On the monotone classes of maximal limit-logic M

By ÉVA GÁRDOS (Debrecen)

1. Introduction

The notion of limit-logic was introduced by S. V. YABLONSKI [13] in 1958. The necessity of this notion arose in the study of finite-valued logics [12] and infinite-valued logics [14]. In particular, the infinite-valued logics contain as many as continuum functions, thus, working with these logics is very difficult. Therefore the necessity of a logic was recognized which contains countably many functions and can be regarded, from a certain point of view, as the model of all k-valued logics. Contrary to the many- and the infinite-valued logics, the model of limitlogics has many realizations, or rather there are continuum, pairwise non-isomorphic limit-logics [1]. In the first place the equivalent classes are examined, and, at the same time, the question arises with respect to every partial ordering, whether or not there is a maximal and a minimal element. The best known and simplest equivalence is isomorphism. From the references (6, 8, 13) it is well-known that there are as many as continuum, pairwise non-isomorphic limit-logics. It has been proved [1] that no maximal and minimal elements exist under the well-known algebraic ways of ordering. The partial ordering introduced in [1, 11] in a logical way also decomposes the set of limit-logics into equivalence classes, and under such a partial ordering there are already maximum and minimum limit-logics. Such a logic is maximal to the extent that it contains every other limit-logic, and is minimal if it is contained in every limit-logic. S. V. Yablonski [12] examined the pre-complete classes of the k-valued logic. These classes have been investigated by him and many others [4, 5, 7, 14, 18].

The aim of the paper is to examine certain classes studied by Yablonski in a maximal limit-logic M with help of the method given in [12]. In the k-valued logic there are finite pre-complete classes. In our paper we shall prove that in the limit-logic M there are continuum monotone pre-complete classes. We suceeded in generalizing Yablonski's concept of monotone pre-complete classes and we have reached the following results:

a) in a limit-logic M the monotone function class belonging to a linear order r is pre-complete.

b) a limit-logic M contains continuum pre-complete classes. Moreover, the number of the pre-complete monotone function classes with respect to linear order is continuum.

2. Elements

Definition 2.1 [4]. Let E_k be an arbitrary set of k elements. Denote by P_k^n (n=0,1,2,...) the set of functions with n variables, with the variables and values taken from the set E_k . The function set $P_k = \bigcup_{n=0}^{\infty} P_k^n$ will be called d-valued logic. Without loss of generality we suppose $E_k = \{0,1,...,k-1\}, k \ge 2$.

Definition 2.2 If the finite set E_k in Definition 2.1 is replaced by the countably infinite set, E_{\aleph_0} , the function-set P_{\aleph_0} will be called the infinite-valued logic. In this paper, E_{\aleph_0} will always be the non-negative integers, that is

$$E_{\aleph_0} = \{0, 1, 2, ..., n, n+1, ...\}.$$

Definition 2.3 [6]. The subset P of the infinite-valued logic (P_{\aleph_0}) will be called limit-logic, if

a) in the function-set P there are countably many functions,

b) for every natural number k ($k \ge 2$) there exists a function-set A_k ($A_k \subseteq P$), which can be mapped onto the k-valued logic. Let P be a limit-logic, ε a subset of $E_{\aleph_0}(\varepsilon \subseteq E_{\aleph_0})$ and $g(x_1, \ldots, x_n) \in P$.

Definition 2.4. Put

$$g_{\varepsilon}(x_1, ..., x_n) = \begin{cases} g(x_1, ..., x_n) & \text{if } x_1, ..., x_n \in \varepsilon^n(\varepsilon x ... x \varepsilon), \\ 0 & \text{otherwise.} \end{cases}$$

The function $g_{\varepsilon}(x_1, ..., x_n)$ will be called the restriction of the function $g(x_1, ..., x_n)$ to ε .

