A generalized model of the Latin square design II.
By LASZLO TAR (Debrecen)

4. Introduction to the second part

In the first part of our paper [6] we gave a natural generalization of the usual
model of the Latin square design in the third paragraph with the formulae (i2)
or (41). Then we proved theorems (1, 1°, 2, 3, 4, 5) valid in the new model. From
these Theorem 1, Theorem 1” and Theorem 2 are generalizations of theorems which
are known in the usual model. Theorems 3, 4 and 5 (criteria) are in connection
with the testing of statistical hypotheses. From these theorems one can see that
the generalized assumption — the decomposition (12) — which corresponds to
the initial condition of the usual Latin square design, is a fundamental requirement
for each theorem.

For our generalized model the validity of the usual restrictions
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was not generally assumed. One can find the meaning of the quantities 4;, v; and
7 in formula (1) in the first part of our paper. We took these assumptions into
consideration only in the proofs of Theorem 1 and Theorem 1. (The latter thcorem
can be obtained from Theorem 1.) The proof of Theorem 1 is based upon the for-
mula (6), which may be proved by the earlier restrictions for the quantities 1,, v,
and 7y,. y :

We wish to remark that the validity of the usual restrictions for the sums of
the quantities corresponding to the row-, the column — and the treatment — effects
may be attained through the suitable transformations of the quantities implied
in the expectations of random variables. Therefore we did not assume the validity
of this relations in the first part of our paper.

The relations 3 A= 3 v;= 3 y,=0 simplify the proofs of theorems 2, 3,
i=1 j=1 h=1

4 and 5 since on the basis of these we can realize for example the equalities PA =0,

v*P=0 and Pl =IP=0. (The definition of P is given by formula (7), the defini-

tions of the vectors A and v and the matrix I" can be found after (12). Here 0 denotes

the m-dimensional zero column vector and O is the zero square matrix of order m.

Assuming the restrictions for the quantities /;, v; and y, the contents of theo-
rems 3, 4 and 5 do not change, but their formulations will be given as follows.
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Theorem 3”. If the expectation of the matrix & exists and M(E)=pa,a; +lLag +
+ayv*+ T, further a, is the righteigenvector of P which corresponds to the eigenvalue
1, then M (n,—8)=0 if and only if A=0. (n,—{ is defined by (11).)

Theorem 4”. If M(E) exists and M(E)=paya; +Aas +a,v*+ I, where a, is the
right-eigenvector of the matrix P which belongs 1o its eigenvalue 1, so M(n,—{)=0
(here m,—§ — the matrix of discrepancies between columns — is given also by (11))
if and only if v=0.

Theorem 5”. If the Latin square is a total symmetric, symmetric or cyclic one,
moreover if M (&) exists and has the decomposition M (&)=payag +)a; +a,v* +I" and
Pao=ao.) then M(q —8)=O0 if and only if T =0. (The meaning of n,—{ is given
by (11).

According to Theorem 3” the null hypothesis H;, that the column vector of
the row-effects is the zero vector (this means that row-effects do not exist) is equi-
valent to the null hypothesis H}, according to which the expectation of the matrix
of the discrepancies between the rows is the zero matrix.

On the basis of Theorem 4”, instead of the hypothesis H/; according to which
the column vector of the column-effects is the zero vector, that is according to which
there are no column-effects, we can take into consideration the hypothesis Hg
which means that the expectation of the matrix of the discrepancies between columns
equals the zero matrix.

Theorem 5” contains the following equivalent hypotheses: Hp, according to
which the matrix of the treatment-effects is the zero matrix, that is the treatment-
effects do not exist, the equivalent hypothesis Hy, is the statement that the expecta-
tion of the matrix of the discrepancies between treatments equals the zero matrix.

In the second part of our paper we made an attempt at the reversion of Theo-
rem 2. We wanted to prove that in the case of special Latin squares from the fact
that the expectation of the random error matrix is the zero matrix, follows the
decomposition (12) of the expectation matrix. We could not show the reverse of
Theorem 2 and what is more, we gave a counter example in the case m=3 (m is
the order of the square matrices and the Latin squares) of the cyclical Latin square
design (see (23)). In this example we used, first of all, the method of minimum diadical
representation of a matrix — this can be found in Egervary’s paper [5] — for the
determination of the general solution of the matrix equation (36). In the second
part (Paragraph 5) the rearrangement of the forms of the equation (36) correspond-
ing to the special Latin square designs — representation with the direct product —
is a very essential step, namely we determine the general solution of the matrix equa-
tion (36) by the diadical decomposition of the rearranged coefficient matrix in which
the direct product occurs.

