The common source of several inequalities concerning
doubly stochastic matrices

By B. GYIRES (Debrecen)

Summary

In this paper the author proves some inequalities concerning the permanents of matrices.
One of them has an important role, because the others are consequences of this. One theorem of
them is a generalization of the author’s theorem proved in his paper [1]. The author coordinates
a conjecture concerning the permanents of doubly stochastic matrices with every proved theorem.
This conjectures are consequences of one of them too. The well-known conjecture of Van der
Waerden is a special case of two of the above mentioned ones.
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1. Introduction

Let .# denote the set of nXn matrices with real elements, where all row and
column sums are 1. Let s —.# be the set of matrices with non-negative elements,
i.e. the set of the so-called doubly stochastic matrices. Let 4,6 be the matrix
where all the entries are 1/n. Let A* denote the transpose of A€.#. Denote Per A
the permanent of A€.#. The definition and the more important properties of the
permanent can be found e.g. in [2].

Let A=UAV* be the polar representation of A€.#, where U and V are ortho-
gonal matrices and A is a diagonal matrix with non-negative elements. It is known
([1)) that the relation A€.# holds if and only if all elements of one of the columns

of U and V, let this the first one, are equal to 1/Vn, and then the first diagonal
clement of A is equal to 1.

Let I', (k=1, ..., n) be the set of the combinations of order k of the elements
1, ..., n without repetition and without permutation, i.e. let

rk = {(il‘ vary il)il = 1.1 e = llk = n}.
By the help of the matrix A=(g;;)c.# we build the matrices
a

(1.1) AP E =

k

i1 oo iy
Qi jr ++* Qi i
O s Clnn Uy oovs )EL

Denote Sum A}fjjf: the sum of the elements of the matrix (1, 1).
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Let Ac.#. Now we introduce the following notations:
Ty(4) =3 Per A} %,
Ri(A) =3 Per Afl‘:_‘_’;: Sum Afl‘ s

Si(4) = ﬁ:{j)), =1, .0
P,,(A)=?;':,%fﬂ“”. T A

where the summations are extended over all

(s 5o T i BB

Let p=0, g=0, p+q=1, Let Ac.#. Denote (A4*)'/* and (4* A)'/* the positive
semidefinite square root of A4* and A* A respectively.
Let us introduce the following notations:

TP (A) = p*T [(A4")' *]+ ¢* T, [(A* A) ]+ 2pq T, (A),
R{"(A4) = PR (AA)'*|+ ¢* R, [(A*A)*] +2pqR (A) (k =1, ..., n).
Moreover let

R{P(4)
SO =Fmg Ck=1...m,
TP, (4)
PPU) = oo (k=1 .on=).

We are proving the following theorems in this paper:
Theorem 1.1. If Ac.# and if 0=p=1, then

2
PN =S (k=1,...,n)

with equality in the cases of k=1, ...,n—1 if and only if A=A,. In the case of
k=n equality holds for all Ac.#.

Theorem 1.2, If Ac.# and if 0=p=1, then
(n—k)*
n(k+1)
with equality if and only if A=A,.

Theorem 1.3. If Ac.# and if 0=p=1, then

2
k!

TP (4) = [:] = (k=2..,m),

PP (A) = k=1,..,n-1)

2
n) k!- k2
R{P(A) = [k =y~ k=1,...,n)

with equality if and only if A=A,.
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If Ac.# and if 0=x=1, then obviously A(x)=(1—-x)A4A,+xA€.#. Similarly
if A€, then A(x)EH.

The polynomial B(x)=Per A(x), 0=x=1 is the Bernstein’s polynomial
adjoined to the matrix A.

Let Ac.#, 0=p=1. Denote B,(x) the weighted mean of the Bernstein’s pol-
ynomials adjoined to the matrices (4A4*)'/?, (4*A)'*, A with weights p? ¢* 2pq
respectively.

Theorem 1.4. If Ac.#, A#A, and if 0=p=]1, then B,(x)=0 when 0=x=1
with equality, if and only if x=0.

