The Lie derivatives in complex areal space

By B. N. PRASAD and V. V. BOSE (Gorakhpur)

Abstract. The deformation theories in FINSLER and CARTAN spaces were devel-
oped by M. S. KNeEBeLMAN [1], E. T. Davies [2], RunD [3] and YANO [7]. These
theories have also been studied in an areal space by TAKANORI IGARASHI [9] and
PrASAD [11]. The geometry of spaces in these works are based on real coordinate
system. The purpose of this paper is to investigate Lie derivatives in the complex
areal space. After giving the outlines of complex areal spaces in §1 we define
the Lie derivative of a vector field in § 2. The section 3 is devoted for rewriting
the Lie derivative of a vector field in terms of covariant partial derivatives with
respect to z!,z!*. In §4 the Lie derivative of the connection coefficients have
been obtained. In the last section the concept of the areal motion has been introduced.

Throughout this paper the Latin indices 7, j, /4, ... run over 1 to »n while
Greek indices «, f,... run over 1 to m. :

1. Complex areal spaces.

We consider a 2n dimensional real manifold X,, (of class C*) referred to
local coordinates (x/, /). Corresponding to each point P of X,, we introduce
complex numbers

(1.1) d=xl+iyi (2=-1)

which may be regarded as the complex coordinate of P (with respect to given
coordinate system). If there exist complex coordinate neighbourhood U(z/), U(Z/)
(where z/ refer to another local coordinate system) such that in the intersection
of these neighbourhoods, we have

(1.2) : 7 =7(z% det

where z/(z*) are holomorphic functions of z* then space X,, is said to admit
a complex structure. Under these circumstances X,, is called a complex space
of (complex) dimension »n and is denoted by C,.

With (1.1) we may associate the conjugate complex
(1.3) 2" = xI—iy
so that (1.2) carries with it the corresponding conjugate complex transformation

(1.4) = ().



80 B. N. Prasad—V. V. Bose

An analytic m-dimensional subspace C,, of C, (m<n) is represented para-
metrically by the equations ([8] page 104)

(1.5) g=3u"), 3"'=2"W")
in which z/,z/" are holomorphic functions of the complex variables u* u*"
g Az . :
respectively. Thus the derivatives "—a—; and their complex conjugate zii=
‘ jg

o 283 " siados
= !ﬁ are defined, each of which is an element of an n>Xm matrix which is always

supposed to be of rank m.
Now we consider real Lagrange function L of the form

(1.6) L= L(, ", 23, 23
satisfying the conditions

(A) The function L is of class C* in all its arguments and it is scalar with respect
to the transformations (1.2) and (1.4).

(B) The function L is positive for all independent sets of arguments 2i, 2J7.

(C) The integral
(L.7) I= [Ldu*rdw?A...Adu™Adu™ ... Adu™
G

over a fixed region G of C, is invariant under the holomorphic transformation
of the complex parameters

(1.8) a*=u*(u?), ™ =" ).
(D) The nmxnm determinant
ale,a'nl
0zh ozl
is non vanishing for linearly independent quantities z%, zJI.
The condition C is equivalent to the relation [4]
oL . oL

D =det|m

(1.9) (a) —-z, =&L, (b) FEIR e = S5 L.
In view of (1.9)a and (1.9)b we have ([10])
(1.10) 2mLVm = glazhzi4 2gfar 2h2is+ ge S 2R 20,
where
x - % asLl,m

(1.11) ghi(, 28, 2,20) = maz.—%a-zrz-.

aELI;‘m
(1.12) ghe (2, 25, 25, 20) = m 5 PV EH

1/m

(1.13) 3502, 21, 2, 20) = m s

- =i
240z
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From (1.10) it is evident that if L is interpreted as a measure of the area dA4 of
an element of m-dimensional complex subspace (2m dimensional real subspace)
spanned by zZ, i at the points z1, z1* of C, in the sense that

(1.14) dAd = L(Z, 2*, 21, 253) d A ... Adu™Adu** A... Adu™,

then the tensors (1.11), (1.12) and (1.13) can be regarded as a suitable areal metric
tensor ([6] page 289). It is to be noted that gf7 is symmetric in pairs of mdtces
such as (B, h), (,j). The similar symmetries exist for tensors gfi and gfi¥.
Furthermore gf=g/r.

