On a theorem of Daróczy, Lajkó and Székelyhidi

By JOHN A. BAKER (Waterloo, Canada)

In [2] DARÓCZY, LAJKÓ and SZÉKELYHIDI proved

Theorem 1. Let P denote the set of positive elements of an ordered field F and let G be an additive abelian group. For $t \in P$ and $f: P \rightarrow G$ define $\delta_t f: P \rightarrow G$ by $\delta_t f(x) = f(xt) - f(x)$ for all $x \in P$. Then $f: P \rightarrow G$ satisfies

$$2\delta_t f\left(\frac{x+y}{2}\right) = \delta_t f(x) + \delta_t f(y) \quad \text{for all} \quad x, y, t \in P$$

if and only if there exist $\alpha, m: P \rightarrow G$ such that

$$f(x) = \alpha(x) + m(x)$$

$$2\alpha\left(\frac{x+y}{2}\right) = \alpha(x) + \alpha(y)$$

and

$$m(xy) = m(x) + m(y)$$
 for all $x, y \in P$.

This theorem has found applications in solving functional equations in [1], [2] and [4]. The aim of this paper is to generalize theorem 1 (see theorem 3 below). The main tools will be some results of Djoković [3].

Thoughout this paper (G, +) denotes an abelian group. We say that G admits division by the positive integer n provided that for every $x \in G$ there is a unique $y \in G$ such that x = ny in which case we write y = x/n.

If S is a non empty set, G^S denotes the set of all mappings of S into G. If for $f, g \in G^S$ we define f+g by (f+g)(x)=f(x)+g(x) for all $x \in S$ then G^S becomes an abelian group.

Let

$$L(S, G) = \{E: G^S \to G^S | E(f+g) = E(f) + E(g) \text{ for all } f, g \in G^S \}.$$

If for $E, E' \in L(S, G)$ we define E+E' and EE' by (E+E')(f)=E(f)+E'(f) and (EE')(f)=E(E'f) for all $f \in G^S$ then L(S, G) becomes a ring with identity I-the identity map of G^S . For $E \in L(S, G)$ and $f \in G^S$ we usually write Ef instead of E(f). For $E \in L(S, G)$ we let $E^2=EE, E^3=E^2E$, etc. Notice that if G admits division by n then so do G^S and L(S, G).

Suppose (S, +) is an abelian semigroup. For $y \in S$ define $\Delta_y \in L(S, G)$ by

$$\Delta_y f(x) = f(x+y) - f(x)$$

for all $x \in S$ and $f \in G^S$. Notice that

$$\Delta_y^n f(x) = \sum_{k=0}^n \binom{n}{k} (-1)^k f(x+ky)$$

for all $x, y \in S$, all $f \in G^S$ and every positive integer n.

If k is a positive integer let $A^k(S, G)$ denote the set of all $A: S^k \to G$ such that

$$A(s_1+s_1', s_2, ..., s_k) = A(s_1, s_2, ..., s_k) + A(s_1', s_2, ..., s_k)$$

and

$$A(s_{i_1}, s_{i_2}, ..., s_{i_k}) = A(s_1, s_2, ..., s_k)$$

for all $s_1, s'_1, s_2, ..., s_k \in S$ and for every permutation $(i_1, i_2, ..., i_k)$ of (1, 2, ..., k). For $A \in A^k(S, G)$ we let $A^*(s) = A(s, s, ..., s)$ for all $s \in S$. We need the following theorem of Djoković [3] (also see [5], [6] and [7]).

Theorem 2. Suppose G admits division by (n-1)! and $f: S \rightarrow G$. Then the following are equivalent:

- (i) $\Delta_{y}^{n} f(x) = 0$ for all $x, y \in S$,
- (ii) $\Delta_{v_1}\Delta_{v_2}...\Delta_{v_n}f(x)=0$ for all $x, y_1, ..., y_n \in S$,
- (iii) there exist $A_0 \in G$ and $A_k \in A^k(S, G)$, $1 \le k \le n-1$,

such that $f(x) = A_0 + \sum_{k=1}^{n-1} A_k^*(x)$ for all $x \in S$.

Corollary. Suppose G admits division by (n-1)! and $f: S \to G$ such that $\Delta \binom{n}{y} f(x) = 0$ for all $x, y \in S$. Then there exists a constant $c \in G$ such that

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k f(ky) = c \quad \text{for all} \quad y \in S.$$

PROOF. By theorem 2 there exist $A_0 \in G$ and $A_j \in A^j(S, G)$, $1 \le j \le n-1$, such that

$$f(x) = A_0 + \sum_{j=1}^{n-1} A_j^*(x)$$
 for all $x \in S$.