In chapter 2 we prove the theorem 1.1., while in chapter 3 we show that the-
orems 1.2.—1.4. are consequences of 1.1. To prove these we use a lemma, which is
proved in this chapter too. This lemma make connections among the quantities
Ty(A), Ty 1 (A), and R,(A).

We deal with the following conjectures in chapter 4:

Conjecture 1.1. If A€3#, then
k!
Si(4) = — (=l .oum)
with equality in the cases of k=1,...,n—1 if and only if A=A4,. In the case
of k=n equality holds for all Ac#.
Conjecture 1.2. If A€3#, then

k+DP =L g =1, D)

with equality if and only if 4A=A4,.
Conjecture 1.3. If A€#, then

2

n) k!

T,(4) = [k] - (k=1,....2)

with equality in the cases of k=2,...,n if and only if 4A=A4,. In the case of

k=1 equality holds for all A€#.

Conjecture 14. If A€, then

k1K
&(A)E[: -ﬁ,‘—ﬂ k=1,...,n)

with equality if and only if 4=A4,.

Conjecture 1.5. 1If AcH, A# A,, then the Bernstein’s polynomial B(x) ad-
joined to A is strictly monoton increasing function on the interval O<x=1 and
B’(0)=0.

From conjectures 1.3. and 1.5. we get as a special case the following well-
known conjecture of Van der Waerden:

If Ac#, then Per A=n!/n" with equality if and only if A=A,.
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In chapter 4 we show too that the conjectures 1.2.—1.5. are consequences of
1.1. If A€ is a symmetric positive semidefinite matrix, then the validity of the
conjectures 1.1.—1.5. are consequences of theorems 1.1.—1.4.

We successeded to prove the conjecture 1.1. generally only in the case of
k=1,2, and also in the case of k=1 for Ac.#. If k=1 we can give a certain
positive neighbourhood of the origin in a way that for x’s chosen from it, A(x)
satisfies the conjecture of Van der Waerden (corollary 4.1.).

2. The proof of theorem 1.1.

In this chapter theorem 1.1. will be proved first in the following form:

Theorem 2.1. If Ac.# and if 0=p=1, then
2
R{P(A) = % TVA) (k=1,...,n)

with equality in the cases of k=1, ...,n—1 if and only if A=A,. In the case of
k=n equality holds for all Ac.M.

Proor. The last statement of the theorem is evident, since Sum A=n for all
A€c.#. Thus it is sufficient to restrict our attention only to the cases of k=1, ...,
vy i—1,

Let

A = (a“) = UAV*
be the polar representation of 4, where U and V are orthogonal matrices and A
is a diagonal matrix with non-negative elements. If

. (0)
U= (ufj)! V= (vij)! A= ™ L]

0) 4,

then
au == Z;u;,vjsfts,
==
consequently
Sum Af} - fx = 2 At a YR s

where

k
(s) i
u:’,s- yi:...ih = Z;lvi,r
a=

[

xf:)...ik o

Since A€.#, one of its eigenvalues is equal to 1. Let A,=1. In this case

ukl:l)*l: I/VH (k: 1, ...,ll).
Therefore

y k2 n
Sum Af}:fx = e Z=I AXED L V§ s
Sm=
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thus

2 n n
QD R Ty(A) = 3 Per Afple 3 03 080 = 3 1 QM)
5=32 2

where -
0,(A) = 3 Per Afr = {xxf . ¥,

k v Jie*

Here and in (2. 1) the combinations i, ..., i, and j;, ..., j; run independently from
one another over I'y. Let U, ; and V; ., denote the k>Xn matrices, which con-
sist of rows of U and V with indices i, ..., i, respectively. In this case

A{: {: = Uil.--inAV;l---fk'
Using the Cauchy—Binet expansion formula ([2]) for the last identity, we get

(2-2) PerAi; Z ﬂ{' ﬁf Percﬂl ﬂn( ) « Per Ch ﬂu( J1.. J'k

where the summation is extended over all non-negative integers f,, ..., S, satisfying
the equality p,+...+p,=k. Cp, , (U, ;) denotes the kxk matrix, which con-
tains certain columns of matrix U, . Namely the j-th column of U; ; ap-
pears B;-times (j=1,...,n) in Cp , (U ;) and ﬁ1+ A+ Pa=

