Powers of the augmentation ideal in the Witt ring of a field

By RON BROWN 1) (Honolulu)

Let F be a formally real field. Denote the Witt ring of F, its augmentation ideal, and its nil radical by W(F), I(F), and $W_t(F)$, respectively. Pfister's local-global principle says that $W_t(F)$ is the kernel of the total signature map on W(F) [7, Satz 22].

Theorem. Let s be a positive integer. Suppose F has only finitely many distinct places into the real numbers. Then $I(F)^s + W_t(F)$ is exactly the set of elements of W(F) whose signatures at every ordering of F are divisible by 2^s .

This theorem gives an affirmative answer to Lam's "Open Problem B" [5, p. 49] in the case of fields admitting only a finite number of real-valued places.

I believe that in a narrow sense the proof given here of the theorem is the first. However, M. Marshall has recently observed (see [6, footnote on p. 611]) that the theorem follows fairly directly from work he had done a few years ago [6, Theorem 7]. Even more recently, Tom Craven discovered a third proof [3]. The proof presented here, which is quite different from that of Marshall or Craven, is an application of the arithmetic structure theory in [2, § 6] for reduced Witt rings of fields with only finitely many real-valued places. We hope interest in such a proof is increased by the recent result of Becker and Bröcker generalizing this arithmetic structure theory to arbitrary fields [1, Theorem 6.5]. The methods of [2] will be used to reduce the proof of the above theorem to that of the following lemma on subdirect products of integral group rings.

Lemma. Suppose $n \ge 2$. Let $\Lambda_1, ..., \Lambda_n$ and $\Delta_2, ..., \Delta_n$ be groups of exponent two and let $u_{i-1}: \Lambda_{i-1} \rightarrow \Delta_i$ and $v_i: \Lambda_i \rightarrow \Delta_i$ be surjective group homomorphisms, for i=2, 3, ..., n. For each $i, 1 \le i \le n$, let I_i be the kernel of the ring homomorphism from the group ring $Z(\Lambda_i)$ to $Z_2 = Z/2Z$ which maps each element of Λ_i to 1+2Z. Define $\Theta = \Theta_n: \Pi_{i=1}^n Z(\Lambda_i) \rightarrow \Pi_{i=2}^n Z_2(\Delta_i)$ by the formula

$$\Theta \left((\lambda_i)_{1 \leq i \leq n} \right) = \left(\bar{u}_{i-1}(\lambda_{i-1}) + \bar{v}_i(\lambda_i) \right)_{2 \leq i \leq n}.$$

(For notation, see below.) For each $s \ge 0$ let $J_s = \text{Ker } \Theta \cap \prod_{i=1}^n I_i^s$. Then for each $s \ge 0$, $\text{Ker } \Theta$ is a commutative unitary ring, J_s is an ideal of $\text{Ker } \Theta$, and $J_s = J_1^s$.

¹⁾ Partially supported by National Science Foundation grant no. MCS77-04024.

76 R. Brown

In the above lemma \bar{u}_{i-1} and \bar{v}_i are the compositions of the homomorphisms $u_{i-1}^*\colon Z(\Lambda_{i-1})\to Z(\Delta_i)$ and $v_i^*\colon Z(\Lambda_i)\to Z(\Delta_i)$ induced by u_{i-1} and v_i with the canonical map $Z(\Delta_i)\to Z_2(\Delta_i)$. We will write u_{i-1} for u_{i-1}^* and v_i for v_i^* .

We now prove the lemma. It is easy to check that $\ker \Theta$ is a commutative unitary ring with ideal J_s and that $J_s \supseteq J_1^s$. It remains to prove the reverse inclusion. Let $a = (a_1, ..., a_n)$ be in J_s . We proceed by induction on n. Pick homomorphisms $f: \Delta_n + \Delta_n$ and $g: \Delta_2 + \Delta_1$ which are right inverses to the surjections v_n and u_1 , respectively. First suppose that n > 2. By induction on n one can assume that $(a_1, ..., a_{n-1})$ is in $(\ker \Theta_{n-1} \cap \prod_{i=1}^{n-1} I_i)^s$. Θ_{n-1} denotes here the obvious analogue of $\Theta = \Theta_n$. One checks that $a' = (a_1, ..., a_{n-1}, fu_{n-1}(a_{n-1}))$ is in J_1^s . (The map $(b_1, ..., b_{n-1}) + (b_1, ..., b_{n-1}, fu_{n-1}(b_{n-1}))$ is a ring homomorphism.) Similarly, we have $a'' = (gv_2(a_2), a_2, ..., a_n)$ in J_1^s . We may suppose without loss of generality that $a_i = 0$ for all i < n (replace a by a - a'). But then a = a'' (since $a_1 = a_2 = 0$), which is in J_1^s . Now suppose that n = 2. Let $b = a_2 - fu_1(a_1)$ and note $\bar{v}_2(b) = 0$. Hence $v_2(b) = 2c$ for some c in $Z(\Delta_2)$. Note that since b is in J_2^s , we have 2g(c) in J_1^s , and so g(c) is in J_1^{s-1} . (For the last assertion apply [4, Theorem 5.13, (7) and (8)]: $Z(\Lambda_1)$ is isomorphic to the Witt ring of some superpythagorean field.) Write

$$a = (a_1, fu_1(a_1)) + (gv_2(b), b) - (2, 0)(g(c), f(c)).$$

Clearly now, a is in J_1^s ; the lemma is proved.

