On power values of binary forms over function fields

By JÁNOS VÉGSŐ (Debrecen)

Abstract

An inequality is given for the height to the "rational" solutions x, y, z of the equation $F(x, y)=z^{m}$.

1. Introduction

Let \mathbb{K} be an algebraic function field and $F(X, Y) \in \mathbb{K}[X, Y]$ be a binary form of degree n having pairwise non-proportional linear factors in its splitting field. The equation

$$
\begin{equation*}
F(x, y)=z^{m} \text { in } x, y, z \in \mathbb{K} ; m \in \mathbb{Z} \tag{1}
\end{equation*}
$$

is a natural, common generalization of the superelliptic, Thue and Fermat equations. The first general theorem was obtained by Schmidt [S1], he gives an effective upper bound for the degree of the polynomial solutions. His result was extended by Brindza [B1], [B2] to the case of algebraic function fields when the unknowns are S-integers. By taking $z=1$ or $y=1$ we have Thue or superelliptic equations, respectively. For the related results we refer to $[\mathrm{S} 2],[\mathrm{M} 1],[\mathrm{M} 2],[\mathrm{M} 3],[\mathrm{BM}],[\mathrm{P}]$ and $[\mathrm{BPV}]$.

The purpose of this note is to prove a bit surprisingly simple inequality which covers several previous results. Let $H_{\mathbb{K}}(\alpha)$ denote the additive height of a non-zero $\alpha \in \mathbb{K}$, that is

$$
H_{\mathbb{K}}(\alpha)=\sum_{v} \max (0, v(\alpha)),
$$

where v runs through the additive valuations of \mathbb{K} with value group \mathbb{Z}.

Theorem. If the degree of F is at least 5 then all the non-zero solutions of (1) in $x, y, z \in \mathbb{K}, m \in \mathbb{Z}$ satisfy

$$
H_{\mathbb{K}}\left(\frac{x}{y}\right) \leq 10 H_{\mathbb{K}}(z)+C
$$

where C is an effectively computable constant depending only on F and \mathbb{K}.
If $z=1$ then the equation (1) can be written as

$$
y^{n}=\frac{1}{F\left(\frac{x}{y}, 1\right)}
$$

and the known properties of the additive height (see [M1] and [S2]) lead to a bound for $\max \left(H_{\mathbb{K}}(x), H_{\mathbb{K}}(y)\right)$. Moreover, if x and y are relatively prime integral functions, that is the corresponding integral divisors represented by x and y are relatively prime, then

$$
H_{\mathbb{K}}\left(\frac{x}{y}\right) \geq \max \left(H_{\mathbb{K}}(x), H_{\mathbb{K}}(y)\right)
$$

and one can derive an effective upper bound to the exponent m, provided that z is not a constant.

Proof of the Theorem. In the sequel c_{1}, \ldots, c_{7} will denote effectively computable constants depending only on F and \mathbb{K}. In the splitting field \mathbb{L} of F we get the factorization

$$
F(X, Y)=a \prod_{i=1}^{n}\left(X-\alpha_{i} Y\right), a \neq 0, \alpha_{i} \neq \alpha_{j}
$$

Let S denote the set of additive valuations of \mathbb{L} including all the infinite valuations such that $v(z) \cdot v(a) \neq 0$ and $v\left(\alpha_{i}-\alpha_{j}\right) \neq 0$ for some i, j. Then

$$
|S| \leq 2 H_{\mathbb{L}}(z)+c_{1}=2[\mathbb{L}: \mathbb{K}] H_{\mathbb{K}}(z)+c_{1}
$$

To show that

$$
n \left\lvert\, v\left(\frac{x-\alpha_{i} y}{x-\alpha_{j} y}\right)\right. ; v \notin S
$$

we suppose that there exists an i for which $v\left(x-\alpha_{i} y\right) \neq 0$ and $v(z)=0$. It implies the existence of an index j with $v\left(x-\alpha_{j} y\right) \neq 0$ and

$$
v\left(x-\alpha_{i} y\right) \cdot v\left(x-\alpha_{j} y\right)<0
$$

Without loss of generality one can assume that

$$
v\left(x-\alpha_{i} y\right)<0 \text { and } v\left(x-\alpha_{j} y\right)>0 .
$$