Usmg the obtamed representation (2.2) of Per Afrfx, we get

v lie ?
2.3)
ah

fn
0.(A) = 3 ZH=E (3 Per Gy Wi XK1 (2 Per Gy (Vi i)

where the first summation is extended over all non-negative integers f,, ..., f,
satlsfymg the equality f,+...+f,=k, while in the second and in the third ones

iy, ..., i runs over I';.
Let now s=2 and f,=k. In this case of
3 Per Gy )% 0 _k'[ ]* n_l](ul,+...+u,.,)=0,
Oy et wiide i Vn) k-1

because in the case of s=2 the vector (uy, ..., u,,) is orthogonal to the n-dimen-

sional vector with the common components 1/}n.
If B,=1 2=s=n), py=k—1, then

1 \k-1
Per Cﬂ,=k—1'n,=1(Ui1...i.:) = (k—=1)! [""“] (7T O R )
Vn

consequently

1 k=1
Per Cp,mpv.p,=1 (U i) XD, = (k—1)! [r—_] (Ui s o 11y )

'n

Thus

2.4

k-1
=k-0P(5) A, S Gt 3 @kt ta)

e o T i O 5 7 A

0, (A) o
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where we can get g,(4) from the representation (2. 3) of Q,(A), if the first summa-
tion is extended over all non-negative integers f,, ..., 8, satisfying the conditions
Bi+...+B,=k, py=k—2.

Our statement is

@.5) S (Ut =0,

(R |
Otherwise
ﬂhs+ e +H5ks -_ 0

for all (iy, ..., i)l therefore u;;=0 for i=1,...,n, because 1=k=n—1, con-
tradicting to the orthogonality of U.

We turn now to the proof of the theorem 2.1.

On the basis of formula (2.1) we get

.6 RO ()~ 10 (4) = 31,00 (4),
2

where .
0P (A) = p*Q,[(A4*)'*]+ ¢*Q,[(A* 4)"*]+ 2pqQ,(A).

Taking (2, 4) into account
k=1
@) =k-0F(3) a

n
Z,‘;er 05+ .. +0, )Y+
ke

G aoh

0 2 (gt tu)+q
(igs--r i) €Ty (i

2.7

18n
<+ Z -——-—-—-Afl S . (P 2 Per Cﬂ: B (Uh i * x“f)'"‘*-i-
ﬂl! LE Bn! (TR hETy &

+q 3 PerCy 5 (Vi )V W)
(igyonig) €y

where the first summation of the second term is extended over the non-negative
integers f,, ..., B, satisfying the conditions B,+...+pB,=k, pi=k—2.

On the basis of (2, 5) the expression in the breckets of the first term of (2.7)
is positive for all 0=p=1, therefore the first term is zero if and only if A,=0.
The second term is non-negative and equal to zero if A,=0 for s=2,...,n This
complete the proof of theorem 2.1. on the basis of (2.6).

If we want to prove theorem 1.1., it is necessary to show also that T " (A4)#0.
On the basis of (2, 2)

)‘h )ﬂ.
T4 =22 ﬁ *(p Per Cp,..p,(U,,...5)+q Per Cp, 5, (V.. 1))

where the first summation is extended over all

(ils Lk | ik)erb (jla sevy ji)Erh

‘while the second one is extended over the non-negative integers f,, ..., B, satisfying
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the condition f,+...+p,=k. Now we retain only the member for f,=n. In this

case 4,=1 and all elements of U; , and V; , are wZ Thus

2
n) k!
T4 = [k] i

i.e. the proof of theorem 1.1. is completed.

3. The proof of theorems 1.2—1.4.

a) In this section we show that theorems 1.2.—1.4. are consequences of the
1.1. First we prove a lemma, which has a fundamental role in the proofs of
this chapter.

Lemma 3.1. If Ac . #, then

Ta() = S (=20 LA +R(AT (K =1,...,n=1)

PROOF. Let A=(a;;). Denote ¥ the set of the variations of order k of the
elements 1, ..., n without repetition. Then

(1) T() = 7 3 Per Af1:f,

where in the summation 7, ..., and j, ...,Jj, run independently from one an-
other over ¥;.

