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On relative connectedness 1.

By BELA RENDI (Debrecen)

In their discussion of certain optimization problems, ST. SIMONS
(1990) and S. HORVATH (1991) are using the following definition of a con-
nected set: “a subset K C X of a topological space (X,7) is connected,
if the relations K C AUB and KNANB = imply K C Aor K C B,
where A,B€7T.”

This definition of connectedness has been generalized by H. KONIG in
his conference “The Topological Minimax Theorem ” (Debrecen University,
Institute of Mathematics and Informatics, 12 October 1995). Let X be a
nonvoid set and S a family of subset of X. H. Konig defines connectedness
with respect to the family of sets S as follows: “The subset K C X is
connected with respect to the family of sets S, if for any sets A, B € S the
relations K C AUBand KNANB=0imply K C Aor K C B.”

Remarks. 1. For S = T we get back the definition used by Simons,
i.e. the classical notion of connectedness.

2. If S € S and K C X is connected with respect to the family of
sets Sp, then K is connected with respect to the family of sets S; too.

3. If for K C X there do not exist sets A, B € S for wich K C AUB
then K is connected with respect to S.

The last remark motivates the following
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Definition 1. Let X be an arbitrary set and S a given family of sub-
sets. The subset K C X is (n —1)- connected with respect to S, if for any

sets Ay, As, ..., A, € S the relations K C U A; and KﬂAmﬂ<U A)
imply K C A;, or K C U A;. Zio
17510
Remarks. 4. The notion of 1-connected set coincides with that of

connected set in the sense of Konig. The notion just introduced can also
be called chain-connectedness.

5. If §1,C S and K C X is (n — 1)-connected with respect to S, then
K is (n — 1)-connected also with respect to Sj.

6. The following examples will show that the notion just introduced
essentially depends on both the family of sets S, and the natural number
n € N.

Let X = R and let S be the set of those open intervals the length
of which is not greater than 1, and let K = (0,2) U (2,3) U {10}. One
sees that by Remark 3 K is a 1-connected set. Similarly, K is 2-connected
and 3-connected too. It can be shown that K is not 4-connected. Indeed,
let A=(0,1), B=(1/2,3/2), C = (1,2), D = (2,3), E = (19/2,21/2).
One verifies that the relations K ¢ AUBUCUDUFE and K N EN
(AUBUCUD) = () are satisfied, but neither K C F nor K C AUBUCUD
holds.

7. The notion introduced proves helpful in studying classic connect-
edness in a topological space (X, 7) by investigating k-connectedness with
respect to a topological base B. This will become clear in the sequel.

Theorem 1. If K C X is an (n— 1)-connected set with respect to the
family of sets S and n > 3, then K is also (n — 2)-connected with respect
to S, hence it is connected with respect to S.

PRrROOF. We suppose that K is (n — 1)-connected with respect to the
family of sets S. Let the sets Ay, As, ..., A,_1 € S satisfy K C U A; and
KnA,n <nL_Jl Ai> = (). Moreover, let i1 #ig, 1 < i3 <n-—1 and A,
A;,. Tt follows that we also have K C LTJ A; and KNA;, N ( U A; )

i=1
z;éz()
Since K is (n — 1)-connected with respect to the family of sets S, we see
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n n—1
that either K C A;, or K C |J A; = U A4; holds, i.e. K is an (n — 2)-
ZZ;ZIO 11;110
connected set with respect to the family of sets S.

The above examples show that the converse of the theorem is not true.

A family of sets S is said to be closed with respect to finite unions, if
A, B € § always implies AU B € S.

Theorem 2. If the family of sets S is closed with respect to finite
unions and if K C X is (n — 1)-connected with respect to the family of
sets S, then K is (k — 1)-connected with respect to the family of sets S for
any natural number k > 2.

PROOF. Suppose that K C X is an (n — 1)-connected set with re-
spect to §. It follows that K is l-connected with respect to S. Let the
k

sets Ay, Ao, ..., A € S satisfy the relations K C |J A; and K N A;,N

k i=1
( U Ai> = (). (If no such sets Ay, As, ..., Ay € S exist then K is trivially
i=1
i#io

k
(k — 1)-connected.) Let By = A;, and By = |J A;. Let the conditions

=1

i#io
K C By UB; and K N By N By = () be satisfied. Since K is connected
with respect to the family of sets S and B, By € S it follows that ei-

k
ther K C By = A;, or K C By = |J A; ie. K is (k— 1)-connected with
respect to S. ZZ;}O

0

Theorem 3. If K C X is (n — 1)-connected with respect to S and
n n
the conditions K N A; N (U Ai> =0 and K C | A, are satisfied for
7
any natural number j (1 < j < n), then there exists a natural number
io (1 <ip < n) such that K C A;,.
PRrOOF. On the basis of the given conditions we have either K C A;

n
or K C |J A; for any natural number j = 1,2,...,n. Let us suppose that

i=1
1#]
there does not exist any igp € N, 1 < ¢y < n for which K C A;,. Then,
n
for any natural number j = 1,2,...,n we obtain K C |J A;. Hence the
i=1
i#]j

conditions KﬂA]—C(U Ai>ﬂAj, Jj=1,2,...,n are satisfied, i.e. KNA; C
i=1
i#]
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(Ua)na;nk, j=12. 0 mnviewof Kna;n (U 4)=0,j =
=1 =1

i#) ]
1,2,...,n we have KNA; =0, j =1,2,...,n. From this we get K N

(U Ai> ={. Now K C |J A; implies K = () and so K C A, holds for
i=1 i=1

an;f natural number g, 1 S_io < n which contradicts our hypothesis. Thus
the theorem is proved.

