On extensions of syntopogenous spaces
By KALMAN MATOLCSY (Debrecen)

Introduction

Theory of syntopogenous spaces was worked up in [1]. The present paper
will use both the terminology and the notations of this monograph.

For the purpose of the construction of certain extensions of syntopogenous
spaces, in § | the notion of an inductor will be defined; this is a monotone mapping
(in the sense of [4]) having some additional properties.

In view of its character similar to a strict extension of a topological space
([3], ch. 6), in § 2 an extension of a given syntopogenous space will be said to be
tight, if it can be induced by a special inductor belonging to the trace filters of this
extension. The concept of a tight extension can be identified with that of an ex-
tension introduced in [6].

§ 3 contains a method to look for a continuous extension of continuous real-
valued functions, with the help of which one can get another definition of tight
extensions.

Finally, in § 4 we shall consider various conditions on an extension (E’, &, g)
of a syntopogenous space [E, &), under which g(E) is &, ¥’*- and &’**-dense
respectively.

These later conditions characterize also the subspaces of a double compactification
{5] and of a completion [1] of [E, &), provided a simple separation axiom is satisfied.

The author would like to thank Axos CsiszAR and SANDOR GACSALYI for
their help offered to the shaping of the present form of the paper.

1. Inductors

First of all let us recall the following notions introduced by A. CsAszAR ([4],
@2.1), (2.3), (3.1), (3.19) and (3.20)).

Let E, E’ be two sets, Dc2E, finally suppose that h: D-+2F js a monotone
mapping, i.e. Dy, Ly¢D, Dy D, imply h(D,)Ch(D,). If < is a semi-topogenous
order on E, then

ﬂ("‘:) =U{<u‘n'“a): A, BEB, A< B}

is a semi-topogenous order on E’ (we put i(<)= <, p, whenever the family
{...} is empty).
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When «f is an order family on E, one can define an order family on E” by
the following equality:
h(o) = (h(<)1: <€)

If D is a separator for a syntopogenous structure & on E (i.e. <€%, A<B
imply the existence of a set D¢D such that AcDcB), then A(%¥) is a synto-
pogenous structure on E’, too.

We prove that any monotone mapping 4 has an extension H onto 2, which
preserves certain important properties of the original mapping.

(1.1) Theorem. If h: D 2% is a monotone mapping, then there exists a monotone
mapping H: 25 —<2¥ such that

(1.1.1) H|D=h;

(1.1.2) if D, DD implies D,N\D,® and h(D,)\WDy)=h(D,ND,), then
H(A)\H(B)=H(ANB) for any A, BCE,

(1.1.3) if D is a separator for the syntopogenous structure & on E, then
H(&)~h);

(1.1.4) if 5:2E=2F isalso a monotone mapping such that s{D=h, then H(A)cs(A)
for each ACE.

ProOOF. We define the mapping H as follows:
H(A) = {x’€E’: x’¢h(D), D < A for some DeD}.
Then it 1s clear that H is monotone.

(1.1.1): DeD implies M(D)c H(D), and for x'¢ H(D) there exists D,€D such
that D,c D, x'€h(D,). Thus we get x'€h(D), since h is monotone.

(1.1.2): A, BCE obviously implies H(ANB)CH(A)(H(B). Conversely, if
X’€H(A)NH(B), then for suitable D,, D,¢® we have D,CA, D,CB,
x"€h(Dy)Nh(D,). Because of DN DD and A(D,)h(Dy)=h(D,ND,),
from D,(1D;,cAMNB we deduce x'€cH(4MB).

(1.1.3): Obviously h(¥) € H(¥). Conversely, let < be an eilement of &, <€,
<C <3. Then A'H(<)B' (A"#0, B’"#E’) implies A<B, A’C H(A) and
H(B)cB. If D,,D;¢D such that AcD,<,D,CB, then H(A)C
< H(D)=h(D,) and h(D,)=H(D,)C H(B), so that A"h(<,)B’. We got
H(<)Ch(=,), therefore H(¥)<€h(¥) is clear.

(I.1.4): From x’€¢H(A) the inclusions x'€¢h(D)=s(D)Cs(A) follow for some
A>DeD. |}

In consequence of the theorem., in this paper it will be sufficient to use monotone
mappings defined on whole 2E.

For the sake of further applications, we consider a special class of monotone
mappings. Let g be a mapping of a syntopogenous space [E, &] into a set E’.
A monotone mapping h: 252% s an inductor subordinated to & and g, if the
following condition is satisfied:

(I)<€¥ and A<B imply g(A)ch(B) and h(A)CE’'—g(E—B).
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(1.2) Theorem. If h is an inductor subordincted to the syntopogenous siructure
& on E and te the mapping g: E~E’, then g~ h(¥))~F. The set g(E) is
dense in [E', h(%)], provided the jfollowing condition is fulfilled:

(I) If Aj<B;(1=j=n) for some natural number n and <€, then ("| B;=0
implies des

) ki, =0,
Jj=1
Proor. Let = and =, be elements of &, <€ <j. Then because of (I,)
<Cgi(<)) and g7 Y(a(<))C=<,. Indeed, A<B implies 4<,C-<,D<,B,
thus
g(A) c h(CYh(=<ph(D)c< E"—g(E-B),

1.2, Ag"[k({l))ﬂ; Conversely, if g(A)(<)E'—g(E—B), where A, BCE. there

exists Ay<B, such that g(4)ch(A4,) and MB)ZE —g(E—B). Putling

Ay=<,C<,D<B,. we have h(4)CE —g(E—~C) and g(D)ch(B,). From this

we deduce g(A)CE —g(E—-C) and g(D)CE —g(E-B), so that ACC<,DCB.
If =€% and x"/(<)F’, one can easily prove that

r'G;’E‘l h(4;) and rﬂ‘; h(B)c V',
Jj=1 J=1 .

where A,<B; (1=j=n) for some natural number n. Put <%, =C<j and

Aj<,C;<,B; for a suitable C;cE (1=j=n). With an application of (I,) we get

() C;##0, thus in view of (I;) 0= ") g(C;))<V’, consequently g(E)( .V =0. §
=)

j i=1

We say that (E', &', g) is an extension of the syntopogenous space [E, ¥],
if [E, ¥’] is a syntopogenous space, and g is an isomorphism of [E, %] onto
a dense subspace of [E’, &’). (Cf. [2], p. 238.) We can easily show that (£', ¥, g)
is an extension of [E, &], iff g is an injection of E into E’ such that g(E) is
dense in the syntopogenous space [E’, &’] and g~ Y¥)~F (cf. [1], (10.14)).