Let us write 7, ,,(A4) in a similar form. In this form the sum of the term con-
taining the product ay; ... a, is equal to

0 = ay...a[(@ks1x41F o F g )+ oo F(@pi1nt ... a0
Taking A€.# into account,
g = an...akk {[l —(a;t+1+...+an+1)]+... +‘[l —(al,,+...+ah)]} =
=ay...ag{n—k—[(aygs1+... +a)+... + @41+ ... + a1}
If we use again that A¢€.#, then we get
g = au...au {n—k—[l —(a11+...+au)]—... —[l —(ﬂk1+...+a**)]} =
= Qyy ... A (n—2k+Sum A} §).

Thus in T;.,(A) written in the form under (3.1) the sum of the terms containing
the factor Per Al:-f is equal to

Per A}k {n—2k+Sum A4} }}.
Similarly we get that in T;,,(A) written in the form under (3.1), the sum of
the terms containing the factor Per Aj}:{x is equal to

Per Af! i« {n—2k+ Sum A{! - {}.
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Therefore

|
Ty 1(4) = &FDT > Per Ajr+ix(n—2k+ Sum Ajf} - {¥),

where in the summation iy, ..., # and j, ..., j; run independently from one an-
other over ¥;. The last formula contains the statement of the lemma 3.1.
It is easy to show the following corollary of the lemma 3.1.:

Corollary 3.1. If Ac.# and if 0=p=1, then

1
k+1
k=1 ., m—1)
Since T,(A4)=0 for A€, therefore
(k+1)P,(A) = n—2k+ S, (A),

TP (A) = [(n—2K) (P (A)+ R(” (4)]

and similarly for A€ .#
(k+1) PP (A) = n—2k+S{P(A)
if k=1, ...,n—1. Thus
(k+ 1) P (A)+(n—k+1) Py (A) = S, (A)+S,-1(4)
for Acs# and
(k+ 1) PP (A)+(n—k+1) PP, (4) = SP (A)+ S (A)
for A€.# and for k=1,...,n—1. From here we get the following result:

Corollary 3.2. The identities

'S (k+1)Po(4) =;§: S, (A),

k=1
and

n—1 n—-1

2 (k+1)PP(4) = 5 SP(4)

k=1 k=1

hold for A€# and for Ac.l respectively.

b) We turn now to the proof of theorems 1.2.—1.4.
On the basis of corollary 3.1. and theorem 1.1. we get the following result:

Theorem 3.1. If A€.#, then theorems 1.1. and 1.2. are equivalent.

From this theorem we obtain the proof of theorem 1.2.
The first statement of the theorem 1.3. follows from theorem 1.2. on the basis
of the identity

T{P(4) = Ty(4) [] PP (A),
i=1
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while we get the second statement of the mentioned theorem from here and from
the theorem 1.1. on the basis of

R{P(4) = 5P (A) T (4).
As a consequence of theorems 1.1.—1.3. we obtain the following corollary:

Corollary 3.3, If Ac.# is a symmetric positive semidefinite matrix, then

S(4) = %2 k=1,..,n-1),

(n—k)*

k=1,..,8~1), Ti(d)= []-ﬁ—, k=2, ...,n),

Rk(A)_[k TH‘ k=1,...,n)

with equality if and only if A=A,.
We shall prove now the theorem 1.4.

Let B(x) be the Bernstein’s polynomial adjoined to A<.#. By elementary
permanent transformation we get that

8 = 3 (1) #a—0r-rem),

where

c(0) = —

s
n
k

The summation is extended for all i, ..., i, over I',. Here C; _; (4) is the nXn

matrix the columns of which with indices 7y, ..., i are equal to the columns of 4

with same indices, and its other elements are equal to 1/n. It is not difficult to verify
that

c(k) = 2 Per Ci.. (A).