In what follows, let S be a given family of sets satisfying () € S. Let
S™ denote the family of sets

SHWS"!'={AUB|AcS', BeS"'}

oo
where S = S, and let SY = [J S™. One sees that SY is closed with
=1
respect to finite unions and
S=8'cS&*c..cS"c....

Theorem 4. If K C X is connected (1-connected) with respect to 8™,
then K is n-connected with respect to S.

PROOF. Let us suppose that K is connected with respect to the family
of sets S™. Let the sets A1, Ao, ..., Api1 € S satisfy the conditions K C
n+1 n+1
U andKﬂAioﬂ<U Ai> = where 1 <4y <n+ 1.
=1 =1
% iz¢i0

n+1
Since 4;,, |J A; € 8" and K is connected with respect to 8™, it follows
i
n+1
that K C A;, or else K C |J A; and so we get that K is an n-connected
i
set with respect to S. The converse of the theorem does not hold.

Remark 8. If S is closed with respect to finite unions then S = S* =
S§?2=...=8"=... andso S = 8" = 8", ¥n € N. Hence we get that the
set K C X is connected with respect to § if and ony if it is n-connected
with respect to S for any natural number n € N, n > 2.

In what follows we are going to investigate certain properties of n-
connectedness, taking into account those of classical connectedness. In
order to supplement our notations, let us remark that the closure of a set
L C X with respect to a family of sets S will be the set L C X, defined
by L= ] S.

Sesv
LCS
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Remark 9. If L is the closure of the set L with respect to S, then L
the closure of L also with respect to S™ for any natural number n € N,
and L is the closure of L with respect to S¥ too.

Theorem 5. If K C X is an n-connected set with respect to S and
K C L C K then L too is n-connected with respect to S.

PROOF. Let Ag, A1,..., A, € S be sets satisfying L C |J A; and
i=0

LNA,N (U Ai> — 0. Now K C L implies that K C |J 4; and
=0 =0

1=

iio
KnA;,nN ( G Ai) = (). Since K is n-connected with respect to S, either
iz
K C A, or K C Lnj A;. Now A;,, Lnj A; € 8Y implies that K C A;, or
i iz
K C G A;, ie. we get L C A;, or L C G A;. Thus L is n-connected
b by

with respect to S.

Theorem 6. If the members of the family of sets {K; | i € I} are

n-connected with respect to S and (| K; # (0 then K = |J K, too is
iel i€l
n-connected with respect to S.

n
PROOF. Let Ay, A1,..., A, € S be sets, such that K C |J A; and
j=0
KnA;j,n ( U Aj> = (. It follows that for any i € I we also have
=0
j]#jo
n n
K;c U A4 and K; N Aj, N ( U Aj) = (. Since K; is n-connected with
j=0 j=0

#do
n
respect to S for any ¢ € I, it follows that K; C A;, or K; C |J A; for
j=0
J#Jo

any ¢ € I. Now let I = I; U I with
Ilz{ZEI’KlCAJO},
L={iel|K;c ] 4}

Jj=0
J#Jo
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If I, = 0 (or I; = () then the theorem is true, because K; C Aj, (or
K, c |J A)) for any i € I, and consequently K C A;, (or K C |J A4,).

7=0 7=0
J#Jjo J#3Jo
Now suppose I1 # 0 and Io # (0. Let Ly = |J K;, L = |J K;. One
= i€l

sees that L1 N Ly C ( U Aj) NAj, and L1 N Ly C K, hence Ly N Ly C
j=0

J#Jo
KnAjn ( U Aj) ie. LN Ly = 0. From N K; C K;, Vi € I we infer
J=0 i€l
J#Jo
that (| K; C Ly and [ K; C Lo, hence (| K; C L1 N Ly. Thus we obtain
iel el el

(N K; = 0 and this contradicts the conditions of the theorem.
el

Theorem 7. If for any two points x,y € X there exists a set K, C X
which is n-connected with respect to S and satisfies x,y € K, then the
space X is n-connected with respect to S.

PROOF. Let x € X be a fixed point and y € X a variable point
whose range is the whole space. For any point y € X let K, be the set,
n-connected with respect to S, the existence of which is postulated in the
theorem. Since [\ K,y D {z} # 0 the previous theorem implies that

yEX
X = U K,y is an n-connected set with respect to S.

yeX

Remark 10. Let X be an arbitrary set and S an arbitrary family of
subset of X. For any natural number n € N and any point x € X the sets
Ko =0 and K, = {x} are n-connected with respect to S.

