we put $\phi:=\phi_{1}, \psi:=\phi_{2}, \gamma:=\phi_{3}$. By χ_{A} we denote the characteristic function of a set A. Put $a:=\mu(A), b:=\mu(B)$. Setting in inequality (2) arbitrary $x, y, z \in \boldsymbol{S}_{+}$of the form:

$$
\begin{aligned}
& x:=x_{1} \chi_{A}+x_{2} \chi_{B}, \quad y:=y_{1} \chi_{A}+y_{2} \chi_{B}, \quad z:=z_{1} \chi_{A}+z_{2} \chi_{B}, \\
& x_{i}, y_{i}, z_{i}>0,
\end{aligned}
$$

and making use of the definition of $\boldsymbol{p}_{\boldsymbol{\phi}}$, we get the inequality

$$
\begin{gathered}
a x_{1} y_{1} z_{1}+b x_{2} y_{2} z_{2} \\
\leq \phi^{-1}\left(a \phi\left(x_{1}\right)+b \phi\left(x_{2}\right)\right) \psi^{-1}\left(a \psi\left(y_{1}\right)+b \psi\left(y_{2}\right)\right) \gamma^{-1}\left(a \gamma\left(y_{1}\right)+b \gamma\left(y_{2}\right)\right)
\end{gathered}
$$

for all $x_{i}, y_{i}, z_{i}>0$. Replacing here x_{i}, y_{i}, and z_{i}, respectively by $\phi^{-1}\left(x_{i}\right)$, $\psi^{-1}\left(y_{i}\right)$, and $\phi^{-1}\left(z_{i}\right), i=1,2$, we obtain

$$
\begin{align*}
& a \phi^{-1}\left(x_{1}\right) \psi^{-1}\left(y_{1}\right) \gamma^{-1}\left(z_{1}\right)+b \phi^{-1}\left(x_{2}\right) \psi^{-1}\left(y_{2}\right) \gamma^{-1}\left(z_{2}\right) \tag{3}\\
& \quad \leq \phi^{-1}\left(a x_{1}+b x_{2}\right) \psi^{-1}\left(a y_{1}+b y_{2}\right) \gamma^{-1}\left(a z_{1}+b z_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, z_{1}, y_{1}, y_{2}, z_{2}>0$. Similarly, setting in (2)

$$
x:=x_{1} \chi_{A}, \quad y:=y_{1} \chi_{A}, \quad z:=z_{1} \chi_{A}, \quad x_{1}, y_{1}, z_{1}>0,
$$

we obtain

$$
\begin{gathered}
a \phi^{-1}\left(x_{1}\right) \psi^{-1}\left(y_{1}\right) \gamma^{-1}\left(z_{1}\right) \leq \phi^{-1}\left(a x_{1}\right) \psi^{-1}\left(a y_{1}\right) \gamma^{-1}\left(a z_{1}\right), \\
x_{1}, y_{1}, z_{1}>0 .
\end{gathered}
$$

From (1) we have

$$
\begin{equation*}
\psi^{-1}(t) \gamma^{-1}(t)=\frac{c t}{\phi^{-1}(t)}, \quad t>0 \tag{4}
\end{equation*}
$$

Hence, taking $z_{1}:=y_{1}$, we get

$$
\frac{\phi^{-1}\left(a y_{1}\right)}{\phi^{-1}\left(y_{1}\right)} \leq \frac{\phi^{-1}\left(a x_{1}\right)}{\phi^{-1}\left(x_{1}\right)}, \quad x_{1}, y_{1}>0 .
$$

This implies that the function $t \rightarrow \frac{\phi^{-1}(t)}{\phi^{-1}\left(a^{-1} t\right)}$ is constant in $(0, \infty)$ and, consequently, we have

$$
\begin{equation*}
\frac{\phi^{-1}\left(a^{-1} x_{1}\right)}{\phi^{-1}\left(a^{-1} y_{1}\right)}=\frac{\phi^{-1}\left(x_{1}\right)}{\phi^{-1}\left(y_{1}\right)}, \quad x_{1}, y_{1}>0 . \tag{5}
\end{equation*}
$$

In the same way we show that

$$
\begin{equation*}
\frac{\phi^{-1}\left(b^{-1} x_{2}\right)}{\phi^{-1}\left(b^{-1} y_{2}\right)}=\frac{\phi^{-1}\left(x_{2}\right)}{\phi^{-1}\left(y_{2}\right)}, \quad x_{2}, y_{2}>0 . \tag{6}
\end{equation*}
$$