In the second part of our paper we apply, on the one hand, the notations of
the first part and, on the other hand, we introduce some additional notations.

® is the operational sign of the direct product. The direct product of the matrices
A:"a‘.’"i'jglr_m and B=!|bﬂﬁk_l,ﬁ is defined with the equality

ARB = [|Abylli,i1=1,»:
&/, 2, ... hypermatrices.
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Hypdet of is the hyperdeterminant of the hypermatrix o/. This is the deter-
minant of the matrix, the elements of which are the blocks of the hypermatrix.
(For example the hyperdeterminant of the hypermatrix o =[|A;l; ;-,23, Whose
blocks are commutable in pairs, is

Hypdet of = A}; App Ags+ A Aps Ay + A3 Ay Age —
= An Azz Aal i Au Aza Aae i Au Azl Aas .

where A;; is a square matrix of order m.)
In the second part of our paper we continue the numbering of the formulae
and the expressions with 61.

5. Decomposibility of M (¢)

We shall show — using certain results of Egervary’s papers [3], [4] and [5] —
that in our generalized model from the assumption that the expectation of the ran-
dom error matrix is the zero matrix, the decomposibility of the form (12) does
not follow even if m=3 and the Latin square is cyclic, namely it is given by (23).

Further, we shall first write down the forms (37), (38) and (39) of the matrix
equation (36), which correspond to special (totally symmetric, cyclic and symmetric)
Latin squares in terms of the direct products of the matrices using the following
well-known theorem.

The matrix equation > 3 c,,A*XB"=F, where A is a square matrix of order

uov
m, B is a square matrix of order 7, X and F are matrices with m rows and # columns,
the quantities c,, are constants, is equivalent to the system of equations with a direct
polynomial coefficient

(61) [S 3. A@B)]x=1,

where x and f are mn-dimensional column vectors of the column vectors of the
matrices X and F respectively, which will be written as hypervectors later.

Before the application of this theorem the matrix equations (37)—(39) will
be rewritten in a form more favourable for us, multiplying each one by m and taking
into consideration the equalities

E-P)ME)E-P)+PM@E)P = ME)-PME)-ME)P+PME)P,
A"=Q"=E and introducing the notation
K[M(E)] = 2mPME)P —mPM(E)—mME)P+(m—1) M(E):

62) KIME)- S @MEQ =0,
63) ) —2’ QME Q") =0,
64) K[M(é)]—;_z-: AIME)A' = 0.
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If the m-dimensional column vectors of M (§) are m,, m,, ..., m, and 0 is the m-
dimensional zero column vector, then (62)—(64) can be written by the direct product
on the basis of the formula (61) using the notation

K(®) =2mP@P-mPQE—-mE®@P+(m—1)EQE:

m, 0
©2) K(@)- 2 2's@)] ["”]= o
m,, 0
m,) (0
63) K@)-3 v (=0,
m,, 0
m, ) 0
(64) [k@)-3 aemy]|™| =[]
m,, 0

Now let m=2. Then the Latin squares (14) are totally symmetric (cyclic). In
this case 2=0Q* and the equation

(65) [4PRP-2(PRE+E®P)+EQE-Q®Q) [::] = [3]

is given according to (62") or (63"), where each of the matrices is a square matrix
of order 2 and the vectors are 2-dimensional.

On the basis of the definition of the direct product for the coefficient matrix
of the system of equations (65) we can easily get the hypermatrix

(O O
i
where O is the zero matrix of order 2. This means that (65) is satisfied by any kind

of 4-dimensional hypervectors [:"] (The unknowns are the elements of M(§).)

From this it follows in the case of m=2 that the form (37) of (36) is satisfied by any
kind of M(E) not only by the matrix

M(E) = ua,ag +7a; +8,v* +T.