It is also obvious that if (E’, &', g) is an extension of [E, &], then (E’, ¥, g)
1s an extension of [E, ¥*]. and (E’, "7, g) is that of [E, &'7].

(1.3) Corollary. Let [E, %] be a syntopogenous space, g be an injection of
E into a set E’, finally let h be an inductor subordinated to & and g satisfying (1,).
Then (E’, h(£), g) is an extension of |E, ¥]. |}

In particular, if g: E—~E is the identity of the set E=E’. and / is the inductor
subordinated to % and g defined by A(4A)=A for ACE, then i(¥)~F.

2. Tight extensions

Let [E, &] be a syntopogenous space. A filter base r in E is round in [E, ),
if for any R€r there exist R;€r and <€% such that R,<R (in this case r will
be called & -round, too). If r is an arbitrary fiiter base in E, then

F)={XCE: R<X, <%, Réx}
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is an Y-round filter in E, which is called the neighbourhood filter of r in %.
{We use the more simple notation #(x) instead of & ({{x}}) for x€E.)

Putting a mapping g: E~E’ and a filter {* in E’, every element of which
has a non empty intersection with g(E), by g~(f’) we shall mean the filter generated
in E by the filter base {g~(F’): F'ei’}). If (E’, %", g) is an extension of the
syntopogenous space [E, &], then the filter &’(x”) satisfies the condition mentioned
above for any x’€E’, and the filters g=(&’(x)) (x'€E’) are called the trace filters
©f this extension.

(2.1) Lemma, If (E’,%’,g) is an extension of [E,%), then the trace filters
are $-round, and we have
g7 (F (g(x)) = & ()

Jor x€E. |}

Conversely, let f(x’) be a filter in E for every x’€¢E’. Then the equality
{cf. [6])
h(4) = {xX’€E’: Acf(x")} (4 CE)
defines a monotone mapping h: 28 +2¥ which will be called the monotone mapping
belonging to the filters f(x’).
The following statement is obvious:

(2.2) Lemma. If h is the monotone mapping belonging to the filters f(x’),
then h(0)=0 and h(A)"\h(B)=h(ANB) for A, BCE, consequently h has property
(Iy), too. 1§

(2.3) Theorem. Let us suppose that g is a mapping of the syntopogenous space
[E, &) into a set E’, and {(x’) is a filter in E for any x’€E’. Then the monotone
mapping h belonging to these filters is an inductor subordinated to & and g if,
and only if

(2.3.1) Z(f(g(x) = £ ()
holds for any x€E. In this case with the notation &’ =h(%), we have the equality
(232 g (F' ) = Z(f(x))

for anv X'€E’, consequently, if §(x") is &-round, then g~(&'(x")) agrees with
f(x).

ProOF. Suppose that (2.3.1) is satisfied, and put 4<B, where <€%. Then
X€A implies Be#(x)cf(g(x)), therefore g(x)€i(B). Let x’ be in h(A). If
x'=g(x), x€E, then A¢f(g(x)) implies B€#(x), thus x€B. On the basis of this
xX’€E’—g(E—B). Conversely, let us assume that (I,) holds for A. If B€S(x),
x€E, then x<A<B for an order <€, therefore g(x)ch(A), thatis AGf(g(x)),
thus BeZ(f(g(x). If Be&L(f(g(x)), then A<C<B for a set Aef(g(x))
and a suitable <€%. h(A)CE'—g(E—C) and g(x)ch(A) imply x€C, so that
Be #(x).

We prove the equality g %(&'(x))=%(f(x")). Assume g~ (X’)cX, where
X'h(<)YX’ for some <€%. Then

X’E [rj' h(;:J) and M }I(BJ}C :i,‘,
j=1 f=1

J=



On extensions of syntopogenous spaces 107

where A4;<B; (1=j=n) for some natural number n. If <¢€&, <C <} and
A;j=<,C;<B; (1=j=n), then with

j=1 = j=1
we have A€f(x) (cf. (2.2)), A<,C and Ccg~Yh(B))cg (X)X (cf. (1)),
thus X€#(f(x")). On the other hand, if X€%(j(x’)), then A<X for a suitable
A€f(x’) and <€&. If <%, <C<i and A<, C<,X, one can show that
xX'h(<)h(C) and g~ (h(C))cX (cf. (I,)), therefore Xecg=Y(¥’(x’)). Finally,
if f(x) is &-round, then obviously &(i(x))=f(x"). 1

(2.4) Corollary. If g is an injection of the syntopogenous space [E, %) into
a set E’, and 3(x’) is an P-round filter in E for x'€E’ such that 3(g(x))=%(x)
for xCE, then denoting by s the monotone mapping belonging to the filters 3(x’),
(E’, s(#), g) is an extension of [E, &), the trace filters of which are identical with
the filters 3(x”). §

(2.5) Corollary. Under the conditions of (2.4) (E’, s(&), g) is a strict extension
(see [3], ch. 6) of the topological space [E, &*?] belonging to the filters 3(x’).