1 (n k)

c(k) = ——T(4) (k=1,...,0).
@
Let
A% (k) =c(k) (k=0;1;..,n)
Ac(k) = A" e(k+1)—4""1c(k)
(k=0,1,...,0=v; v=1, ....1m).
Since

c0) =c(l) = —

g
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therefore ([3], 179) we obtain

n—1

(3.2) Bx=nZ ";l]x*(i —x)*de(k),
and consequently

BYR) = n(n—=1)...(n—v+1) 3 [",:"] X (1=x)=* 4" c(K).
If we use this, the formula e

n v | n
(3.3) Bx)= 3 BY0) = =+ 3 [’"] A47c(0)x"
ye=0 V- n y=g \V
holds.
Similarly we can find that
BOYG) = n(n—1)...(a~v+1) "jviﬁ,s(ﬂr"(m -
i=0 ¥

=nn-=1)...(n—v+1) 'lz—‘v[n:v] A e)x (v=1,...,0).

i=0
We turn now to the proof of the theorem 1.4.
Taking (3.2) into account, we get

B, (x) = H*Z [" ; 1] x*(1 =x)*~*4c,(k),
where

: —k)!
CP(O) — -%;'-’ cp(k) = .L..&%% TP (A)

n
k
(k=1,..,m).
On the basis of theorem 1.2. we get that

c,(k+1) _ n(k+1)
cp(k) — (n—k)?

PP (4) > 1,
because A= A,, i.ec.

dc,(k) =0 (k=1...,n-1),
which gives the statement of the theorem.

Corollary 3.4. If Ac.# is a symmetric positive semidefinite matrix, and A # A,,
then the Bernstein’s polynomial B(x) adjoined to A is strictly monoton increasing on
the interval 0<=x=1, and B’(0)=0.

On the basis of (3.2) we.obtain
| n=-1
B(x) = %-I— > B(k+1,n—k;x)dc(k), 0=x=1
k=1
as an another representation for the Bernstein’s polynomial adjoined to A, where

B(k+1,n—k; x) is the distribution function of the Beta distribution with para-
meters k+1,n—k (see e.g. [4], 213).
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4. On the conjectures

a) In this section we show that the conjectures 1.1. and 1.2. are equivalent,
and that the conjectures 1.3.—1.5. are consequences of 1.1.

If A€5#, then it is easily to see that 7,(A)=0 for k=1, ...,n.

Applying lemma 3.1. we get the following result:

Theorem 4.1. If A€#, then the conjectures 1.1. and 1.2. are equivalent.

We say that the matrix A€# satisfies the condition C,, if S,(4)=k?n holds
with equality if and only if A=A4,. Here k is a positive integer satisfying the con-
dition k=n-—1. If k=n, condition C, is satisfied automatically, since Sum A=n
for Aco.

Theorem 4.2, If A€ satisfies conditions C; for j=1,...,k—1 (k=2,...,n),
then

T,(A)z[;f]s%i- e I

with equality in the cases of j=2, ...,k ifand only if A=A,. If j=1, then equality
holds for all Ac#.

Proor. If we start from T;(4)=n, and then we apply the condition of the
theorem consecutively in the lemma 3.1., we get the statement of the theorem.

Theorem 4.3. If AcH satisfies the condition C; for j=1, ...,k (k=1, ..., n),
then

D
n) j!j* .
=) 45 u=1..5

with equality if and only if A=A,.

PrOOF. We obtain the statement from theorem 4.2. using the condition of
the theorem.

Theorem 4.4. If the matrix A€ #, A# A, satisfies the condition C, for k=1, ...
..y, then the Bernstein’s polynomial B(x) adjoined to A is strictly monoton in-
creasing on the interval O0=x=1, and B’(0)=0.

PrOOF. This theorem can be similarly proved on the basis of (3.5) using the
condition of the theorem as we proved one 1.4.

b) It follows from the corollaries 3.3. and 3.4. that the conjectures 1.1.—1.5.
are true if A€# is a symmetric positive semidefinite matrix. We had no success
in the proof of the conjectures 1.1.—1.5. for arbitrary A€3#, only in the cases
of k=1,2.