Definition 2.5. We say that the function set A_k is the model of the k-valued logic on the set $\varepsilon_k = \{e_0, e_1, \dots, e_{k-1}\}$ $(k \ge 2)$, $(\varepsilon_k \subset E_{\aleph_0})$, if in the set $[A_k]$ there is such a function $f(x_1, x_2)$ that

$$f_{\varepsilon_k}(x_1, x_2) = \begin{cases} e_{i+1} & \text{if} \quad (x_1, x_2) \in \varepsilon_k \times \varepsilon_k \quad \text{and} \quad \max(x_1, x_2) = e_i, \\ & \text{where} \quad 0 \leq i \leq k-2; \\ e_0, & \text{if} \quad (x_1, x_2) \in \varepsilon_k \times \varepsilon_k \quad \text{and} \quad \max(x_1, x_2) = e_{k-1}. \end{cases}$$

It is easy to see that if A_k is the model of the k-valued logic on the set ε_k , then in the function set A_k there is at least one function-set, whose restriction to the set ε_k is isomorphic with the k-valued logic.

Definition 2.6 [2]. The system of the finite subsets ε_k will be called the domain of the function-set A and we denote it by T_A . The set $\varepsilon_k = \{e_0, e_1, \dots, e_{k-1}\}$ belongs to the domain T_A iff it is model of the k-valued logic on the set ε_k .

Definition 2.7 [2]. The limit-logic P is called increasing, if its domain T_P contains an increasing sequence of the finite sets

$$(\Pi = \{\varepsilon_2, \varepsilon_3, ..., \varepsilon_k, ...)\}\ (\varepsilon_i \subset \varepsilon_{i+1} \ (i = 2, 3, ...)).$$

Theorem 2.1 [2]. The limit-logic is maximal if and only if it is increasing.

The notions of superposition, closure and pre-completeness are defined as in [12].

3. § The limit-logic M

We shall define a representation M of the maximal limit logics which we are going to examine in detail:

Define the function $\mu_k(x_1, x_2) \in P_{\aleph_0}(k \ge 2)$ as follows:

$$\mu_k(x_1, x_2) = \begin{cases} e, & \text{if } (x_1, x_2) \in \varepsilon_k \times \varepsilon_k & \text{and } \max(x_1, x_2) = e - 1, \\ & \text{where } 1 \leq e - 1 \leq k - 1; \\ 1, & \text{if } (x_1, x_2) \in \varepsilon_k \times \varepsilon_k & \text{and } \max(x_1, x_2) = k \\ 0, & \text{otherwise.} \end{cases}$$

Let M_k denote the closure of the function-set

$$\{\mu_k(x_1, x_2)\}([\{\mu_k\{x_1, x_2)\}])$$
 and $M = \begin{bmatrix} \bigcup_{k=2}^{\infty} M_k \end{bmatrix}$.

Remark 3.1. It is easy to see that M_k is isomorphic with P_k and M is a limit-logic.

Remark 3.2. As an illustration we shall give the functions $\mu_2(x_1, x_2)$, $\mu_3(x_1, x_2)$ and $\mu_k(x_1, x_2)$.

x_2	0	1	2	3	4		k-1	k	k+1		
0	0	0	0	0	0		0	0	0		
1	0	2	3	4	5		k	1	0		
2	0	3	3	4	5		k	1	0		
3	0	4	4	4	5		k	1	0		
4	0	5	5	5	5		k	1	0		
											$\varepsilon_k = \{1, 2, \dots, k\}$
								٠.			
								٠.		•••	
k-1	0	k	k	k	k		k	1	0		
k	0	1	1	1	1		1	1	0		
k+1	0										
:	0				0				0		
:	:				:				:		
				μ_k	x_1 ,	x_2					

Theorem 3.1. M is a limit-logic.

Proof. By Definition 2.3 we have to show:

- a) the function set M is countable, since $M = \left[\bigcup_{k=2}^{\infty} M_k \right]$, a countable union of countable sets,
- b) for every natural number k ($k \ge 2$) there is a function subset in M which can be mapped onto the k-valued logic.

This statement follows from the fact that the functions $\mu_k(x_1, x_2)$ can be brought into one to one correspondance with the $W_k(x_1, x_2)$ Webb functions [5]. Furthermore, let $\varepsilon_k \subseteq E_{\aleph_0} \setminus 0$ be a subset, for which we suppose without loss of generality $\varepsilon_k = \{0, 1, ..., k-1\}$.

Remark 3.3. The functions of the limit-logic have the property $f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n) = 0$.

Theorem 3.2. M is a maximal limit-logic.

PROOF. The limit-logic M being maximal follows immediately from the fact that M is increasing (according to Definition 2.7), a necessary and sufficient condition by Theorem 2.1 for the limit-logic M to be maximal.