PROOF. As it can be easily seen, V'CE’ is an s(&)-neighbourhobd of a point
x'€E’, iff there is a set Ve€3(x”) such that s(V)c V’. Because of the -roundness
of 3(x”), the set ¥V can be &*-open. ||

In view of (2.5) an extension (E’, %, g) of the syntopogenous space [E, ]
will be called right, if for the monotone mapping s belonging to the trace filters
of this extension the equivalence s(&)~%" is valid. We shall give two characteriza-
tions of tight extensions (see (2.10) and (3.7)). The first of these demands the follow-
ing generalization of the properties of the monotone mapping belonging to a family
of filters.

A monotone mapping h will be said to be (¥ ()-preserving (or (&, U)-
preserving), if h(P)=0, and for an arbitrary set / of indices, <€, 4, <B, (ic])
imply l‘ﬂ h(A,)ch(n B,) (or h(‘U A‘)C:U h(B;)). If this condition is satisfied by

€1 €r - €r €r

h only for finite sets I of indices, then it will be called finitely (&, N)-preserving
(or finitely (&, U)-preserving).
The finite case can be reduced as follows:

(2.6) Lemma. A monotone mapping h is finitely (¥, ()-preserving (or finitely
(&, U)-preserving), iff h(0)=0, and A, <B,, A;< B, imply h(A,)Nh(A;)ch(B,B,)
(or h(A,UA)Ch(B,)Uh(By)) for any <€Z.

PrROOF. One of the parts of this statement is trivial. We verify the other part
with an inductive proof. Let m be a natural number, and let us suppose that

n ]
A;<B;(1=j=n=m) implies [ h(4,)ch(( B;) forany <€, finally put n=m+1.
j=1 j=1
If <€&, A;<B; (1=j=n), then there e;ists <,€% such that <C <. Assume
A;<,C;=B; (1=j=n). In this case

frwea(ie) fomfin

j=1 Jj=1
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and A,<,B,, hence

: r'ﬁh(,«:}).—h[jl1 Al h(A]r:h[ﬁ -

i=1
The statement concerning the finitely (&, U)-preserving case is totally similar. [

In our terminology lemma (2.2) can be formulated so that the monotone mapping
belonging to a given family of filters is always finitely (2, ()-preserviag, where
Zg={c}. But it is obviously finitely (&, M)-preserving for any syntopogenous
structure &% on E, and in general we can state:

(2.7) Lemma. If <% and h is a (finitely) (%, ()- or (%, \J)-preserving
monotone mapping, then it is ( finitely) (&%, N)- or (#;, 'J)-preserving, too. |}

(2.8) Lemma. Any finitely (&, ()-preserving monotone mapping has property (I,).

Proor. In fact, 1!’ <€, and #;<B; (I=j=n), then r‘ h(A;))ch ﬁ ]
= h(0)=0, provided ﬂ B;=0. | -

Jj=1
(2.9) Lemma. Let h, and h, be two monotone mappings. If for any <€,
A<B implies h(A)ChyB) and hy(A)Ch,(B), then hy(¥)~hy ().

PrOOF. Obviously, for <=C <}, <=, <€%, we have h(<)Chy=) and
hy(<)C hy(=,), therefore h(F) and hy(¥) are equivalent. |

(2.10) Theorem. An extension (E’, ¥’,g) of a syntopogenous space [E, ]
is tight, iff there exists a finitely (%, (\)-preserving inductor h subordinated to &
and g such that & ~h(%).

Proor. If (E’, ¥’,g) is a tight extension, then ¥’~s(%), where s is the
monotone mapping belonging to the trace filters, which is a finitely (&, M )-preserving
inductor subordinated to & and g. After thislet 4 be a finitely (&, (N)-preserving
inductor subordinated to &% and g such that ¥’ ~h(%), and let 3(x’) denote
the trace filter of x’€ E’. First of all we show that for XCE: s(X)ch(X), and
<€%, A<B imply h(A)cs(B). In fact, x’€s(X) means that X€3(x’), and from
this g73(X)cX, x'<'X’ follows for some <'€%’. Let <= be an element of
& such that <"Ch(<)%. Then A;<B; (1=j=n),

xe () hd), () hB)c X’

hold for a suitable natural number n. If <€% <C<i and 4;,<C;,<B;

(1=j=n), then using (I;), we have y

n

NG <) g_'(h(BJ)) cX
j=1 j=1

and

h(A)ch c h(X)
(3¢)

J=1
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On the other hand, put <% and A<B. If <<}, <€% A<,C<B and
<'€¢%” such that A(=)'C <, then x’€h(4) implies x"<"hA(C), and because
of (I,) g7(k(C))cB. Thus Be3(x’), i.e. x’€s(B). Finally lemma (2.9) gives that
S ~F)~s(¥), hence the extension in question is tight. [}

3. Extension of functions

Let R be the real line, R=RU{—o=, +}, and let S={<,:e>0} be the
natural syntopogenous structure on R defined in [1]. Throughout in this § it will
be assumed that g: E~E’ is a mapping, & is a syntopogenous structure on £,
and 3(x”) is a round filter in [E, &] for any x’€E’, in particular 3(g(x))=%(x),
whenever x€E.

If f: E~R is a real-valued function, we can define a function f*: E’~R by
the following formula:

f*(x") = inf {sup f(4): A€3(x")} (X'€EE’).

(3.1) Lemma. If f*(x")ER, then this is the smallest of all numbers pcR such that
FG&D)=p ().

ProoF. In fact, for a filter base r in R the condition r—p (#) is equivalent
to the inequality
inf {supR: Rex}=p. ||

(3.2) Lemma. We have the following properties of f*:
(3.2.1) If f is bounded, then f* is bounded, too.
(3.22) f=f*og, and if [ is (¥, F)-continuous, then here equality stands.