From (3) and (4) we obtain

$$
a y_{1} \frac{\phi^{-1}\left(x_{1}\right)}{\phi^{-1}\left(y_{1}\right)}+b y_{2} \frac{\phi^{-1}\left(x_{2}\right)}{\phi^{-1}\left(y_{2}\right)} \leq\left(a y_{1}+b y_{2}\right) \frac{\phi^{-1}\left(a x_{1}+b x_{2}\right)}{\phi^{-1}\left(a y_{1}+b y_{2}\right)} .
$$

Replacing here $x_{1}, x_{2}, y_{1}, y_{2}$ resp. by $a^{-1} x_{1}, b^{-1} x_{2}, a^{-1} y_{1}, b^{-1} y_{2}$ we get

$$
y_{1} \frac{\phi^{-1}\left(a^{-1} x_{1}\right)}{\phi^{-1}\left(a^{-1} y_{1}\right)}+y_{2} \frac{\phi^{-1}\left(b^{-1} x_{2}\right)}{\phi^{-1}\left(b^{-1} y_{2}\right)} \leq\left(y_{1}+y_{2}\right) \frac{\phi^{-1}\left(x_{1}+x_{2}\right)}{\phi^{-1}\left(y_{1}+y_{2}\right)} .
$$

Now from (5) and (6) we obtain the inequality

$$
\begin{equation*}
y_{1} \frac{\phi^{-1}\left(x_{1}\right)}{\phi^{-1}\left(y_{1}\right)}+y_{2} \frac{\phi^{-1}\left(x_{2}\right)}{\phi^{-1}\left(y_{2}\right)} \leq\left(y_{1}+y_{2}\right) \frac{\phi^{-1}\left(x_{1}+x_{2}\right)}{\phi^{-1}\left(y_{1}+y_{2}\right)}, \tag{7}
\end{equation*}
$$

valid for all $x_{1}, x_{2}, y_{1}, y_{2}>0$. Setting

$$
F(t):=\psi^{-1}(t) \gamma^{-1}(t), \quad t>0,
$$

and making again use of (4) we can write this inequality in the form

$$
\begin{gathered}
\phi^{-1}\left(x_{1}\right) F\left(y_{1}\right)+\phi^{-1}\left(x_{2}\right) F\left(y_{2}\right) \leq \phi^{-1}\left(x_{1}+x_{2}\right) F\left(y_{1}+y_{2}\right), \\
x_{1}, x_{2}, y_{1}, y_{2}>0 .
\end{gathered}
$$

Now we can prove that ϕ and F are homeomorphisms in $(0, \infty)$. In view of (1) it is sufficient to show that either ϕ^{-1} or F is increasing in $(0, \infty)$. Suppose for instance that F is not increasing in $(0, \infty)$. Thus $F\left(y_{1}\right)>$ $F\left(y_{1}+y_{2}\right)$ for some positive y_{1}, y_{2} and the last inequality implies that $\phi^{-1}\left(x_{1}\right)<\phi^{-1}\left(x_{1}+x_{2}\right)$ for all $x_{1}, x_{2}>0$, i.e. that ϕ^{-1} is increasing in $(0, \infty)$.

From (7), by induction, we obtain

$$
y_{1} \frac{\phi^{-1}\left(x_{1}\right)}{\phi^{-1}\left(y_{1}\right)}+\ldots+y_{n} \frac{\phi^{-1}\left(x_{n}\right)}{\phi^{-1}\left(y_{n}\right)} \leq\left(y_{1}+\ldots+y_{n}\right) \frac{\phi^{-1}\left(x_{1}+\ldots+x_{n}\right)}{\phi^{-1}\left(y_{1}+\ldots+y_{n}\right)},
$$

for all positive $x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}$ and $n \in \mathbb{N}$. Setting in this inequality $x_{1}=\ldots=x_{n}:=s ; y_{1}=\ldots=y_{n}:=t$, we get

$$
\frac{\phi^{-1}(n t)}{\phi^{-1}(t)} \leq \frac{\phi^{-1}(n s)}{\phi^{-1}(s)}, \quad s, t>0 ; n \in \mathbb{N} .
$$

It follows that for every $n \in \mathbb{N}$ the function $t \rightarrow \frac{\phi^{-1}(n t)}{\phi^{-1}(t)}, t>0$, is constant. Hence for every $n \in \mathbb{N}$ there is $\alpha_{n}>0$ such that

$$
\phi^{-1}(n t)=\alpha_{n} \phi^{-1}(t), \quad t>0 .
$$

Taking $n=2$ and $n=3$ we see that $h:=\phi^{-1}$ satisfies the system of functional equations

$$
h(2 t)=\alpha h(t), \quad h(3 t)=\beta h(t), \quad t>0,
$$

where $\alpha:=\alpha_{2}, \beta:=\alpha_{3}$. Since h is continuous and $\log 3 / \log 2$ is irrational, Lemma 3 implies that there is a $q_{1} \in \mathbb{R}$ such that $h(t)=h(1) t^{1 / q_{1}}, t>0$, i.e.