(Here-evédy vector is 2-dimensional and I’ is a square matrix of order 2.)
Consequently, in the case of m=2 the representation (12) of M(Z) does not
follow from (36), that is the inverse statement of Theorem 2 is not true.
In the case of m=3 let the Latin square be cyclic, that is let us consider the
Latin square (23). Then — from (63") — the matrix equation (36) written by direct
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product is

m, 0
(66) [(PRP-3(PRE+EQP)+2EQE-Q@Q-Q*Q@0% Im,| = [0].
m, 0

where the square matrices are of order 3 and the vectors are 3-dimensional. The
coefficient matrix — denoted by # — of the system of equations (66) is a cyclic
hypermatrix which consists of the square matrices B;=E—P, B,=2P—E—Q and
B,=2P—-E—Q?2 of order 3, that is

B, B, By

#=|B; B, B,|.
_ B; B, B,

Since B} =B,;, therefore the cyclic hypermatrix % is symmetric, thus #*=4. It is
clear, that the non-trivial linearly independent solutions of the homogeneous system
of linear equations (66) are the right-cigenvectors of # corresponding to its zero
eigenvalue. So the general solution of (66) is a linear combination of the right-eigen-
vectors. The general solution of the original matrix equation, that is the general
solution of (63) in the case m=3, can be obtained from the general solution (66)
by the rearrangement of the hypervectors into square matrices. The fact that the
coefficient matrix & of the system of equations (66) is symmetric makes the deter-
mination of the eigenvectors easier, since in this case we can take the following
well-known theorems into consideration.

Theorem I. The canonical representation of a real symmetric matrix A is
A= 21*(""“:1* o U, U ),

where Ay is that eigenvalye of A to which the right-eigenvectors w,, ..., W, and the
left-eigenvectors Wy, ..., Uy, belong.

Theorem II. The minimal equation of a real symmetric matrix has only single
real roots. :

The effective determination of the canonical form of a matrix A is performed
in three steps.

1. First we calculate the eigenvalues (characteristic roots) 4,, ..., 4, of A by
solving the characteristic equation Det (EA—A)=0. If alco multiple characteristic
roots were obtained then we should examine whether the minimal equation has
only single roots. .

2. In the second place we give the Lagrange polynomials Z,(z2), ..., L,(z) cor-
responding to the single roots of the minimal equation (these are interpolating poly-
nomials on the places /;, ..., 4,) and in this way the Lagrange matrix polynomials
L,(A), ..., L,(A) can be obtained. Then '

A= A LA

k=1
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3. As a third step we determine the eigenvectors corresponding to the eigen-
values 4, (k=1, 5) with the method of diadical decomposition of the matrices L, (A).
The diadical decomposition of L,(A) provides just as many eigenvectors as the
multiplicity of 4,.

Remark 7. The notion of a diad and the diadical representation (decomposi-
tion) occur in [5]{formulae (1), (2) on page 14).

Remark 8. We determine the eigenvalues of # on the basis of the theorem
concerning the calculation of the determinant of a hypermatrix ([4], page 214).

According to Theorem Il from the symmetry of # we get that the minimal
equation has only single roots. Therefore no separate discussion of this problem
is needed.

Remark 9. In [3] Egervary generalized the canonical representation of a matrix
for the case of a matrix function.

Remark 10. The method on the basis of which we give the matrix L,(A) with
a minimal number of diads can be found in Egervary’s paper [5] in detail. (See
formulae (9.1) and (11).) The eigenvectors will be determined by this method.
1’. First calculate the eigenvectors of # from its characteristic equation
Det (£4—2)=0. It is easy to see that the square hypermatrix §1—4% of order 9
is cyclically built from the matrices (blocks) of order 3 A,=(A—1)E+P, A,=E+
+Q—-2P and A;=E+Q?-2P, where E is the identity matrix, £2 is the primitive
cyclic matrix of order 3, P is given by (13) and ¢ is the identity matrix of order
9, that is
A A; Ay
Jl-ng: Aa A1°Ag .
A, A3 A

Since A,, A, and A; are also cyclic matrices, §A—# consists of blocks which are
commutable in pairs. The determinant of such a matrix can be calculated on the
basis of the formulae

Det (£A—%) = Det [Hypdet (£4—B)]
and
It is easily seen, that A}=(2*-312431—-1)E+(322-31+1)P, or

a, as a,

.
Ay =la, a, a,
a, a, a,

with the notations a1=?t’—23.’+2).—% and a,=1’——l+%;

A = 2E+43Q+302—8P,
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that is
% W 1
Al =— -2 1}
3 g
Aj=AY
that is
b, by b,| .
_3A1A2A3= bg bl bg N
and here b,=2—24, by=A1—1. Using these formulae
€ C C
Hipdet (A—%) = |ca ¢, €.,
€y C G

where ¢,=A%—21%, c,=A22 Finally
Det (8A—B) = A'(A2—64+9).