PROOF. (3.2.1) is obvious. (3.2.2): A€3(g(x))=%(x) implies x€A, therefore
J(x)=sup f(4), and from this we get f(x)=f*(g(x)). If [ is (¥, #)-continuous,
then f(3(g(x))=f(#(x))~f(x) (#), and we have f*(g(x))=f(x) (cf. 3.1)). &

(3.3) Lemma. Let s be the monotone mapping belonging to the filters 3(x’),
and suppose that f is bounded. Then we have [*~*(<)Cs(f(<uy) and
s(f~ <) CSf*X(=), for each real number &=0.

ProOF. Assume A’f*~(<,)B’. This implies the existence of a p€R such that
A cf*(~es,p)) and f*N(—so, p+e)CB. If A=f-Y(—o,p+e/d]), B=
=f"Y(—, p+¢/2)), and x'€A’, then XCA for some X€3(x’), thus A€3(x").
If Bej(x’), then f*(x")=p+e/2, therefore x'€B’. We got A's(f~(<y))F,
because Af Y=, B.

Conversely, suppose A’s(f~'(<,))B’. There exist A4, BCE such that
Af~Y~)B, A’Cs(A) and s(B)cB’. Let p be the supremum of f(A4). x’€A’
ituplies A€3(x’), thus f*(x)=p. If for an x'€E’ the inequality f*(x")=p+e
holds, then we can take a set XC E satisfying the conditions X€3(x") and sup f(X) =
<p+c, thus Xcf~Y(—e, p+e))cB. Consequently BE3(x’), therefore x'€B’.
This means that 4" f*~(<,)B". |}



110 K. Matolcsy

(3.4) Theorem. Let s be the monotone mapping belonging to the filters 3(x’).
Then for any bounded (¥, 9)-continuous function f there exists a bounded (5(5"), J)
continuous function [’ such that f=f"og. |}

(3.5) Corollary. If (E’', ¥’,g) is a tight extension of the syntopogenous space
[E, &), then every boounded (¥, ¥)-continuous function f has a bounded (&', F)
continuous extension f’ onto E’, i.e. for which f=f"cg. }

(3.6) Corollary. If (E’',7’,g) is an extension of the topological space [E, 7]
such that J' is a topology, then any bounded (7, ¥)-continuous function f has
a bounded (7', 5)-continuous extension [’ onto E’, i.e. for which f=f"cg.

PrROOF. Let s be the monotone mapping belonging to the trace filters of this
extension. Then s(J)” is coarser than 7 (see (2.5)), therefore every (s(.?')", J)
continuous function is (7', J)-continuous, too. |

Supposing that ¢ is an arbitrary functional structure on E (see ch. 12 of [1]),
we have a functional tructure @* on E’ determined as follows:

= {¢*: pcd},
= {f*: feop}.

(3.7) Theorem. Let s denote the monotone mapping belonging to the filters
3(x). If ¥~ for an ordering structure @ on E such that

where

(3.7.1) Q€D (1=i=n) implies | @;C @ for some €@,
=1
then s(&)~%p.
Proor. If {<;:i€l} is a family of semi-topogenous orders on E, then

(3.7.2) s(U <) = U s(=<)

Using the terminology of ch. 12 of [1], on the basis of (3.3) and (3.7.2) we can state
<o*, —(U f*-l(":l))‘C( U s(f_l(":s!()))“"'s ( Uf l(":sn))q S(-ﬂ, I'.,!l)‘l From

this %, -<s{$*:,)<s(.9") therefore .9’,.<s(.9"
Conversely, 5(=g,J'= S(U f"(*'-'a))"—(U S(f‘l(*::)))'C( U [ U(=<))=

<p*,e» that is 5(5) <Fe. From (3.7.1) .9’~..% ﬂ LA follows, thus (&)~
NS( ny') n S(y,)< n -%-C v .—.9’,. I

(3 ?) shows that if an ordermg strucmrc ¢ satisfying (3.7.1) compatible with
& is known, then s5(%) can be determined without an effective using of s, namely
@* is compatible with s(&). This gives a new definition of tight extensions, since
such a compatible @ can be always found for & (see (12,37) and (12.29) of [1]).

Let us observe that the finiteness of f*(x") is not guaranteed in the general
case, therefore a point x’€E’ will be called finite from below (from above), iff
—oo = f*(x") (f*(x")<+<<) for any (&, #)-continuous function f on E. Other-
wise x’ is infinite from below (or above).

For the sake of a characterization of points finite from below or above, let us
consider the following notion. A countable system B={B,:n=0,1,...} will be
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said to be decreasing in the syntopogenous space [E, ] (or simply in &), if there
is an order <€% such that B,.,<B, for any natural number n. For two systems
of sets A and B, we shall use the notation A(N)B={4NB: A€, BcB}. Now we
can state:

(3.8) Theorem. A point x'€E’ is finite from below (from above), iff for any
decreasing system B in & (in F°), Bc(x’) (06 B(N)3(x")) implies NB=0.

The proof of the theorem is based upon the following lemma:

(3.9) Lemma. Suppose that B is a decreasing system in a syntopogenous space
[E, &), and "B=0. Then there exists an (&, F)-continuous funcnon f on E such
that for any natural number n, x€ B, implies f(x) = —n.

. Proor. Let <= denote an order of & such that for any natural number n the

inequality B,.;<B, holds. If {<,:n=0,1,...}c¥ for which <,=< and

<i4y (n=0,1,...), then for each n there exists a function t,: E~[0, 1]
such that '

(3.9.1) e > implies (<) C<mins
1(B,+1)=1{0} and 1(E—B,)={1} (see [1], (12.41)). Putting j;—-! —(n+1) for
any natural number n, f, also satisfies (3.9.1). We define a function f as follows:

for x€E-B,
Jx) = {j,',(x) for x€B,—B,;, (x€E).