PROOF OF THEOREM. Let $s \ge 0$. Let $\sigma_1, ..., \sigma_n$ denote the distinct real-valued places on F, indexed so that

$$\sigma_{i-1}^{-1}(R) \cdot \sigma_{i-1}^{-1}(R) \subseteq \sigma_{i-1}^{-1}(R) \cdot \sigma_{i}^{-1}(R)$$

whenever $i \leq j \leq n$ (R denotes the real numbers). For each $i=1,\ldots,n$, let Λ_i denote the square factor group of the value group of σ_i , and let F_i denote the ultracompletion of F at σ_i (i.e., the maximal extension of F admitting a real-valued place extending σ_i and having the same value group as σ_i [2, Lemma 2.1]). Further, for $i=2,3,\ldots,n$, let Δ_i denote the square factor group of the value group of the valuation ring $\sigma_{i-1}^{-1}(R) \cdot \sigma_{i}^{-1}(R)$; we have canonical homomorphisms u_{i-1} : $\Lambda_{i-1} + \Delta_i$ and $v_i \colon \Lambda_i \to \Delta_i$ [2, 3.2]. Let $W_{\text{red}}(F) = W(F)/W_t(F)$ and let t denote the total signature map from $W_{\text{red}}(F)$ to $\Pi_X Z$ (the set of orderings of F is denoted by X). Let $I_{\text{red}}(F)$ denote the image of I(F) in $W_{\text{red}}(F)$. We have a commutative diagram

$$\begin{split} W_{\mathrm{red}}(F) & \xrightarrow{t_0} & \prod_{i=1}^n W(F_i) \xrightarrow{t_1} & \prod_X Z \\ \varphi \Big| & \varphi \Big| \\ \text{Ker } \Theta & \xrightarrow{j} & \prod_{i=1}^n Z(\Lambda_i) \xrightarrow{\theta} & \prod_{i=2}^n Z_2(\Delta_i). \end{split}$$

Here, t_0 is induced by the inclusions $F \rightarrow F_i$ and t_1 by the total signature maps on the $W(F_i)$ (so, $t = t_1 t_0$ [2, Lemma 3.1]). j denotes the inclusion map and Θ is from the Lemma. The map Φ is the product of isomorphisms $W(F_i) \rightarrow Z(\Lambda_i)$ obtained as follows. For each i pick an ordering P_i of F_i . Then there is a unique

isomorphism from $W(F_i)$ to $Z(\Lambda_i)$ which takes each one-dimensional form $\langle a \rangle$ to the image of a in Λ_i if a is in P_i and to the negative of this image otherwise [2, Theorem 2.5]. Φ induces an isomorphism $\varphi: W_{red}(F) \to \operatorname{Ker} \Theta$, and in fact

$$I_{\text{red}}(F)^s = \varphi^{-1}\varphi(I_{\text{red}}(F)^s) = \varphi^{-1}(J_1^s)$$

[2, Corollary 6.5]. The Lemma tells us that this equals

$$\varphi^{-1}(J_s) = \varphi^{-1}j^{-1}\left(\prod_{i=1}^n I_i^s\right)$$

which by the commutativity of our diagram equals

$$t_0^{-1}\Phi^{-1}\left(\prod_{i=1}^n I_i^s\right) = t_0^{-1}\left(\prod_{i=1}^n I(F_i)^s\right).$$

Since the F_i are superpythagorean we may apply [4, Theorem 5.13 (7)] to conclude that

$$t_0^{-1}\left(\prod_{i=1}^n I(F_i)^s\right) = t_0^{-1}t_1^{-1}\left(2^s\prod_X Z\right) = t^{-1}\left(2^s\prod_X Z\right).$$

Thus, $I_{red}(F)^s = t^{-1}(2^s\Pi_X Z)$, which was to be proved.

References

- E. BECKER and L. BRÖCKER, On the description of the reduced Witt ring, J. Algebra 52 (1978), 328-346.
- [2] R. Brown, The reduced Witt ring of a formally real field, Trans. Amer. Math. Soc. 230 (1977), 257—292.
- [3] T. CRAVEN, Characterizing reduced Witt rings of fields, J. Algebra, 53 (1978), 68-77.
- [4] R. Elman and T. Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. 94 (1972), 1155—1194.
- [5] T. Y. Lam, Ten lectures on quadratic forms over fields, Conference on Quadratic Forms 1976, Queen's papers on pure and applied math., No. 46, Kingston, Canada, 1977.
- [6] M. Marshall, Some local-global principles for formally real fields, Canad. J. Math. 29 (1977),
- [7] A. PFISTER, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAWAII HONOLULU, HI 96822

(Received January 10, 1978.)