It has been pr0ved in [10] that

(1.15) (a) gfzzf =0 (b) gforiss. =0.
In view of (1.15)a and (1.15)b, the equation (1.10) reduces to
(1.16) mLVm = gl 3h 37t
The connection coefficients I'y; and Ij.;. defined by ([10])
1 [dgh: dgl%. . 0ghe .]
| 8pa YSpm* m Jjm
el ==, [ 93] o StERTHi )
" 1 [dghm dgi? 9% 4 ot Bg':‘]
e o = — Ll iom ) m
(1.18) M=o [905 o B+ 8555

are used to define the covariant partial derivatives of a vector field X/ (z!, z'*, 2}, 213)
with respect to z/ and z/°. These are given by

) )
(1.19) b= gz TmET+ XL,
0 Y o
([.20) X:uu =327—' az M- .2.'4- s

Similarly the covariant partial derivatives of the vector field X[ (z%, z**, 21, 213) is
given by

. _0Xe  oXi

(1.21) | Xhy=S5 =55

: i. 170 G ¢

(1.22) thut =W"’-azo_p

The connection coefficients I',; and Ij.;. is not in general symmetric in k, j.
Therefore, we can also define the second type of covariant partial derivatives of
X! and X} with respect to z/ and z/* respectively,

‘r:njj;l E]

* =
r:,-jaz"‘ rlﬂltX::.

oX! BX,‘
(1-23) X:U= 321 e 321 mj 4+‘rij 'L
R ) i .
(1.24) X:o”t ='§—z',7'— 82 I‘f,,.j.z,, +F JtXlev
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2. Lie derivatives of a vector field.

Let us consider an infinitesimal point transformation of the form
2.1) (a) 7' = 2+ (2M) dy,
2.1) (b) ' " =" 40" () ds,

where dt is an infinitesimal constant and ¢, +"* are holomorphic functions of
z* z**. The transformations (2.1)a and (2.1)b carries the point (Z,z"™) of the
subspace C, :
=), ="

to the neighbouring point (', Z*) of the subspace C,
F=Fu", 2 =7u"),

1%, 1** being fixed and o' (z*)=0=0" (z*) give the boundary of C, and C,.
Under these transformations the components 2z, and z.. are deformed as

2.2 (@ z=2+ +57 S—zidt, (b) 2% =24 22" ziidt,
R Bz Ziw oz*
i

where =g Zo = Pl

The variations of z',z*, 2. and 2., under (2.1)a and (2.1)b are represented
in the form

2.3) @) 6z' =2 -2 =v'dt (b) 6" =7"—2" =" dt,

i*
gv; zidt (b) 828 =zit—zi% = gvj. 2L dt.

If a geometric object (2, z*, 3%, 2%%) is transformed to ((Z', z*, 7, Z4%) by
(2.1)a and (2.1)b then

(2.4) (@) 62t =2 -3 =

(2.5) : 30 Q@ 3", 2, 30— Q(z 2,8, 8)=

U PO PP
77 05 4 gge 4T Vit

On the other hand if we interpret (2.1)a and (2.1)b as an infinitesimal coordinate
transformation, then neglecting higher order terms with respect to dr, we have

97 b - o™

0z%.

2.6) @ 25 = s dt ©) S = si+o
i O 92" o W
Q2.7 @ 557 =8—5rdt (b) 5z = S~
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When the geometric object Q(z,z",z%,2%) is transformed to Q(, 7, Z,, 24

by the coordinate transformation (2.1)a and (2.1)b then we have
(2.8) dQ = Q3 2, 3, 30— Q(2, =7, 1, 2).
The Lie derivative of Q- with respect to (¢%, ¢v**) is defined as ([7], [3])

do-do _ . 02,5, 5 -0¢, 2 8, )
dr dt=~0 dt ¢

29 £Q=lm

Now let X!(z%, 2, 21, 2}3) be a vector field of C, then using (2.5), (2.3) and
(2.4) we have

X . OXL o0, OXI o ]d
o U T e Ht g g 1| d

Since the transformation law for the vector field XJ)(z*, z**, 3},21)) in C, is

@10)  axi= [3 £

@.11) Xi(2!, 27 2, ) = X‘(_ L3 B3,

therefore, from (2.7)a, (2.8) and (2.11) we have

m J
(2.12) axt = xi 9% 4.