$$
\phi_{1}^{-1}(t)=\phi^{-1}(t)=\phi^{-1}(1) t^{1 / q_{1}}, \quad t>0 .
$$

By the monotonicity of ϕ^{-1} we have $q_{1}>0$.
In the same way one can show that $\phi_{i}^{-1}(t)=\phi_{i}^{-1}(1) t^{1 / q_{i}}(t>0)$ for some $q_{i}>0$, and $i=2, \ldots, k$. By (1) we have

$$
q_{1}^{-1}+\ldots+q_{k}^{-1}=1,
$$

and consequently, $q_{i}>1, i=1, \ldots, k$. This completes the proof.
Remark 1. Note that carrying out the argument for arbitrary $k \in \mathbb{N}$, $k \geq 3$, we can define the function F as follows

$$
F(t):=\phi_{2}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t), \quad t>0 .
$$

Similarly, applying Lemma 2, we can prove
Theorem 2. Let (Ω, Σ, μ) be a measure space with two disjoint sets of finite and positive measure. If $\phi_{1}, \ldots, \phi_{k}:(0, \infty) \rightarrow(0, \infty)$ are bijections such that for some positive c :

$$
\phi_{1}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t)=c t, \quad t>0
$$

and

$$
\boldsymbol{p}_{\boldsymbol{\phi}_{1}}\left(x_{1}\right) \cdot \ldots \cdot \boldsymbol{p}_{\boldsymbol{\phi}_{k}}\left(x_{k}\right) \leq \int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu, \quad x_{1}, \ldots, x_{k} \in \boldsymbol{S}_{+}
$$

then $\phi_{1}, \ldots, \phi_{k}$ are conjugate power functions i.e. there are $q_{1}, \ldots, q_{k} \in$ $\mathbb{R} \backslash\{0\}$ such that

$$
\phi_{i}(t)=\phi_{i}(1) t^{q_{i}}, \quad t>0 ; \quad i=1, \ldots, k,
$$

and

$$
q_{1}^{-1}+\ldots+q_{k}^{-1}=1
$$

3. The main theorem

The main goal of this paper is to prove the following
Theorem 3. Suppose that (Ω, Σ, μ) is a measure space with two sets $A, B \in \Sigma$ such that

$$
0<\mu(A)<1<\mu(B)<\infty
$$

If $\phi_{1}, \ldots, \phi_{k}:(0, \infty) \rightarrow(0, \infty)$ are arbitrary bijections such that

$$
\int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu \leq \boldsymbol{p}_{\phi_{1}}\left(x_{1}\right) \cdot \ldots \cdot \boldsymbol{p}_{\boldsymbol{\phi}_{k}}\left(x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \boldsymbol{S}_{+}
$$

then $\phi_{1}, \ldots, \phi_{k}$ are conjugate power functions i.e. there are $q_{1}, \ldots, q_{k} \in \mathbb{R}$, $q_{1}, \ldots, q_{k} \geq 1$, such that

$$
\phi_{i}(t)=\phi_{i}(1) t^{q_{i}}, \quad t>0 ; i=1, \ldots, k,
$$

and

$$
q_{1}^{-1}+\ldots+q_{k}^{-1}=1
$$

Proof. Define $f:(0, \infty) \rightarrow(0, \infty)$ by

$$
f(t):=\phi_{1}^{-1}(t) \phi_{2}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t), \quad t>0
$$

and put $a:=\mu(A)$ and $b:=\mu(B \backslash A)$. Setting in the assumed inequality $x_{i}:=s_{i} \chi_{A}+t_{i} \chi_{B \backslash A} \in \boldsymbol{S}_{+}(i=1, \ldots, k)$, we obtain,

$$
\begin{gathered}
a \phi_{1}^{-1}\left(s_{1}\right) \phi_{2}^{-1}\left(s_{2}\right) \cdot \ldots \cdot \phi_{k}^{-1}\left(s_{k}\right)+b \phi_{1}^{-1}\left(t_{1}\right) \phi_{2}^{-1}\left(t_{2}\right) \cdot \ldots \cdot \phi_{k}^{-1}\left(t_{k}\right) \\
\leq \phi_{1}^{-1}\left(a s_{1}+b t_{1}\right) \phi_{2}^{-1}\left(a s_{2}+b t_{2}\right) \cdot \ldots \cdot \phi_{k}^{-1}\left(a s_{k}+b t_{k}\right)
\end{gathered}
$$