Hence, for all $y \in S$,

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k f(ky) = \sum_{k=1}^{n} \binom{n}{k} (-1)^k \left(A_0 + \sum_{j=1}^{n-1} A_j^*(ky) \right) =$$

$$= \left(\sum_{k=1}^{n} \binom{n}{k} (-1)^k \right) A_0 + \sum_{j=1}^{n-1} \left(\sum_{k=1}^{n} \binom{n}{k} (-1)^k k^j \right) A_j^*(y).$$

Since $\sum_{k=1}^{n} \binom{n}{k} (-1)^k = -1$, to complete the proof it suffices to show that $\sum_{k=1}^{n} \binom{n}{k} (-1)^k k^j = 0$ whenever $1 \le j \le n-1$.

Now if Z denotes the integers, $1 \le j \le n-1$ and $g: Z \to Z$ is defined by $g(x) = x^j$ for $x \in Z$ then, by theorem 2, $\Delta_y^n g(x) = 0$ for all $x, y \in Z$. That is

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k g(x+ky) = 0 \quad \text{for all} \quad x, y \in \mathbb{Z}.$$

Putting x=0 and y=1 we find $\sum_{k=1}^{n} {n \choose k} (-1)^k k^j = 0$.

Let P be an additive abelian semigroup in which an associative multiplication (xy) is defined which is distributive over addition. Also assume P has a multiplicative identity e. More explicitly we are assuming that for all $x, y, z \in P$,

$$(x+y)+z = x+(y+z), x+y = y+x$$

 $(xy)z = x(yz), xe = x = ex,$
 $x(y+z) = xy+xz \text{ and } (x+y)z = xz+yz.$

For $t \in P$ define $\delta_t \in L(P, G)$ by

$$\delta_t f(x) = f(xt) - f(x)$$

for all $x \in P$ and $f \in G^P$.

The main result of this paper is

Theorem 3. Suppose n is a positive integer, G admits division by (n-1)! and $f: P \rightarrow G$. Then

(1)
$$\Delta_{v}^{n} \delta_{t} f(x) = 0 \quad \text{for all} \quad x, y, t \in P$$

if and only if there exist $g, h: P \rightarrow G$ such that

$$(2) f = g + h,$$

$$\Delta_{\nu}^{n}g(x)=0$$

and

(4)
$$h(xy) = h(x) + h(y) \text{ for all } x, y \in P.$$

PROOF. Suppose (1) holds. According to the corollary there exists $c(t) \in G$ such that

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k (\delta_{\cdot} f)(kx) = c(t) \quad \text{for all} \quad x, t \in P.$$

On the other hand if we let

$$\varphi(x) = \sum_{k=1}^{n} {n \choose k} (-1)^k f(kx)$$
 for $x \in P$

then

$$\sum_{k=1}^{n} {n \choose k} (-1)^k (\delta_t f)(kx) = \sum_{k=1}^{n} {n \choose k} (-1)^k \{ f(kxt) - f(kx) \} =$$
$$= \varphi(xt) - \varphi(x) = \delta_t \varphi(x) \quad \text{for all} \quad x, t \in P.$$

Thus

$$\delta_{t} \varphi(x) = c(t),$$

i.e.

(5)
$$\varphi(xt) = \varphi(x) + c(t)$$
 for all $x, t \in P$.

Since kx = x(ke) for $x \in P$ and k a positive integer, it follows that $\delta_{ke} f(x) = f(kx) - f(x)$, $x \in P$. Thus

$$\varphi(x) = \sum_{k=1}^{n} \binom{n}{k} (-1)^k f(kx) =$$

$$= \sum_{k=1}^{n} \binom{n}{k} (-1)^k \{ f(kx) - f(x) \} + \{ \sum_{k=1}^{n} \binom{n}{k} (-1)^k \} f(x) =$$

$$= \sum_{k=1}^{n} \binom{n}{k} (-1)^k (\delta_{ke} f)(x) - f(x) \quad \text{for all} \quad x \in P.$$

But $\Delta_y^n \delta_{ke} f(x) = 0$ for all $x, y \in P$ and every positive integer k. Hence, if we let $\tilde{g} = \sum_{k=1}^{n} {n \choose k} (-1)^k \delta_{ke} f$ then $\Delta_y^n \tilde{g}(x) = 0$ for all $x, y \in P$ and

$$f = \tilde{g} - \varphi.$$

From (5) it follows that

$$\varphi(x) + c(s) + c(t) = \varphi(xs) + c(t) = \varphi(xst) =$$
$$= \varphi(x) + c(st)$$

so that

(7)
$$c(st) = c(s) + c(t) \text{ for all } s, t \in P.$$

But, by (5), $\varphi(t) = \varphi(e) + c(t)$, $t \in P$. Hence by (6)

$$f(x) = \tilde{g}(x) - \varphi(e) - c(x)$$
 for all $x \in P$.