In what follows, let X and Y be two arbitrary sets and S C P(X),
R C P(Y) two given families of sets, where P(U) = {A C U}.

Theorem 8. If X is n-connected with respect to S and if there exists

a function f : X — Y such that |J R = f(X) and f~'(R) € S for any
ReR
R € R then Y is n-connected with respect to R.

PRrROOF. It will be sufficient to prove that f(X) C Y is n-connected
with respect to R. Indeed, if f(X) # Y is n-connected then Y too is
n-connected (since it has no covering by elements of R), and whenever
Y D Z D f(X) holds, Z is also n-connected.

On the basis of this it suffices to prove the theorem for a surjective
function.
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Let now be Rg, R1,..., R, € R and we suppose that Y C |J R; and
i=0

YNR;, N ( CJ Ri) =0. Weput S; = f71(R;) €S,i=0,1,...,n and we
i
get X C Lnj Si; and X N.S;, N < Lnj S,-) = (). Since X is an n-connected
i=0 iZ0
space with respect to S, it follows that X C S;, or X C G S; hence
i
Y = f(X) C f(Si) = Ry, or Y = f(X) C f(f)o 51) = ‘OO Ri. Thus the

iio i£io
space Y is n-connected with respect to R.
In what follows, let {X; | i € I} be a given family of sets, and for

any ¢ € I let S; C P(X;) be given. Let X = [] X; denote the cartesian
el
product of the family of sets, and let

S = {HAi | A; € SiU{X,Y, (i €I, Ay # X, EN}.

iel
One sees that ¢ € 1.

Theorem 9. If the space X; is n-connected with respect to S; for any
i € I, then X is n-connected with respect to S.

PROOF. Foranyi € I,let usfix apoint z; € X;. Let x = (x;) € [[ X;
il
and let us denote by C the set of those points y € [[ X; which have
i€l

only finitely many of their coordinates different from tehe corresponding
coordinate of x. If A € SY then it is easy to see that C' C A if and only if
A = X. Let C denote the closure of the set C with respect to the family
of sets SY. There follows that C' = X. By Theorem 6 it will be sufficient
to prove that C' is n-connected with respect to SY, i.e. with respect to S.
By Theorem 7 it suffices to prove that for any point y € C' there exists a
subset C'y, C C such that =,y € C,, and which is n-connected with respect
to S. Therefore let y = (y;) € C. There exist indices i1, 2, ...,i, € I such
that ©; = y;,i € I\ {i1,...,in}. For any natural number k < n let

By= {z:(zi)e H X;

i€l

23, =i, 1 < ! < k‘; Zig EXik
Zi, =Y,y k<l<mn; zi=x; i€l\{is,...,in}["
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It follows that y € By, © € By, Be N Bry1 #0, k=1,2,...,n— 1 (indeed
let z; =z, i = ip, £ < k and for i € I\ {i1,...,in}, let z; = y;, @ = iy,
k+1 < /{¢<n. With these notations we obtain z = (z;) € By N B41).
There exist bijective mappings hy : X;, — B, k = 1,2,...,n. Let
S, =SNP(By), k=1,2,...,n. It can be shown that for any set L € S;,
one has hy'(L) € S;,, k = 1,2,...,n and consequently By = hy(X;,) is
n-connected with respect to Sj.. It can easily be shown that the sets By,
are n-connected with respect to S too. This implies that all the sets By,

n n
By UBs,..., |J By are n-connected with respect to S hence C,, = |J By
k=1 k=1
is the set we wanted to obtain. This completes the proof of the theorem.
In what follows, we are going to determine the connected components
of the space X.

Definition 2. The set C' C X is an n-connected component with re-
spect to S of the space X, if for any set C; C X, n-connected with respect
to §, C' C C; implies C' = (.

Theorem 10. Any two noncoinciding components, n-connected with
respect to S, are disjoint.

PrROOF. Let K1,K5 be two components, n-connected with respect to
S, for wich K1 N Ky # (). Thus K1 U K5 is also an n-connected set with
respect to §. The inclusions K1 € K7 U Ky and Ky C Ky U Ko imply
K1 = K; U Ky = Ky, and the theorem is proved.

Theorem 11. If the set K C X is n-connected with respect to S,

then the space has a component C C X, n-connected with respect to S,
such that K C C.

PrROOF. Let C be a component, n-connected with respect to S, for
wich C N K # (). It follows that C'U K too is n-connected with respect to
S, hence C = CUK i.e. K C C. (C is the union of those sets, n-connected
with respect to S, which have nonvoid intersection with K.)

Theorem 12. The space X can be represented as the union of its
components, n-connected with respect to S.

PRrROOF. Let € X be an arbitrary point. The fact that the one-
point set {x} is n-connected with respect to S, implies the existence of
a component C, such that z € C,. Hence X = |J C, is the desired
representation. z€X
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