Combining the Siegel-identity with the property of valuations we obtain

$$
v\left(x-\alpha_{k} y\right)=v\left(x-\alpha_{i} y\right) ; k \neq j
$$

and it yields

$$
\begin{gathered}
v\left(x-\alpha_{j} y\right)=(n-1) \cdot\left|v\left(x-\alpha_{i} y\right)\right|, \\
v\left(\frac{x-\alpha_{i} y}{x-\alpha_{j} y}\right)=n \cdot v\left(x-\alpha_{i} y\right) .
\end{gathered}
$$

Put $u_{1}=\frac{x-\alpha_{1} y}{x-\alpha_{2} y}, u_{2}=\frac{x-\alpha_{3} y}{x-\alpha_{2} y}$. Let k_{i}^{+}and k_{i}^{-}denote the cardinality of the set of the valuations $v \notin S$ satisfying $v\left(u_{i}\right)>0$ and $v\left(u_{i}\right)<0$, respectively, $i=1,2$. Applying the well-known inequality of MASON [M1] and the sumformula we have

$$
\begin{aligned}
k_{1}^{+} n & \leq H_{\mathbb{L}}\left(u_{1}\right)<S+k_{1}^{+}+k_{1}^{-}+k_{2}^{+}+k_{2}^{-}+c_{2}, \\
k_{1}^{-} n & \leq H_{\mathbb{L}}\left(u_{1}\right)<S+k_{1}^{+}+k_{1}^{-}+k_{2}^{+}+k_{2}^{-}+c_{2}, \\
k_{2}^{+} n & \leq H_{\mathbb{L}}\left(u_{2}\right)<S+k_{1}^{+}+k_{1}^{-}+k_{2}^{+}+k_{2}^{-}+c_{3}, \\
k_{2}^{-} n & \leq H_{\mathbb{L}}\left(u_{2}\right)<S+k_{1}^{+}+k_{1}^{-}+k_{2}^{+}+k_{2}^{-}+c_{3}, \\
n\left(k_{1}^{+}+k_{1}^{-}\right. & \left.+k_{2}^{+}+k_{2}^{-}\right) \leq 4 S+4\left(k_{1}^{+}+k_{1}^{-}+k_{2}^{+}+k_{2}^{-}\right)+c_{4} .
\end{aligned}
$$

A simple calculation leads to

$$
H_{\mathbb{L}}\left(u_{1}\right) \leq 5 S+c_{5}=10[\mathbb{L}: \mathbb{K}] H_{\mathbb{K}}(z)+c_{6}
$$

and

$$
[\mathbb{L}: \mathbb{K}] H_{\mathbb{K}}\left(\frac{x}{y}\right)=H_{\mathbb{L}}\left(\frac{x}{y}\right) \leq 10[\mathbb{L}: \mathbb{K}] H_{\mathbb{K}}(z)+c_{7} .
$$

and the theorem is proved.

References

[BM] B. Brindza and R. C. Mason, LeVeque's superelliptic equation over function fields, Acta Arith. 47 (1986), 167-173.
[BPV] B. Brindza, Á. Pintér and J. Végső, The Schinzel-Tijdeman Theorem over Function Fields, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), 53-57.
[B1] B. Brindza, On the equation $F(x, y)=z^{m}$ over function fields, Acta Math. Hungar. 49 (1987), 267-275.
[B2] B. Brindza, Some new applications of an inequality of Mason, New advances in trancendence theory (Durham, 1986), Cambridge University Press, Cambridge New York, 1988, pp. 82-89.
[M1] R. C. Mason, Diophantine Equations over Function Fields, Cambridge University Press, Cambridge, 1984.
[M2] R. C. Mason, On Thue's equation over function fields, J. London Math. Soc. Ser. 224 (1981), 414-426.
[M3] R. C. Mason, The hyperelliptic equation over function fields, Proc. Camb. Philos. Soc. 93 (1983), 219-230.
[P] Á. PintÉr, Exponential diophantine equations over function fields, Publ. Math. Debrecen 41 (1992), 89-98.
[S1] W. M. Schmidt, Polynomial solutions of $F(x, y)=z^{n}$, Queen's Papers in Pure Appl. Math. 54 (1980), 33-65.
[S2] W. M. Schmidt, Thue's equation over function fields, J. Austral. Math. Soc. Ser. A 25 (1978), 385-422.

```
JÁNOS VÉGSŐ
KOSSUTH LAJOS UNIVERSITY
H-4010 DEBRECEN, P.O.BOX 18
HUNGARY
```

