On a theorem of Dardczy, Lajké and Székelyhidi

By JOHN A. BAKER (Waterloo, Canada)

In [2] DAROCZY, LAIKG and SZEKELYHIDI proved

Theorem 1. Let P denote the set of positive elements of an ordered field F and
let G be an additive abelian group. For t€P and f: P—~G define é,f: P-G by
O, f(X)=f(xt)—f(x) for all xcP. Then f: P—G satisfies

2,1 (Z22) = 5,700 +850) forall x,y,1€P

if and only if there exist a,m: P—-G such that
J(x) = a(x)+m(x)

2&[ x-;—y] = a(x)4a(y)

and
m(xy) = m(x)+m(y) forall x,y€P.

This theorem has found applications in solving functional equations in [1], [2]
and [4]. The aim of this paper is to generalize theorem 1 (see theorem 3 below).
The main tools will be some results of Diokovi¢ [3].

Thoughout this paper (G, +) denotes an abelian group. We say that G admits
division by the positive integer n provided that for every x€G there is a unique
yEG such that x=ny in which case we write y=x/n.

If S is a non empty set, G° denotes the set of all mappings of § into G. If for
/. g€GS we define f+g by (f+2)(x)=f(x)+g(x) for all x¢ S then G° becomes
an abelian group.

Let

L(S, G) = {E: G° -~ G5|E(f+g) = E(f)+E(g) for all f, gcGS}.

If for E, E'€L(S, G) we define E+E’ and EE’ by (E+ENNf)=E(f)+E’'(f)
and (EE")(f)=E(E’f) for all fcGS then L(S,G) becomes a ring with identity
I-the identity map of G%. For E€L(S, G) and fcG® we usually write Ef instead
of E(f). For E€L(S, G) we let E*=FE, E’=E®E, etc. Notice that if G admits
division by n then so do G¥ and L(S, G).

Suppose (S, +) is an abelian semigroup. For y€ S define 4 € L(S, G) by

4,f(x) =f(x+y)—f(x)

?.
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for all x¢ S and f€G®. Notice that

2509 = 3 (1) - vree k)

for all x, yeS, all feGS and every positive integer n.
If k is a positive integer let A*(S, G) denote the set of all 4: S*~G such that

A(Sy 157, S5 000y 8) = A(Sy, Say ooy )+ A(S3, Say oov5s S)
and
A(sl’p slp sesy si,‘) e A(Sl., 83y ceey sk)

for all s, sq, 53, ..., €S and for every permutation (i, iy, ..., i) of (1, 2, ..., k).
For A€ A*(S, G) we let A*(s)=A(s, s, ...,s) for all s¢€S. We need the following
theorem of Djokovi¢ [3] (also see [5], [6] and [7]).

Theorem 2. Suppose G admits division by (n—1)! and f: S—G. Then the follow-
ing are equivalent:

(1) 43f(x) =0 for all x, yeS,
(i) 4,4,,...4, f(x) =0 for all x,y,, ..., y€S,
(iii) there exist A,cG and A, A*(S,G), 1 =k=n—1,

n—1
such that f(x)=Ay+ > A;(x) for all x€S.
k=1

Corollary. Suppose G admits division by (n—1)! and f: S—G such that A : f(x)=0
Jor all x, y€S. Then there exists a constant c€G such that

> [’,:] (—1)*f(ky) = ¢ forall yES.
PROOF. By theorem 2 there exist 4,€G and 4,€4/(S, G), 1=j=n—1, such that
n—1
f(x) = A,,+12' A3(x) forall xeS.
=]

Hence, for all y€ S, '
SR errwn = 2 () v (4t 3 a0) -

(3 () oo

Since Z(;](—l)":—l, to complete the proof it suffices to show that
k=1

Zn’[z)(—l)"kj=0 whenever 1=j=n—1.

k=1
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Now if Z denotes the integers, 1=j=n—1 and g: Z-Z is defined by g(x)=x’
for xcZ then, by theorem 2, Ajg(x)=0 for all x, y€Z. That is

an [:] (=1*g(x+ky)=0 forall x, yeZ.
K=0

Putting x=0 and y=1 we find ﬁ’[;](—l)"k!’:O.
k=1

Let P be an additive abelian semigroup in which an associative multiplication
(xy) is defined which is distributive over addition. Also assume P has a multiplicative
identity e. More explicitly we are assuming that for all x, y, z€P,

(x++z=x+(y+2), x+y=y+x
o = x(yz), xe=x=ex,
x(y+2z)=xy+xz and (x+y)z=xz+yz.
For 1€ P define 6,€ L(P, G) by
0, f(x) = f(xt)—f(x)
for all x¢P and f¢G”.
The main result of this paper is

Theorem 3. Suppose n is a positive integer, G admits division by (n—1)! and
f: P—~G. Then

(1) 45, f(x) =0 forall x,y, teP
if and only if there exist g, h: P—~G such that

2 f=gth,

3) 418(x) =0

and

(4) h(xy) = h(x)+h(y) for all x, yeP.