Because of E=E— ﬂ B,=(E—-B,)U [ U (B,.—B,,ﬂ)], this definition is possible and
n=0

n=0
unambigous. If x€B,, then x€B,—B,,, for some m=n, hence f(x)=f, (x)=
=1, (x)—(m+1)=1—(m+1) =—m =—n. We show that if r is a real number
such that —(n+1)=r<—n, then

(39.2) =) (=== r)
and
(39.3) S (== 1) (=22, 7))

In fact, suppose f(x)=r. If x¢B,, then f(x)=f,.(x) for some m<n, thus 0=
=—n+n>r+n=f(x)+n=f(x)+m+1=1,(x), which is impossible by 1,(E)c[0,1],
therefore x€B,. If x¢€B,,,, then ,.(x) 0, hence f(x)=t(x)—(n+1)=
=—nm+1)=r. If x¢B,,,, then x€B,—B,,,, that is f,(x)=f(x)=r.
Conversely, suppose fi(x)<r. Then 1,(x)<r+n+1<1, so that x€B,. If
x4 B,.,, then x€P —B,.,, and f(x)=f,(x)<r. If x€B,.,, then for some
k=n+1 we have f(xX)=/AE)=6E)-k+D=l—-(k+)=—k=—(Mn+1)=r.
Further we shall verify the (%, #)-continuity of f. Let &¢ be a positive real
number; without loss of cenerality we can assume that e<1. If Xf/~(<)Y, then
b h 1((-m,p]) (===, p+e))cY for a suitable peR. If p=0, then Y=E.
Suppose p<0, and let n, denote the greatest natural number such that p< —n,.
The nobviously —(ny+1)=p, and p+e<-—(n,—1). If p+e/3<-—ny, then by
(3.9.2)—(3.9.3) Xcf7((—==, p]) and f;Y (=<, p+¢/3))cY. f —n,=p+e¢/3, then
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Xcfiii((—e=, p+¢/3]) and f;1,((—e, p+2¢/3))cY, and we get
% Xf' (<Y or X[l (<)Y
Both in the one and in the other case, we have X'=,.,Y, where m is a natural

number such that &/3 >2]T

that f is (¥, J)-continuous. Jj

ProoF OF (3.8). If x"€E’ is infinite from below, then for an (% #)-continuous
function f on E, f*(x’) = —=. Then for any natural number n, there is A€3(x")
such that sup f(4) = —n. In this case B={f"Y(—==, —n]): n=0,1, ...} is a de-
creasing syst'm in [E, &), Bc3(x’), and obviously 8=0. Conversely, if
B={(B,: n=C 1, ...} is a decreasing system in [E, &), for which B=3(x") and
NB=0, ther. f*(x")=inf {supf(B,):n=0,1,..} =—, where [ is the (& 5)-
continuous function constructed in (3.9).

Suppose that x’€ E” is infinite from above. Then f*(x")= <4< for an (¥, #)-
continuous function f, and this means sup f(4) =+ for every A<3(x’), hence

B = {1((r, +=)): n=0,1,...}

is a decreasing system in ¢ such that 04 B(M)3(x") and clearly MB=0. Con-
versely, let us assume that B={B,:n=0,1,...} is a decreasing system in ¥¢
such that 04 B(MN)3(x") and MNB=0D. Then by (3.9) there exists an (¥<, 5)-
continuous function f, such that fi(x) = —n, whenever x€B,. In this case f=—f
is an (%, S)-continuous function, for which in every Ac3(x") a point x lies with
J(x)=n. This shows that sup f(4)=+<= foreach A<3(x’), so that f*(x")=+. }

(3.10) Theorem. If & is symmetrical, and 3(x’) is compressed in &, then the
point x’€E’ is finite from above, iff it is one from below.

. From this we deduce f~(<,)C <n+1, and this means

Proor. Suppose that there is a decreasing system B in & such that
0¢3(x)MN)B and NB=0. Then denoting by < an order of & such that B,,,<B8B,
for any B,€3B, we get an other <,€%, for which < C <}, so that B,.,<,C,<,B,
for suitable sets C, (n=0.1,...). C,NA=P for each A€3(x"), hence B,c3(x),
that is Bc3(x”).

On the other hand, if Bc3(x) for a decreasing system B in & then
P& 3(x)MN)B is clear. This shows that the definitions of points finite from below
and that of finite from above are equivalent (see (3.8)). |

(3.11) Theorem. If ¥ =T is a topogenous structure, then x'€E’ is finite
from below, iff 3(x’) is strongly centred, that is A,c3(x’) (n=0,1,...) implies
N A4,#0.
ne=0

Proor. If 3(x’) is strongly centred, then NB #0 for any decreasing system
B in J contained in 3(x"), therefore by (3.8) x” is finite from below. Conversely,
suppose that 3(x’) is not strongly centred, then there is a countable sequence

{4,: n=0, 1, ...}c3(x") with ﬂ A,=0. We construct a system {B n=0,1,..}c
<3(x") for which B,,,<B, (n 0 1, ...and 7 ={<)}), further ﬂ B,=0. Assume

n=0
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that for some fixed natural number n, 0<m=n implies the existence of a set
B,€3(x") such that B,<B,_, and B,CA,, where By,=A4,. 3(x") is an J-round
filter, therefore we can find a set Ce3(x’), for which C<B,. Put B, ,=CNA,,,.
Continuing this procedure, we arrive at the demanded system. By (3.8) this means
that x” cannot be finite from below. J

Applying theorems (3.10) and (3.11) in that case, when 7 is the finest sym-
metrical topogenous structure inducing a given completely regular (orin the termino-
logy of [1] uniformizable) topology on E, we get a well-known property of the Cech—
Stone compactification, namely in that a point is finite in the sense of [3] (finite from
below or equivalently from above in our terminology), iff the corresponding trace
filter is strongly centred (see ch. 6.4.e of [3]).

