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On relative connectedness I.

By B�ELA RENDI (Debrecen)

In their discussion of certain optimization problems, St. Simons

(1990) and S. Horváth (1991) are using the following definition of a con-
nected set: “a subset K ⊂ X of a topological space (X, T ) is connected,
if the relations K ⊂ A ∪ B and K ∩ A ∩ B = ∅ imply K ⊂ A or K ⊂ B,
where A,B ∈ T .”

This definition of connectedness has been generalized by H. König in
his conference “The Topological Minimax Theorem ”(Debrecen University,
Institute of Mathematics and Informatics, 12 October 1995). Let X be a
nonvoid set and S a family of subset of X. H. König defines connectedness
with respect to the family of sets S as follows: “The subset K ⊂ X is
connected with respect to the family of sets S, if for any sets A,B ∈ S the
relations K ⊂ A ∪B and K ∩A ∩B = ∅ imply K ⊂ A or K ⊂ B. ”

Remarks. 1. For S = T we get back the definition used by Simons,
i.e. the classical notion of connectedness.

2. If S1 ⊂ S2 and K ⊂ X is connected with respect to the family of
sets S2, then K is connected with respect to the family of sets S1 too.

3. If for K ⊂ X there do not exist sets A,B ∈ S for wich K ⊂ A ∪B

then K is connected with respect to S.

The last remark motivates the following
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Definition 1. Let X be an arbitrary set and S a given family of sub-
sets. The subset K ⊂ X is (n− 1)-connected with respect to S, if for any

sets A1, A2, . . . , An ∈ S the relations K ⊂
n⋃

i=1

Ai and K∩Ai0∩
( n⋃

i=1
i 6=i0

Ai

)
=∅

imply K ⊂ Ai0 or K ⊂
n⋃

i=1
i 6=i0

Ai.

Remarks. 4. The notion of 1-connected set coincides with that of
connected set in the sense of König. The notion just introduced can also
be called chain-connectedness.

5. If S1,⊂ S and K ⊂ X is (n− 1)-connected with respect to S, then
K is (n− 1)-connected also with respect to S1.

6. The following examples will show that the notion just introduced
essentially depends on both the family of sets S, and the natural number
n ∈ N.

Let X = R and let S be the set of those open intervals the length
of which is not greater than 1, and let K = (0, 2) ∪ (2, 3) ∪ {10}. One
sees that by Remark 3 K is a 1-connected set. Similarly, K is 2-connected
and 3-connected too. It can be shown that K is not 4-connected. Indeed,
let A = (0, 1), B = (1/2, 3/2), C = (1, 2), D = (2, 3), E = (19/2, 21/2).
One verifies that the relations K ⊂ A ∪ B ∪ C ∪ D ∪ E and K ∩ E∩
(A∪B∪C∪D) = ∅ are satisfied, but neither K ⊂ E nor K ⊂ A∪B∪C∪D
holds.

7. The notion introduced proves helpful in studying classic connect-
edness in a topological space (X, T ) by investigating k-connectedness with
respect to a topological base B. This will become clear in the sequel.

Theorem 1. If K ⊂ X is an (n−1)-connected set with respect to the
family of sets S and n ≥ 3, then K is also (n− 2)-connected with respect
to S, hence it is connected with respect to S.

Proof. We suppose that K is (n− 1)-connected with respect to the

family of sets S. Let the sets A1, A2, . . . , An−1 ∈ S satisfy K ⊂
n−1⋃
i=1

Ai and

K ∩Ai0 ∩
(n−1⋃

i=1
i6=i0

Ai

)
= ∅. Moreover, let i1 6= i0, 1 ≤ i1 ≤ n − 1 and An =

Ai1 . It follows that we also have K ⊂
n⋃

i=1

Ai and K ∩Ai0 ∩
( n⋃

i=1
i 6=i0

Ai

)
= ∅.

Since K is (n − 1)-connected with respect to the family of sets S, we see
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that either K ⊂ Ai0 or K ⊂
n⋃

i=1
i 6=i0

Ai =
n−1⋃
i=1
i 6=i0

Ai holds, i.e. K is an (n − 2)-

connected set with respect to the family of sets S.
The above examples show that the converse of the theorem is not true.

A family of sets S is said to be closed with respect to finite unions, if
A,B ∈ S always implies A ∪B ∈ S.

Theorem 2. If the family of sets S is closed with respect to finite
unions and if K ⊂ X is (n − 1)-connected with respect to the family of
sets S, then K is (k−1)-connected with respect to the family of sets S for
any natural number k ≥ 2.