for all positive $s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{k}$. Taking here $s_{1}=s_{2}=\ldots=s_{k}:=s$; $t_{1}=t_{2}=\ldots=t_{k}:=t$ gives

$$
a f(s)+b f(t) \leq f(a s+b t), \quad s, t>0 .
$$

Since $0<a<1<a+b$ it follows by Lemma 1 that $f(t)=f(1) t$, $(t>0)$. Thus, by the definition of f, the functions $\phi_{i}, i=1, \ldots, k$, are multiplicatively conjugate and our result is a consequence of Theorem 1.

Remark 2. In Theorem 3 (as well as in Theorem 1), if $k \geq 2$ then $q_{i}>1$ for all $i=1, \ldots, k$. If $k=1$ then $q_{1}=1$, and the basic Hölder inequality (2) becomes an equality.

Remark 3. Theorem 3 generalizes the main result of a paper [6] where the case $k=2$ is considered, and the functions ϕ_{1}, ϕ_{2} are assumed to be bijections of $\mathbb{R}_{+}=[0, \infty)$.

Remark 4. If we assume that $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, and

$$
\phi(0)=0,
$$

then the definition of the functional $\boldsymbol{p}_{\boldsymbol{\phi}}: \boldsymbol{S}_{+} \rightarrow \mathbb{R}_{+}$simplifies to the following formula

$$
\boldsymbol{p}_{\boldsymbol{\phi}}(x):=\phi^{-1}\left(\int_{\Omega} \phi \circ x d \mu\right), \quad x \in \boldsymbol{S}_{+} .
$$

Using this remark, and applying Lemma 2 and Theorem 2, we can prove

Theorem 4. Suppose that (Ω, Σ, μ) is a measure space with two sets $A, B \in \Sigma$ such that $0<\mu(A)<1<\mu(B)<\infty$. If $\phi_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are bijections such that $\phi_{i}(0)=0, i=1, \ldots, k$, the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ given by the formula

$$
f(t):=\phi_{1}^{-1}(t) \cdot \ldots \cdot \phi_{k}^{-1}(t), \quad t \geq 0
$$

is bounded in a neighbourhood of 0 and

$$
\boldsymbol{p}_{\boldsymbol{\phi}_{1}}\left(x_{1}\right) \cdot \ldots \cdot \boldsymbol{p}_{\boldsymbol{\phi}_{k}}\left(x_{k}\right) \leq \int_{\Omega} x_{1} \cdot \ldots \cdot x_{k} d \mu, \quad x_{1}, \ldots, x_{k} \in \boldsymbol{S}_{+},
$$

then $\phi_{1}, \ldots, \phi_{k}$ are conjugate power functions, i.e. there are $q_{1}, \ldots, q_{k} \in$ $\mathbb{R} \backslash\{0\}$, such that

$$
\phi_{i}(t)=\phi_{i}(1) t^{q_{i}}, \quad t \geq 0 ; \quad i=1, \ldots, k,
$$

and

$$
q_{1}^{-1}+\ldots+q_{k}^{-1}=1 .
$$

Remark 5. In Theorem 4 (and Theorem 2), if $k \geq 2$ then at least one of the numbers $q_{i}, i=1, \ldots, k$, is negative, and the relevant power function ϕ_{i} is decreasing in $(0, \infty)$. If $k=1$ then $q_{1}=1$, and the assumed reversed Hölder inequality becomes an equality.

References

[1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1952.
[2] J. Matkowski, Cauchy functional equation on a restricted domain and commuting functions, Iteration Theory and Its Functional Equations (Proc. Schloss Hofen, 1984), Lecture Notes in Mathematics 1163, Springer, Berlin - Heidelberg - New York - Tokyo, 1985, pp. 101-106.
[3] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.
[4] J. Matkowski, Functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168-180.
[5] J. Matkowski, Functional inequality characterizing concave functions in $(0, \infty)^{k}$, Aequationes Math. 43 (1992), 219-224.
[6] J. Matkowski, The converse of the Hölder inequality and its generalizations, Studia Math. 109(2) (1994), 171-182.

```
JANUSZ MATKOWSKI
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY
WILLOWA 2
43-309 BIELSKO-BIA£A
POLAND
```

(Received April 2, 1996)

[^0]: Mathematics Subject Classification: 1991, Primary: 26A51, 26D15, 39B72.
 Key words and phrases: measure space, integrable step functions, the converse of Hölder inequality, conjugate functions.