PROOF. Suppose (1) holds. According to the corollary there exists ¢(2)€G
such that

z"‘[ﬂ (- D*@.N(kx) = c(t) forall x,1¢P.
k=1 ’

On the other hand if we let

k=

o =3 (1) 0tk for xer

then

2 () evenmn = 2 (7) c orrtn o) =

k=1

= @(xt)—o(x) = d,0(x) forall x,r€P.
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Thus

_ o, 0(x) = (1),

1.C.

(5) o(xt) = @(x)+c(t) forall x,t€P.

Since kx=x(ke) for xcP and k a positive integer, it follows that J,,f(x)=
=f(kx)—f(x), x€P.

Thus
@(x) =r=>:"1 z (= D¥f(kx) =
" ("w » n
= 2 (J)evvm-ron+{ 2 (7)) e =
= 3 (1 v 6un@ s foran xep

But 430,.f/(x)=0 for all x, yéP and every positive integer k. Hence, if we let
g= 3 (¢} (~1#6.s then 432()=0 for all x, yeP and
k=1

(©) f=8-0.
From (5) it follows that
Px)+e(s)+e(t) = @(xs)+c(t) = (xst) =

= @(x)+c(st)
so that

@) c(st) = c(s)+c(t) forall s, t€P.
But, by (5), e({t)=e¢(e)+c(t), tc P. Hence by (6)
J(x) =g(x)—¢p(e)—c(x) forall xcP.

Thus (2) holds if we let g(x)=g(x)—¢(e) and A(x)=—c(x) for all x¢P. Since

43§(x)=0 for all x, y¢ P and g differs from g by a constant, (3) holds. Since h=—c¢

it follows from (7) that (4) holds as well. Thus (1) implies (2), (3) and (4).
Conversely, suppose (2), (3) and (4) hold. Then for every x, t€P,

0, f(x) = 6,8(x)+3d,h(x)
= g(x1)—g(x)+h(xt)—h(x)
= g(xt)—g(x)+h(r)
where we have used (2) and (4). Hence

450, f(x) = A36,g(x) forall x,y,t€P.
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But
85,80 = 3 (1) - D a0+ - gx+ k) =

= ;; [2] (— *g(xt+kyt) —k_Z"a [ﬁ) (—1*g(x+ky) =

= Ay, g(xf)—A43g(x) =0 forall x,y,teP by (3).
Hence (1) holds and the proof is complete.

The case n=2 of theorem 3 generalizes theorem 1. To see this suppose P is
the set of positive elements of an ordered field F and «: P—~G. Notice that P ad-
mits division by 2. We claim that A4}a(x)=0 for all x, yeP if and only if

2o [x—-;y]=a(x)+rx(y) for all x, yeP.

Indeed, suppose 4ja(x)=0 for all x, yeP, i.e.
a(x+2y)—2a(x+y)+a(x) =0 forall x,y€eP.

Let u, v€P and assume without loss of generality that u<v. Then v=u+p for
some pEP. But p=2w for some wé P so v=u+2w. Hence a(u+2w)—2x(u+w)+

+a(u)=0 or 2a(u+w)=a(u)+a(v). But u+w=u+v;u=“;v
2a[u;—v] = a(u)+a(v).
" xX+y f
Conversely, if h[-T]=a(X)+a(y) for all x,yeP then replacing x by

x+2y and y by x we find
43a(x) =0 forall x,y€P.
Hence, if f: P—~G then the following are equivalent for all x, y, t€ P:

@ 2./ (X2) =55 +6.7 00,

(b) 436, f(x)=0,
(c) f=a+m where Aja(x)=0 and m(xy)=m(x)+m(p),

(d) f=a+m where 2« [x-lz-y

]: a(x)+a(y) and m(xy)=m(x)+m(y).
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