Proof. Suppose that K ⊂ X is an (n − 1)-connected set with re-
spect to S. It follows that K is 1-connected with respect to S. Let the

sets A1, A2, . . . , Ak ∈ S satisfy the relations K ⊂
k⋃

i=1

Ai and K ∩ Ai0∩( k⋃
i=1
i 6=i0

Ai

)
= ∅. (If no such sets A1, A2, . . . , Ak ∈ S exist then K is trivially

(k − 1)-connected.) Let B1 = Ai0 and B2 =
k⋃

i=1
i 6=i0

Ai. Let the conditions

K ⊂ B1 ∪ B2 and K ∩ B1 ∩ B2 = ∅ be satisfied. Since K is connected
with respect to the family of sets S and B1, B2 ∈ S it follows that ei-

ther K ⊂ B1 = Ai0 or K ⊂ B2 =
k⋃

i=1
i6=i0

Ai i.e. K is (k − 1)-connected with
respect to S.

Theorem 3. If K ⊂ X is (n − 1)-connected with respect to S and

the conditions K ∩ Aj ∩
( n⋃

i=1
i 6=j

Ai

)
= ∅ and K ⊂

n⋃
i=1

Ai are satisfied for

any natural number j (1 ≤ j ≤ n), then there exists a natural number
i0 (1 ≤ i0 ≤ n) such that K ⊂ Ai0 .

Proof. On the basis of the given conditions we have either K ⊂ Aj

or K ⊂
n⋃

i=1
i 6=j

Ai for any natural number j = 1, 2, . . . , n. Let us suppose that

there does not exist any i0 ∈ N, 1 ≤ i0 ≤ n for which K ⊂ Ai0 . Then,

for any natural number j = 1, 2, . . . , n we obtain K ⊂
n⋃

i=1
i 6=j

Ai. Hence the

conditions K∩Aj⊂
( n⋃

i=1
i 6=j

Ai

)
∩Aj , j = 1, 2, . . . , n are satisfied, i.e. K∩Aj ⊂
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( n⋃
i=1
i 6=j

Ai

)
∩ Aj ∩K, j = 1, 2, . . . , n. In view of K ∩Aj ∩

( n⋃
i=1
i 6=j

Ai

)
=∅, j =

1, 2, . . . , n we have K ∩ Aj = ∅, j = 1, 2, . . . , n. From this we get K ∩( n⋃
i=1

Ai

)
= ∅. Now K ⊂

n⋃
i=1

Ai implies K = ∅ and so K ⊂ Ai0 holds for

any natural number i0, 1 ≤ i0 ≤ n which contradicts our hypothesis. Thus
the theorem is proved.

In what follows, let S be a given family of sets satisfying ∅ ∈ S. Let
Sn denote the family of sets

S1(∪)Sn−1 = {A ∪B | A ∈ S1, B ∈ Sn−1}

where S1 = S, and let S∪ =
∞⋃

n=1
Sn. One sees that S∪ is closed with

respect to finite unions and

S = S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . .

Theorem 4. If K ⊂ X is connected (1-connected) with respect to Sn,
then K is n-connected with respect to S.

Proof. Let us suppose that K is connected with respect to the family
of sets Sn. Let the sets A1, A2, . . . , An+1 ∈ S satisfy the conditions K ⊂
n+1⋃
i=1

and K ∩Ai0 ∩
(n+1⋃

i=1
i 6=i0

Ai

)
= ∅ where 1 ≤ i0 ≤ n + 1.

Since Ai0 ,
n+1⋃
i=1
i 6=i0

Ai ∈ Sn and K is connected with respect to Sn, it follows

that K ⊂ Ai0 or else K ⊂
n+1⋃
i=1
i 6=i0

Ai and so we get that K is an n-connected

set with respect to S. The converse of the theorem does not hold.

Remark 8. If S is closed with respect to finite unions then S = S1 =
S2 = . . . = Sn = . . . and so S = Sn = S∪, ∀n ∈ N. Hence we get that the
set K ⊂ X is connected with respect to S if and ony if it is n-connected
with respect to S for any natural number n ∈ N, n ≥ 2.

In what follows we are going to investigate certain properties of n-
connectedness, taking into account those of classical connectedness. In
order to supplement our notations, let us remark that the closure of a set
L ⊂ X with respect to a family of sets S will be the set L̃ ⊂ X, defined
by L̃ =

⋂
S∈S∪
L⊂S

S.
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Remark 9. If L̃ is the closure of the set L with respect to S, then L̃
the closure of L also with respect to Sn for any natural number n ∈ N,
and L̃ is the closure of L with respect to S∪ too.

Theorem 5. If K ⊂ X is an n-connected set with respect to S and

K ⊂ L ⊂ K̃ then L too is n-connected with respect to S.