4. Conditions of density of g(E) in [E’, ']

Let * be an ordinary operator in the sense of [1]. If (E’, ¥’, g) is an extension
of the syntopogenous space [E, %], and g(E) is dense in [E’, &’*], then
(E’, #’%, g) is obviously an extension of [E, #*]. In order that this principle be
applicable for making syntopogenous extensions (with #'=%"* and ¥=9%),
we need to know the conditions of the density of g(E) in [E’, ¥'*). We shal|
consider only the operators *=® ¢ and *, which are the most particular cases,
at the same time they are the most important ones.

Let (E’, %', g) denote a tight extension of [E, &¥]. For the sake of the for-
mulation of a condition of the density of g(E) in [E’, ¥'*], we shall generalize
the notion of a Corson filter base of a uniform space (see [3], ch. 8.2.c). A filter base
r will be said to be Corson in the syntopogenous space [E, &], iff for an arbitrary
set /I of indices, <€%, Ricr and R,<B; (ic]) imply [ B;=0.

i€l

Let RB(=<) be, for <€, the family of all sets PCE suchthat A<B, P(A#0
imply Pc B (see [1], p. 220). If = is symmetrical biperfect, and U is the sym-
metrical reflexive relation associated with that, then PcP(<), iff (x, y)eU for
x, YEP.

(4.1) Lemma. If for every <€ there exists a member of B(<), which inter-
sects any element of a filter base t in E, then t is Corson in [E, &). The converse
is also true, provided & is a symmetrical syntopology.

Proor. If <€% and Pc¥(<), then for any set 7 of indices, Rcr, R;<B;,
P R;#0 (icI) imply 0=Pc ) B;. Conversely, suppose that & is a symmetrical
tel
syntopology, and let % be the uniformity associated with %. If r is Corson in
[E, ], and U€e# is associated with an arbitrary <¢€%, then there exists U,e%
such that U U. It is obvious that we have a point x¢ M {U,(R): R€x}. Then
P=U,(x) is in P(=<), since from the symmetricity of U, the relation (y, z)eU
follows for any y,z€P. Finally if R€r, then there is a point yéR such that
(v, x)eU,, therefore yéPNR. |

As a simple corollary of (3.8), we can state:



114 K. Matolesy

(4.2) Lemma. If 3(x") is a Corson filter in [E, &), then the point X’ is finite
Sfrom below. §

(4.3) Theorem. Let (E’, %', g) be a tight extension of the syntopogenous space
[E, ] with the trace filter 3(x") for X'€E’. Then the following statements are
equivalent:

(4.3.1) g(E) is dense in [E’, ).
(4.3.2) For every x'€E’,3(x") is Corson in [E, ¥].
(4.3.3) If {fi:i€1} is an arbitrary (&, S )-continuous family of functions on E, then

inf sup fi(x) = inf sup fi*(x").

x€E i€7 x'€E" i€l

PrOOF. (4.3.1)=>(4.3.2). Suppose A;¢3(x") and A,<B; for a given <<%
and for an arbitrary set 7/ of indices. Let us consider an order <'¢%” such that
s(=)1C <", where s is the monotont mapping belonging to the trace filters. Then
x"<'s(B) for i€l, therefore A <"?[}s(B;). From this we can deduce
024 () s(B))< () B:. ier

13 i€l

(4.3.2)=(4.3.3). Let us introduce the notations

g= infsupfi(x) and p= inf supf;"(x).
x€E icl x€E' i€l

Suppose —ee <p<-+eco and let & denote an arbitrary positive real number. Tien
there is a point x"€ E’, for which sup f;*(x")<p+¢/2, consequently a set A,£3(x")
i€l :

can be found with the property supf(A;) -p+¢/2 for every i€l. This implies
A, Cf M (===, p+8/20)fi (<) S} ((=o=, p+¢)). Because of the (&.)-con-
tinuity of the family of functions in question. one can choose an order = of &
such that f;~!(<,,,) C< for each i€/, hence we have

A< fi (=<, p+e)) (€D).

From this we get a point \'eﬂ fi{((=e=. p+&)), for which sup fi(x)=p+e¢ is
i€r
obvious. This shows that g= p+s for any ¢=>0, consequently g=p. If p = —=,

then with a similar train of thought ¢ = —< can be deduced. Finally, if p =+,
the inequality is clear.

(4.3.3)=(4.3.1). Suppose that @ is an ordering structure compatible with &
(see [1], (12.37)). Then &' ~F. (cf. (3.7)), hence for an arbitrary <€ there
exist real numbers ¢,,...,&,>0 and ordering families ¢,, ..., ¢,€® such that

<e(0 <) cfﬁ(ur (<)) =

j=1

n A%
= (0 Ure) = (U

I=1f¢co;



On extensions of syntopogenous spaces 115

where e=min {¢,, ..., &} and ¢= U @; (cf. [1], (3.25)). It can be easily seen that

"C( U e 1(-=:))‘“'---( U Freaf ,))" (see [1], (5.22)). Suppose x"<"*F” for a point
X'€EE’, Ihcn xXfr- l(-==,);5” and () B{cV’ holds (fi€e, i€I). Since for any

i€r

constant ¢c£R and for any function f, we have (f+c)*=f*+c, in view of axiom
(F,) of [1], the function f; can be chosen so that _f}‘(x’)=0 (icl). Then f*~'.
((—e=,g))c B for each ic]. As a subfamily of the union of a finite number of
(¥, S)-continuous families of functions, the family {f;:i€l} is also (¥, 5)-
continuous (see [1], (12.33)). sup f*(x')=0, therefore infsup f;(x)=0. By

xEE i€l
(3.2.2) we can state, for a sultable rEE

XE N fi (-, 8) = N g~ (A2 (— ==, ) < g7V,
ierl iel

namely g(x)eg(EYO V. |}

(4.4) Theorem. (£', %", g) is a tight extension of the syntopogenous space
E, ] such that g(E) is dense in [E', %", iff &' ~h(¥) for a finitely (£, N)
preserving inductor h subordinated to & and g with the following property:

(I) If <€, and A;<B, (i€l) for an arbitrary set

1 of indices, then ;@ B;=0 implies :g h(A,)=0.