From this it follows that 1,=0 is a septuple eigenvalue of 2 while 1,=3 is a double
eigenvalue. The minimal equation of # has only single roots, since & is symmetrical.
(Theorem 11.)

2’. From the minimal polynomial 4(4)=(Ai—3)4 the Lagrange polynomial
L,(z) corresponding to the eigenvalue 2,=0 is

and the Lagrange matrix polynomial belonging to the eigenvalue 4,=0 is

L(#)=8-54,

whereas the Lagrange matrix polynomial belonging to the eigenvalue A,=3 is
Ly(®) = %Q’.

Finally the matrix & can be written by the Lagrange matrix polynomials in the form

67) =0 e—%a]a-s-%a.

3’. We must still determine the eigenvectors corresponding to the eigenvalues 0
and 3 to give the canonical representation of #. Though the nontrivial solutions
of the system of equations (66) are only the eigenvectors belonging to the eigen-
value 0, nevertheless we calculated the eigenvectors corresponding to the eigenvalue
3 for completeness. (The latter eigenvectors are no solutions of (66).) The eigen-
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vectors are obtained by the diadical decompositions of the matrix polynomials
L,(%#) and L,(#) ([5), formulae (9.1) and (11).)
The diadical decomposition of L,(#) is:

L(#) = E; u,ug,,
where
[ 0
16
2
“1--=& —'; > ‘g
e 2 12

NN -0 O

—

=15

68) wu, =

Ll O T o T R e |

o
[

B st st et s B O OO

_iTm
-2

ug; 3

I = W = i O O O O

0
0
0
-] 0
: 0
3
1
-2

O OO 0O0OOQ

1

On the other hand, the diadical decomposition of L,(#) — in accordance with
the fact that /,=3 is a double eigenvaiue — is L,(#)=u, u3; + U,

2 0

-1 1

= He

(69) u —l-'?'-q-i u —ll_ —;

= 6 T ’ 22_7 =

2 0

-1 -1

2 0

—1 1

If we substitute these decompositions into (67), then the canonical representation
of # is

L) 2
B=0- 3 u,u,+3- 3 uyuy,
p=1 q=1

where the eigenvectors are given by (68) and (69).
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From these it follows that the general solution of (66) is
7
(70) m = 2; Cplps
’-

where the quantities g, (p=1, 7) are constants, u,, (p=1, 7) are given by (68), m
is a 9-dimensional column vector, which is composed of vectors m;, m; and m,
(these are 3-dimensional column vectors of M (E)).

If we rewrite the equation (66) into the form (63) and consider the case m=3,
then we get the equation

1) I(E—P)M(E)(E—P)+3PMEP+ME)+
+OME)+MENL =0

in which each of the matrices is a square one of order 3.
From the general solution (70) of the equation (66) after rearrangement the
general solution of (71) is

(12) ME = 3 5,M,,
p=1

the quantities J, are constants and the matrices M, (p=1, 7) from (68) are

7.1 4 0-=5 2 ¥ b3 04 1
M =1 1-2|, M=[16 2 3|, My=|p -2 1|, M=o 1 1,
et gy - A Tt "I 0P
00 =) 00 1 001
M,=[05 1|, Mg=[o0 —2|, M,=]0 0 1].

01 2 03 1 001

Remark 11. The matrices M, (p=1, 7) are indeed solutions of the equation
(71) which can be ascertained by substitutions.
The general solution of matrix equation (71) differs from the expected solution

M%) = pasag +hag +a,v* +T,

for which it has been proved in Theorem 2 ([6]) that it is a solution of the equation
(36). This means that in the case m=3 with a cyclical Latin square the decomposi-
tion (12) of M(&) does not follow from that form (38) of the equation (36), which
belongs to the cyclical case, that is the decomposition (72) can be obtained from
(38). Consequently the inverse statement of theorem 2 ([6]) is not true even if m=3
and the Latin square design is cyclic, though our generalized model (see [6] Para-
graph 3) — on the basis of the theorems proved in Paragraph 3 — seems to be a
natural generalization of the usual model.
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