2
Hence by (2.9)

Q1) £xi=Xep 0K . X O . OX; " .. gy OO

97! Xl

. [} -] % T3 4 o = %

vt o U Y og g Bt g g =Xl 55

If we consider the vector field X5 (2%, z¥7, 2}, Z}i) then after using the transforma-
tion law

l‘
214) XEG, 2 8, £5) = ST XE (2, 2%, 4,
for X7 we obtain
oXL XL . oXL ot
(215) £ ch—-TUl'{- 22 vt + az: a 7 £+
oX5L 9" 40 00"

+ 82 8 j’ ‘-{t 'C a F
In a similar manner, the Lie derivative of covariant vector fields ¥f and Y&
can be obtained. These are given by

._OYf , OYf , OY: a
£ £ = gorttoF? t o 50

AY: " ov'
tom o et g

H+

[
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and
' g
@17 }:17,.‘_33l .,.32:_ a+3 3vj i
av[t .Bv-"
a ‘. a f' 4n+}?- 3 -

For a scalar S(z!, 2%, 7}, z}.) we have

oS aS S o BS "ot s
oz vj_f_&z"v' +3 9z #+ = o 2o

The theorem {2.1) given below is a direct consequence of equations (2.13), (2.15),
(2.16), (2.17), (2.18) and the relation

S=X{Yt=XLYE.
Theorem (2.1). The Lie derivative defined by (2.9) satisfies the Leimbnitz rule i.e.
(2.19) £,XY) = X{(EY)+EX)YE,
(2.20) EXLYR)=XLEYE)+EXL)YE

The Lie derivatives of the partial derivative of X! with respect to z} and
z1% can be obtained from the first principle and we have

(2.18) £,5=

X ¥Xi ,  ¥X rx; o
* & * & 31
(2.21) £ 3__;:‘] oo Ut g i 325321 5. o0t
XL Wt . OXP o' AX! vt _
3z Y0z 9z P 9zl 97 +3Z"' 2
d_[9X: \, OX: . OX: O
=92 o2 "R U o 9 B
3X‘ W i 31;‘] i
az 8 7 ’! Xz oz" 3_2]:(£IJX¢)’
oX; 2Xi P o PN W
(2.22) £, [ ] = 3o ik Oz 2k, ik 0240z 02 ot
a=x= LT ) (L)
NEE a2 A dzks 3 7 9% 0"
b BX' oX; o ox; o _,
=9 Loz "o U on or I
SO
+a?§’_.-§-:—1;29. l d"b] a‘,l. (£ X‘)



The Lie derivatives in complex areal space 85
Hence we have the following:
Theorem (2.2). The operations £, and ; are commutative.

Theorem (2.3) The operatmns £, and 3 are commutative.

3. Lie derivative of a vector field in terms of covariant partial derivatives.

Since the transformation vector (¢, v™") depends only on z! and z'* we have
from (1.19), (1.22), (1.23) and (1.24)

(31) (a) = avi +I},v’ (b) UU— = gﬂ.-&-rj-,.v
30‘ T e
(32) (a) D‘”=§}7+f‘ o' (b) Ijtza j.-l-f'f-pv’ .

Substituting (1.19), (1.20), (3.1)a, (3.1)b and (3.2)a in (2.13) we get (after some
simplification)

33 £,X1 = Xigoh 4+ Xigo o+ OXe 314 OXe e sie yi
( . ) I,X‘ =X.|t +X']kt 321 lu 1+ aZp J.z,.. X 1j-
Similarly from (2.15), (1.21), (1.22), (3.1)a, (3.1'b and (3.2)b we have
G4 EXE = X+ X+ ONE St $ X fpotds—XE ol

Generalizing this we may express the Lie den‘vative of an arbitrary tensor

fyond J'l J'a’: ?p‘l 8q
g T': ‘@, By BS hydymy . mg
of C, in the form
heodp Y o By Prredl 8. ) P T T O 2 .v,lx
(35) pT:l L N M ”ml = Ti; @ BT BTl dymy -[*+

RS oy ik R e SR Py ee ¥y 83 1o SRIILY J'..Px J’,Jl 37
o 5 T:;...c,ﬂf...ﬂ:ll...f’m '|x*+0” oy T:, T Iy T

o 3 0 T“ - BN ol y,a, a*
el .-3 T L &

_Z iqeee v-l“vﬂ. 'J'l J'sh J’,‘l ":viv

@y .na, By Bl Dy my . m ik
__Z .‘“"a-j‘l == J’n-lk f,....| -z J’x J’p‘l “‘ f e +
W G| A S Ve
BT FT Py 2y 80 e By k
+ZTI 0 BY By ndy _y iy gy lymY m® Uy, T
Tl‘ X 5 000 of NORE X0 | PO 14 k*

@y @, By By by ymy . m._lk m,,t...m:vlm:'.
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In particular the Lie derivative of the metric tensor is given by equations

(3.6) £,¢if = gifut* +8"J|t*”h+gg7f vl 25+
+3§ vipeihe— 3', hi— g v
3.7 £,860 = gt + g + 3;: ol 23
+£gzif:‘—t[p.z”' gale vk i—git e,
3.8) £, g1 = g b or o gii B o + 5 af; L+
Bg‘:}’-' L e e ah

d Lp.zp g:tjt gix — Bisg= !’IU‘

4, The Lie derivative of connection coefficient

The Lie derivative of I';; and I, cannot be found directly from (3.5) as
these are not components of a tensor. We shall, however, evaluate it from the first
principle.