Thus (2) holds if we let $g(x) = \tilde{g}(x) - \varphi(e)$ and h(x) = -c(x) for all $x \in P$. Since $\Delta_y^n \tilde{g}(x) = 0$ for all $x, y \in P$ and g differs from \tilde{g} by a constant, (3) holds. Since h = -c it follows from (7) that (4) holds as well. Thus (1) implies (2), (3) and (4).

Conversely, suppose (2), (3) and (4) hold. Then for every $x, t \in P$,

$$\delta_t f(x) = \delta_t g(x) + \delta_t h(x)$$

$$= g(xt) - g(x) + h(xt) - h(x)$$

$$= g(xt) - g(x) + h(t)$$

where we have used (2) and (4). Hence

$$\Delta_{\mathbf{v}}^{n} \delta_{t} f(x) = \Delta_{\mathbf{v}}^{n} \delta_{t} g(x)$$
 for all $x, y, t \in P$.

But

$$\Delta_{y}^{n} \delta_{t} g(x) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \left\{ g((x+ky)t) - g(x+ky) \right\} =
= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} g(xt+kyt) - \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} g(x+ky) =
= \Delta_{yt}^{n} g(xt) - \Delta_{y}^{n} g(x) = 0 \text{ for all } x, y, t \in P \text{ by (3)}.$$

Hence (1) holds and the proof is complete.

The case n=2 of theorem 3 generalizes theorem 1. To see this suppose P is the set of positive elements of an ordered field F and α : $P \rightarrow G$. Notice that P admits division by 2. We claim that $\Delta_y^2 \alpha(x) = 0$ for all $x, y \in P$ if and only if $2\alpha \left(\frac{x+y}{2}\right) = \alpha(x) + \alpha(y)$ for all $x, y \in P$.

Indeed, suppose $\Delta_{\nu}^2 \alpha(x) = 0$ for all $x, y \in P$, i.e.

$$\alpha(x+2y)-2\alpha(x+y)+\alpha(x)=0$$
 for all $x, y \in P$.

Let $u, v \in P$ and assume without loss of generality that u < v. Then v = u + p for some $p \in P$. But p = 2w for some $w \in P$ so v = u + 2w. Hence $\alpha(u + 2w) - 2\alpha(u + w) + 2w$

$$+\alpha(u)=0$$
 or $2\alpha(u+w)=\alpha(u)+\alpha(v)$. But $u+w=u+\frac{v-u}{2}=\frac{u+v}{2}$ so

$$2\alpha\left(\frac{u+v}{2}\right) = \alpha(u) + \alpha(v).$$

Conversely, if $2\alpha \left(\frac{x+y}{2}\right) = \alpha(x) + \alpha(y)$ for all $x, y \in P$ then replacing x by x+2y and y by x we find

$$\Delta_y^2 \alpha(x) = 0$$
 for all $x, y \in P$.

Hence, if $f: P \rightarrow G$ then the following are equivalent for all $x, y, t \in P$:

(a)
$$2\delta_t f\left(\frac{x+y}{2}\right) = \delta_t f(x) + \delta_t f(y)$$
,

(b) $\Delta_y^2 \delta_t f(x) = 0$, (c) $f = \alpha + m$ where $\Delta_y^2 \alpha(x) = 0$ and m(xy) = m(x) + m(y),

(d) $f=\alpha+m$ where $2\alpha \left(\frac{x+y}{2}\right)=\alpha(x)+\alpha(y)$ and m(xy)=m(x)+m(y).

References

[1] Baker, John A., A Generalized Pexider Equation, submitted to Publ. Math. (Debrecen).

[2] DARÓCZY, Z., LAJKÓ, K. and SZÉKELYHIDI, L., Functional Equations on Ordered Fields, to appear in Publ. Math. (Debrecen).

[3] Djoković, D. Ž., A representation theorem for $(X_1-1)(X_2-1)-(X_n-1)$ and its applications, Ann. Polon. Math. 22, (1969), 189-198.

[4] LAJKÓ, K., Remark on a paper of J. A. Baker, Aequationes Math. 19 (1979), 227-231.

- [5] MAZUR, S. and ORLICZ, W., Grundlegende Eigenschaften der Polynomischen Operation, Studia Math. 5 (1934), 50-68 and 179-189.
- [6] McKiernan, M. A., On vanishing n-th ordered differences and Hamel bases, Ann. Polon.
- Math. 19 (1967), 331—336.

 [7] VAN DER LIJN, G., La définition fonctionnelle des polynômes dans les groupes abeliens, Fund. Math. 33 (1945), 42-50.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF WATERLOO WATERLOO, ONTARIO, CANADA.

(Received September 29, 1977.)