Proor. If (E’, %, g) is a tight extension, then the monotone mapping s
satisfies these conditions (see (2.2) and (4.3.2)). Conversely, suppose that (¥)~%"
for a finitely (&, M)-preserving inductor /& subordinated to & and g satisfying
(I3). Then by (2.10)(E’, &, g) istight. If <'€¢%” and <€ suchthat <" Ch(<)9,
then <""Ch(<)®=h(<)’ therefore x’<"°V’ implies x Gﬂ h(A;), ﬂh(B;)C | 4

where A;<B; (ic]). If <C<}, <,€¥ and 4;<,C;<, B, then from (I,) and (I,)
we can deduce
0 = g(-o, C)c _gg(C,-) o g h(B)c V',

consequently g(£) is dense in [E", ¥?]. |}

Let E, E’ be two sets. By the dual of a mapping /:28—+2F we shall mean
the mapping A": 26—-2F determined by the following formula

h(X) = E'—h(E-X) (Xc E)

(cf. [4], (2.12)). If A is monotone, then A" is also monotone. Let < be a semi-
topogenous order on E, then one can define a semi-topogenous order A*(<)

on E’ by
h* (<) =U{wane: 4 < B}

If f(x) is a filter in E for each x'€E’, and A is the monotone mapping
belonging to these. then for X E we have

W(X) = {x'€E": 0¢F(x)(N) (X}
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(cf. [5], (4)). In fact,
: X'EE'—h'(X) e E-Xci(x) & 0cf(x")(N) {X}.

In this particular case /(<) is topogenous, provided < is one. If each filter
f(x") is compressed in the syntopogenous structure & on E, then

W) = (h*(<): <e&)
is a syntopogenous structure on E’, for which

(4.5) h*(#) ~ h(&)
(cf. [5]. (10)).

(4.6) Theorem. Let (E’.%’,g) be an extension of the syntopogenous space
[E. &). Then the following statements are equivalent:

(4.6.1) g(E) is dense in [E’, ¥"*].

(4.6.2) For each x'€E’ there exists a compressed filter {(x’) in [E, &) such that
F(i(g(x)=F(x) for x€E, and h*(¥)~%’, where h is the monotone
mapping belonging to the filters {(x’).

(4.6.3) (E', & g) is a tight extension of [E, %), and for any x'€E’ there exists
a compressed filter {(x") in [E, %] such that the trace filters 3(x’) of the
extension agree with the filters (i(x")) (x’€ E’).

(4.6.4) & ~h(&) for aboth finitely (&, )-preserving and finitely (&, U)-preserving
inductor h subordinated to & and g.

(4.6.5) (E’, 9, g) is a tight extension of [E, %), and for any bounded (¥, J5)-
continuous function [ there exists a unique bounded (%', J)-continuous
extension f' onto E’, i.e. for which ' og=f.

(4.6.6) (E’, &', g) is a tight extension of [E, %), and

min {/;", £’} = (min { £;, £o})*
Jfor any bounded (&, S)-continuous function f,,f, on E.

Remark. 1f under condition (4.6.1) [E’, &’] is relatively separated with respect
to g(E), then it can be embedded into the double compactification of [E, %)
(cf. [5]. moreover [1], (16.45)).

PROOF OF (4.6). We shall prove the following implications:

(4.6.3) = (4.6.4) < (4.6.6)
f ¢ f
(4.6.2) < (4.6.1) => (4.6.5)

(4.6.1)=>(4.6.2). Let §(x’) be equal to g~Y%’*(x")) for each x’€E’. Then
f(x") is compressed in [E, &] (cf. [1], (15.45), (15.52) and (15.53)). g~¥")=
=g &'y~ implies f(g(x))=%*(x) for xcE. But L(x)cF*(x) is trivial,
and owing to ¥ <€ ¥? we have ¥(x)C ¥ (¥ (x))cP(F(x))c&(x), so that FL(x)=
=L(£(x)=(i(g(x)).
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If <'€¥’, <i¢¥" such that <"C<?, and <¢€&, for which g~ <)) C<=,
then A’<'B" and A" <|C'<{D'<|B’ imply A'ch(g=X(C’)) and A’(g~YD"))c B’
where h is the monotone mapping belonging to the filters f(x’). Because of
g2 Y (C)<=g YD’) we get A'h*(<)B’, thus <'Ch*(<).

If <€, <', <(€%" such that <Cg Y <") and <'C<*, then A"h*(<)B’
implies the existence of sets 4, BCE, for which A<B, A"ch(4) and h’(B)CB’.
If g(A)<{C’'<\D'<{E’—g(E—B), then we have A'cC’ and D’CB’, hence
A" <iB’. With this A*(<)C<;.

(4.6.2)=(4.6.3). Let us consider the monotone mapping /4 belonging to the
filters f(x"). Then by (4.5) & ~h*(¥)~h(¥), therefore in view of (2.2), (2.3)
and (2.10) (£, &, g) is a tight extension, the trace filters of which agree with the
filters &(f(x")) (see (2.3.2)).