By (2.5) we have

or; ory; .. ori; o' L
.1 dr,‘,_[ o'+ 5 oot 4 P E) & o 2+ a % ] dt.
The law of transformation of I'}; is given by [10]
S Py oy oz [ o%z* 0z 02*
s Ty, 23, 2 = oz Lazazr 197 a7

Substituting (2.6)a and (2.7)a in (4.2) we get (after some simplification)

(4'3) ;r‘ij — 'rij(zl! E",fﬁ, Z ) rlj(z‘s & 3 ‘-j’ 21‘ =

*d o !
‘—“[az*azf o Ttz Tt 'a,. r‘]‘“

Using the definition of Lie derivative and equations (4.1), (4.3) we have

ori, ari or ,
@y ery=(GH- o5 [w? 22) o+ (G- Gt It 0"+

oy (& ] ar,, o )
st PER 32,4-1“ V224 —L azv‘””""' 2+
2
& *v A I, 8v ri+ dv’r

P I A 0z
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To express the Lie derivative of I'}; in terms of curvature tensor of C, we
consider the expansion of v, noting that o' is independent of 2z} and :z}i
Therefore,

ory, or;
(4.5) Uiy = B 37; I",,Uz"'+r},rﬁ]+ 707
w W, W
+‘ril a a3 3 azg azl F.I'k rﬂv

The curvature tensors Rj; and R{;. for the connection coefficient I}, are

defined by
ory; or; ory or;
(49) Riy =( oz' 8::? T2 ] ( Bz? K 8:21""‘l I3t ]+

ol 3ru 30

(4?) R‘ﬂa = —a—le-" a pq- ¢¢
A simple calculation based on (4.4), (4.5), (4.6) and (4.7) yields
s DL 5 a
(4.8) £Thy = thuy+ Ripv' + Ry o+ o 224
+35a gﬁu vie 250+ T v+ T,
where
(4.9) Th=Tp—Ty,.

is the torson tensor associated with the connection I%.
In a similar manner we can obtain the Lie derivative of the connection co-
efficients I'fs;.. This is given by

(4. 10) £.r=.-1l = U‘l;oUO‘*”Ri.o!qDl‘*'Rl‘;tJtp !)”+
R TP TC e I )

PR
where

Olkeje  Olkeje ke Olhese Jk
(4.11)  Ritjepe= a*,.‘ 3;{:' ,.‘.z,.] a;,.‘ a;*" r*.,.z_.]+
+F£:1-F$,. —rf:pﬁ’:Jt.

- ar“: L] 31-.‘- .
@4.12) R o1 =-§;,—‘ at rszz,

(4.13) I}:p = Fj‘cp—“:p.
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5. Areal motion.

In this section we introduce the concept of an areal motion. When the funda-
mental metric function L(Z%, zV°, 2}, z}.) satisfies the relation

(5.1) £L=0
then the transformations (2.1)a and (2.1)b does not change the area

A =ffL(z‘, % z'[{.)du‘f\:.‘Adu“Adu"A...Adu"",
(m)

of an m-dimensional complex subspace (2m dimensional real subspace). On account
of this reason we give the following definition.

Definition (5.1). The transformation given by (2.1)a, (2.1)b is called an areal
motion if £,L=0.

Theorem (5.1). In order that the space admits an areal motion it is necessary
and sufficient that the Lie derivatives of the metric tensor gf3. vanishes.

ProOOF. The necessary condition follows from theorems (2.2), (2.3) and the
equations (5.1) and (1.12). :

The sufficient part follows from theorem (2.1), the equation (1.16) and the
facts £,24=0, £,2/1=0.

Theorem (5.2). If the space admits an areal motion then £,gf?=0 and £,g§:% =0.

The proof of the theorem follows from (1.11), (1.13), (5.1) and the theorems
(2.2), (2.3).

The authors are thankful to DR. U. P. SINGH for his valuable suggestions in
preparation of this paper.
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