Proof. Let A0, A1, . . . , An ∈ S be sets satisfying L ⊂
n⋃

i=0

Ai and

L ∩ Ai0 ∩
( n⋃

i=0
i 6=i0

Ai

)
= ∅. Now K ⊂ L implies that K ⊂

n⋃
i=0

Ai and

K ∩Ai0 ∩
( n⋃

i=0
i6=i0

Ai

)
= ∅. Since K is n-connected with respect to S, either

K ⊂ Ai0 or K ⊂
n⋃

i=0
i6=i0

Ai. Now Ai0 ,
n⋃

i=0
i 6=i0

Ai ∈ S∪ implies that K̃ ⊂ Ai0 or

K̃ ⊂
n⋃

i=0
i 6=i0

Ai, i.e. we get L ⊂ Ai0 or L ⊂
n⋃

i=0
i6=i0

Ai. Thus L is n-connected

with respect to S.

Theorem 6. If the members of the family of sets {Ki | i ∈ I} are
n-connected with respect to S and

⋂
i∈I

Ki 6= ∅ then K =
⋃
i∈I

Ki too is

n-connected with respect to S.

Proof. Let A0, A1, . . . , An ∈ S be sets, such that K ⊂
n⋃

j=0

Aj and

K ∩ Aj0 ∩
( n⋃

j=0
j 6=j0

Aj

)
= ∅. It follows that for any i ∈ I we also have

Ki ⊂
n⋃

j=0

Aj and Ki ∩ Aj0 ∩
( n⋃

j=0
j 6=j0

Aj

)
= ∅. Since Ki is n-connected with

respect to S for any i ∈ I, it follows that Ki ⊂ Aj0 or Ki ⊂
n⋃

j=0
j 6=j0

Aj for

any i ∈ I. Now let I = I1 ∪ I2 with

I1 = {i ∈ I | Ki ⊂ Aj0},

I2 = {i ∈ I | Ki ⊂
n⋃

j=0
j 6=j0

Aj}.
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If I2 = ∅ (or I1 = ∅) then the theorem is true, because Ki ⊂ Aj0 (or

Ki ⊂
n⋃

j=0
j 6=j0

Aj) for any i ∈ I, and consequently K ⊂ Aj0 (or K ⊂
n⋃

j=0
j 6=j0

Aj).

Now suppose I1 6= ∅ and I2 6= ∅. Let L1 =
⋃

i∈I1

Ki, L2 =
⋃

i∈I2

Ki. One

sees that L1 ∩ L2 ⊂
( n⋃

j=0
j 6=j0

Aj

)
∩ Aj0 and L1 ∩ L2 ⊂ K, hence L1 ∩ L2 ⊂

K ∩ Aj0 ∩
( n⋃

j=0
j 6=j0

Aj

)
i.e. L1 ∩ L2 = ∅. From

⋂
i∈I

Ki ⊂ Ki, ∀i ∈ I we infer

that
⋂
i∈I

Ki ⊂ L1 and
⋂
i∈I

Ki ⊂ L2, hence
⋂
i∈I

Ki ⊂ L1∩L2. Thus we obtain
⋂
i∈I

Ki = ∅ and this contradicts the conditions of the theorem.

Theorem 7. If for any two points x, y ∈ X there exists a set Kxy ⊂ X
which is n-connected with respect to S and satisfies x, y ∈ Kxy then the
space X is n-connected with respect to S.

Proof. Let x ∈ X be a fixed point and y ∈ X a variable point
whose range is the whole space. For any point y ∈ X let Kxy be the set,
n-connected with respect to S, the existence of which is postulated in the
theorem. Since

⋂
y∈X

Kxy ⊃ {x} 6= ∅ the previous theorem implies that

X =
⋃

y∈X

Kxy is an n-connected set with respect to S.

Remark 10. Let X be an arbitrary set and S an arbitrary family of
subset of X. For any natural number n ∈ N and any point x ∈ X the sets
K0 = ∅ and Kx = {x} are n-connected with respect to S.

In what follows, let X and Y be two arbitrary sets and S ⊂ P(X),
R ⊂ P(Y ) two given families of sets, where P(U) = {A ⊂ U}.

Theorem 8. If X is n-connected with respect to S and if there exists
a function f : X → Y such that

⋃
R∈R

R = f(X) and f−1(R) ∈ S for any

R ∈ R then Y is n-connected with respect to R.

Proof. It will be sufficient to prove that f(X) ⊂ Y is n-connected
with respect to R. Indeed, if f(X) 6= Y is n-connected then Y too is
n-connected (since it has no covering by elements of R), and whenever
Y ⊃ Z ⊃ f(X) holds, Z is also n-connected.