Let A=(a;;) be a nXn matrix with real elements, and let

h,(A4) =“Z_’Ia}'j =152 )
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If Ac.#, then h,(A)=n and it can be easily shown that h,(4)=1, and that

v—2
h,(A) = [%] (v=3,4..)
for Ac#. In the last two inequality equality is if and only if 4=A,.
Theorem 4.5. If Ac.#, then

SU=~- (1=23..)

with equality if and only if 4=A4,.
Proor. In this case
R, (A) = T,(A) = hy(A)—1,

thus the statement is trivial according to the above mentioned remarks.
It can not be hoped that we can extend this theorem for k=1 provided A€.#.
Namely let e.g. the matrix

-4 4 1
A=| 3 —4 2|cH
2 1 -2

be given. Since in this case
Per A =—-53, T,(A) =27, Ry(A)=-56,
thus condition C, is not satisfied.
Theorem 4.6. If A€ then conjecture 1.1. is satisfied for k=2.

PRrOOF. It is natural in this case that n=2 and if n=2 the statement is evi-
dent. Thus we investigate only the case on n=2.
Let A=(a;;)és#. Now let us disjoin the sums

a,a
Ry(A) = 2> Per (a;:af;] (axtaytau+tay);

- Ay
Ty(A4) = 3 Per [ i a,-,]
— where in the summation i, j and &, / run independently from one another over
'y, — on the basis of the identity
1 1
= == — - + .
P a2\ 2, > }

ahers 2 ixfk=1 Gk LITar  bal%as
@DEr

Then we taken the following relations into consideration:
2 aipay = hy(4), 3 ajay; = nhy(A4),
ik, ik,Jj,1

2 aj = hy(4), : e Apapdy = n,
ik i,J, k1

2 agay=n®  aga; =n,
i, J,k1l ik, I
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and we get that
Ry(A) = 2nhy(A)+2n—8hy(A)+4hy(A),
Ty(A) = n®—2n+hy(A).
Consequently

@) R4

2 T,(4) = 4(ha ()~ ha(A)+2(n— &) (ha(4) 1)

If B, (k=1, 2, ...) denotes the k-th absolute moment of a discret finite random
variable, the well-known inequality f,.,f;_1=p; holds ([4], 103). Applying this
in our case if k=2, we get that

hy(A) = % h3(A).
Using this in (4.1) we obtain
4

Ry(A) —— To(4) = 2(n —4+% hy(A))(hy(A)—1).

Thus the proof of the theorem is completed for n=4. It only remains for us to
investigate the case of n=3. Let us use (4.1) for n=3, then

Ro(A) —5 To(4) = 5 [6hy(4) = Shy(4)+3].

This expression is non-negative if and only if

5 1 1
This inequality is satisfied by all A€ with equality if and only if 4A=A4,.

Applying the two last theorems, we get the following results using theorems
4.1.—4.3.:

Theorem 4.7. If Ac.# and if n=2, then
T,(4) = %(n-—l)’, R,(A) =1,

with equality if and only if A=A,.
Theorem 4.8. If Ac# and if n=3, then

T,4) = o (1= 1*(n—2,

Ro(A) = 2 (n-1y,

(n—2)*
3n

Py(A4) =
with equality if and only if A=A,.
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On the basis of lemma 3.2. and in consequence of theorem 4.5. we get
A4%¢(0) = de(1) = 0.
Thus using the formula (3.3) we obtain the following theorem:
Theorem 4.9. If Ac.#, then we can find a 6=0, so that

4.2) Per ((1—x)A4,+x4) = -:—,E-,

provided 0<x=4, with equality if and only if A=A,.

Corollary 4.1. If ACH, then the matrices (4.2) satisfy the conjecture of Van
der Waerden.

On the basis of these it is easy to show that the conjecture of Van der Waerden
is equivalent to the following one:

Conjecture 4.1. The only solution of the matrix equation

n!

Per A = —
n

, A€XK,

is A=A,.
n!

Namely if Per A< for a matrix A€, then there exists a 0<x,<1 on

n"
the basis of identity (3.3) and of corollary 4.1. such, that
n!
Per ((1—xo) Ag+x,4) = -—

and (1—xp)A,+x,45 A, contradictinction to the conjecture 4.1.
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