(4.6.3)=>(4.64). (E’, ¥, g) is induced by the monotone mapping s belonging
to the trace filters 3(x”) of this extension, which is obviously finitely (<% N)-
preserving. Let f(x”) be a compressed filter in [E, &] for each x'€E’, and put
IX)=L(1(x). If <€ A,<B,, Ay<B,, €% <C< and 4,<,C;<B,
(i=1,2), then A,UA,€3(x") implies C,€f(x") or C,€f(x"). From this we get
B€3(x") or B,c3(x"), hence s is finitely (&, U)-preserving by (2.6).

(4.6.4)=(4.6.1). Let h be a both finitely (&, N)- and finitely (&, \J)-preserving
inductor subordinated to & and g, further suppose h(¥)~%’. If X'€E’, <'€%’
and x"<"V’, then there exists <€% such that <" Ch(<)? therefore we have
<*Ch(=<)¥=h(<)=<"9, where <"=h(<)Uh(<)*. We can find a natural

number n such that x’<"Bj (1=j=n), () Bj-CV" for some sets B;CE’.
1

We decompose the set of indices intojtwo sets as follows: jeI,, iff x’h(<)Bj,
and j€I, otherwise. In this way j€I, implies the existence of A4;, B,CE, for
which A4;,<B; and x'€h(A4;), h(B))cB;, moreover jcl, implies the existence
of C;,D,CE, with C;<D; and E’'—Bjch(C)), h(D;))cE’—x" (namely in such
a case x’h(<)B)). If <€% <C<} and in addition 4;<,X;<,B; for jel,
C;<1Y¥;<,D; for jel,, then in view of (I,) we get the inclusions

N X,c N g™(B) and E-U Y,c () g7(B).
Jern Jjely Jj€ely

Jen

We can see that @=V'\g(E) is impossible, because in this case

(1&c L) Xy
jen, J€l,

x'EJQ‘ h(4;)c h(JQ. X)c h(}é’ Y)c ;Hr, h(D)),

and

but this fact contradicts the choice of the sets D; (€.

(4.6.1)=(4.6.5). The proof of this implication is based upon the extension
theorem (16.45) of [1]. :

(4.6.5)=(4.6.6). We know that under condition (4.6.5) the (&, S)-continuity
of f;,f, implies the (¥, #)-continuoty of f7, f;. We can easily show that both
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min {f;y,/f:} and (min {f;, f3})* are (¥, J)-continuous extensions of the (¥, J)-
continuous function min {f}, f;}, therefore these are equal.

(4.6.6)=(4.6.4). We prove that the monotone mapping s belonging to the
trace filters 3(x”) of this extension is finitely (&, U)-preserving. In view of [1],
(12.10) and (12.27), we have an ordering structure ¢ on E inducing & such that

@;€® (I=j=n) implies the existence of a e fulfilling U @;Ce. In this case

j=
L ~So~ ) . Put =€, A,<B, and A,<B,. There exlst e=>0 and ¢c®
pEP

such that <c <,,. Then A;Cfj/((—e,0]), f7%((=o,)cB; for some fico
(j=1,2). If fy=min {f;,/} and x'€h(A, UA,) then

AUAC U 17 ((= =, 0) = 57 (= = O],

hence fy'((—==, 0])¢3(x"). But in this case, because of the assumption concerning
So: min {f}, L'} x)=/(x)=0. For example put f(x")=0, then there exists
Xe3(x’) such that supfy(X)<e, thus XcCfi'((—==, ¢))<B,, so that x'€h(By).

The proof is complete. |
In the case of *=** we have a theorem analogous with (4.6).

(4.7) Theorem. For any extension (E’, &', g) of a syntopogenous space [E,¥]
the following statements are equivalent:

(4.7.1) g(E) is dense in [E’, &"*).

(4.7.2) For every Xx'€E’ there exists a Cauchy filter §{(x") in [E, &) such that
L(f(g(x)=FL(x) for xcE, and h*(¥)~F’, where h is the munotone
mapping belonging to the filters §(x').

4.7.3) (E’, &', g) is a tight extension of [E, %), and for each x’€E’ there exists
a Cauchy filter {(x") in [E, &) such that the trace filters of this extension
agree with the filters & (§(x")) (x’€E’).

4.7.4) &' ~h(&F) for a both (¥ N)- and (& \J)-preserving inductor h sub-
ordinated to & and g. |}

Remark. If under condition (4.7.1) & is relatively separated with respect
to g(E), then it can be embedded into the completion of [E, &). Thisis a consequence
of theorem (16.30) of [1].

PrOOF. We prove only (3.7.3)=(4.7.4), because the verification of (4.7.1)=
=(4.7.2)=(4.7.3)= and (4.7.4)=(4.7.1) is closely similar to that of the correspon-
ding part of (4.6) (4.7.3)=(4.7.4): Let h be the monotone mapping belonging to the
filters f(x’). Since from our conditions &(f(g(x)))=(x) follows, A is an induc-
tor subordinated to % and g by (2.3) We show ¥~ h(%). In fact, assume that s is
the monotone mapping belonging to the trace filters 3(x”) of this extension. We
have s(A)ch(4) for any ACE. If <€% and A<B, then x'€h(4) implies
Be #(f(x"))=3(x"), that is x” € s(B). The extension in question is tight, therefore by
29) ¥ ~5(F)~h(¥). h isboth (&, N)- and (&, M)-preserving. Indeed, 4;<B;
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(iel), x EN:(A) imply A;€f(x") for i€l. If PEP(=<)Nfj(x’), then P=A,NP
gives PCBI (icI), thus ﬂBEf(t), ie. x Eh(ﬂ B). If x eh(ﬂ A;), then
('1 A;€§x"), hence PﬂAf;fG implies Pc B; for some i€l and Pe‘l!(-:)ﬁfx')
Thus B,¢f(x") and xEQ h(B). |
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