On the basis of this it suffices to prove the theorem for a surjective
function.
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Let now be R0, R1, . . . , Rn ∈ R and we suppose that Y ⊂
n⋃

i=0

Ri and

Y ∩Ri0 ∩
( n⋃

i=0
i 6=i0

Ri

)
= ∅. We put Si = f−1(Ri) ∈ S, i = 0, 1, . . . , n and we

get X ⊂
n⋃

i=0

Si and X ∩ Si0 ∩
( n⋃

i=0
i 6=i0

Si

)
= ∅. Since X is an n-connected

space with respect to S, it follows that X ⊂ Si0 or X ⊂
n⋃

i=0
i 6=i0

Si hence

Y = f(X) ⊂ f(Si0) = Ri0 or Y = f(X) ⊂ f
( n⋃

i=0
i 6=i0

Si

)
=

n⋃
i=0
i 6=i0

Ri. Thus the

space Y is n-connected with respect to R.
In what follows, let {Xi | i ∈ I} be a given family of sets, and for

any i ∈ I let Si ⊂ P(Xi) be given. Let X =
∏
i∈I

Xi denote the cartesian

product of the family of sets, and let

S =

{∏

i∈I

Ai | Ai ∈ Si ∪ {Xi}, |{i ∈ Ij , Ai 6= Xi}| ∈ N
}

.

One sees that x ∈ I.

Theorem 9. If the space Xi is n-connected with respect to Si for any
i ∈ I, then X is n-connected with respect to S.

Proof. For any i ∈ I, let us fix a point xi ∈ Xi. Let x = (xi) ∈
∏
i∈I

Xi

and let us denote by C the set of those points y ∈ ∏
i∈I

Xi which have

only finitely many of their coordinates different from the corresponding
coordinate of x. If A ∈ S∪ then it is easy to see that C ⊂ A if and only if
A = X. Let C̃ denote the closure of the set C with respect to the family
of sets S∪. There follows that C̃ = X. By Theorem 6 it will be sufficient
to prove that C is n-connected with respect to S∪, i.e. with respect to S.
By Theorem 7 it suffices to prove that for any point y ∈ C there exists a
subset Cy ⊂ C such that x, y ∈ Cy and which is n-connected with respect
to S. Therefore let y = (yi) ∈ C. There exist indices i1, i2, . . . , in ∈ I such
that xi = yi, i ∈ I \ {i1, . . . , in}. For any natural number k ≤ n let

Bk=

{
z=(zi)∈

∏

i∈I

Xi

∣∣∣ zie=xi`
, 1 ≤ ` < k; zik

∈Xik

zie=yi`
, k < ` ≤ n; zi=xi, i∈I\{ii, . . . , in}

}
.
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It follows that y ∈ B1, x ∈ Bn, Bk ∩Bk+1 6= ∅, k = 1, 2, . . . , n− 1 (indeed
let zi = xi, i = i`, ` ≤ k and for i ∈ I \ {i1, . . . , in}, let zi = yi, i = i`,
k + 1 ≤ ` ≤ n. With these notations we obtain z = (zi) ∈ Bk ∩Bk+1).

There exist bijective mappings hk : Xik
→ Bk, k = 1, 2, . . . , n. Let

S ′k = S ∩ P(Bk), k = 1, 2, . . . , n. It can be shown that for any set L ∈ S ′k
one has h−1

k (L) ∈ Sik
, k = 1, 2, . . . , n and consequently Bk = hk(Xik

) is
n-connected with respect to S ′k. It can easily be shown that the sets Bk

are n-connected with respect to S too. This implies that all the sets B1,

B1 ∪B2, . . . ,
n⋃

k=1

Bk are n-connected with respect to S hence Cy =
n⋃

k=1

Bk

is the set we wanted to obtain. This completes the proof of the theorem.

In what follows, we are going to determine the connected components
of the space X.

Definition 2. The set C ⊂ X is an n-connected component with re-
spect to S of the space X, if for any set C1 ⊂ X, n-connected with respect
to S, C ⊂ C1 implies C = C1.

Theorem 10. Any two noncoinciding components, n-connected with
respect to S, are disjoint.

Proof. Let K1,K2 be two components, n-connected with respect to
S, for wich K1 ∩K2 6= ∅. Thus K1 ∪K2 is also an n-connected set with
respect to S. The inclusions K1 ⊂ K1 ∪ K2 and K2 ⊂ K1 ∪ K2 imply
K1 = K1 ∪K2 = K2, and the theorem is proved.

Theorem 11. If the set K ⊂ X is n-connected with respect to S,
then the space has a component C ⊂ X, n-connected with respect to S,
such that K ⊂ C.

Proof. Let C be a component, n-connected with respect to S, for
wich C ∩K 6= ∅. It follows that C ∪K too is n-connected with respect to
S, hence C = C∪K i.e. K ⊂ C. (C is the union of those sets, n-connected
with respect to S, which have nonvoid intersection with K.)

Theorem 12. The space X can be represented as the union of its
components, n-connected with respect to S.

Proof. Let x ∈ X be an arbitrary point. The fact that the one-
point set {x} is n-connected with respect to S, implies the existence of
a component Cx such that x ∈ Cx. Hence X =

⋃
x∈X

Cx is the desired
representation.
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