4. The monotone function classes of the maximal limit-logic M

In this paragraph we examine the monotone classes of the maximal limitlogic M. We prove that the monotone classes of the M are similar to the monotone classes of P_k and their cardinality is continuum. Moreover, in the limit-logic M are continuum monotone pre-complete classes, while in the k-valued logic there is but a finite number of them.

Remark 4.1. Of course we shall speak about the elementwise restriction $M_{\varepsilon_{\gamma}}$ of the function class to ε_{γ} to. This means no restriction as to the validity of the theorems. We define the set ε_{γ} , starting from a function $f(x_1, ..., x_n) \in M$, as follows:

1. Let a denote the maximum in the range of

$$f(x_1, ..., x_n).$$

2. Let β be the largest value, in some *n*-tuple, on which the function is not equal to 0. $(f(..., \beta, ...) \neq 0)$.

3. Let γ max (α, β) , $\varepsilon_{\gamma} = \{1, 2, ..., \gamma\}$ $(\gamma \leq k)$.

Definition 4.1. $\tilde{\alpha} \leq \tilde{\beta}$, if $\alpha_i \leq \beta_i$ where α_i , $\beta_i \in E_k$ (i=1, 2, ..., n). We say that the function $f(x_1, ..., x_n) \in P_k(P_{\aleph_0})$ is monotone with respect to the linear ordering if for an arbitrary pair $\tilde{\alpha}$, $\tilde{\beta} \in E_k$ (E_{\aleph_0}) $\tilde{\alpha} \leq \tilde{\beta}$ implies $f(\tilde{\alpha}) \leq f(\tilde{\beta})$.

Remark 4.2. Let \prec denote the ordering 1 < 2 < 3 < ... < n < n + 1 < ... Let be 0 a distinguished element in this ordering incomparable with any element of $E_{\aleph_0} \setminus 0$.

Denote by $\mathcal{M}_{\varepsilon_k}^r$ the set of the all monotone functions with respect to the order

$$r$$
 over ε_k . Then let $\mathcal{M}^r = \bigcup_{k=2}^{\infty} \mathcal{M}_{\varepsilon_k}^r$.

We shall consider an arbitrary linear order and we shall prove, that the monotone functions with respect to this order are pre-complete, and different pre-complete classes belong to different linear orders.

Remark 4.3. Let $\mathcal{M}_{\varepsilon_k}^r$ be the set of all the functions $f(x_1, ..., x_n)$ from the set \mathcal{M}^r of monotone functions with respect to \prec_r for which $f(x_1, ..., e, ..., x_n) = 0$ if $e \in \varepsilon_k$ is true.

Theorem 4.1. The function classes $\mathcal{M}_{\varepsilon_k}^r$ and \mathcal{M}^r are closed.

PROOF. Replace the variables by all the functions, which are monotone by \prec_r . Let

$$f_{\varepsilon_k}(x_1, x_2, ..., x_n) = g_{\varepsilon_k}(g_{\varepsilon_k, 1}(x_1, ..., x_n), g_{\varepsilon_k, 2}(x_1, ..., x_n), ..., g_{\varepsilon_k, m}(x_1, ..., x_n))$$

where the functions g_{ε_k} , $g_{\varepsilon_k,1}$, ..., $g_{\varepsilon_k,m}$ are monotone according to \prec_r . We shall show that the function f is monotone according to \prec_r . Let us consider two sequences $\tilde{\alpha}$ and $\tilde{\beta}$, so that $\tilde{\alpha} \prec_r \tilde{\beta}$. It is clear that by the condition

$$g_{\varepsilon_k,i}(\tilde{\alpha}) \leq_r g_{\varepsilon_k,i}(\tilde{\beta}), \quad (i = 1, 2, ..., m)$$

holds, therefore the sequence

$$\{g_{\varepsilon_k,1}(\tilde{\alpha}), g_{\varepsilon_k,2}(\tilde{\alpha}), ..., g_{\varepsilon_k,m}(\tilde{\alpha})\}\$$
 and $\{g_{\varepsilon_k,1}(\tilde{\beta}), g_{\varepsilon_k,2}(\tilde{\beta}), ..., g_{\varepsilon_k,m}(\tilde{\beta})\}\$

are such that

$$\{g_{\varepsilon_k,1}(\tilde{\alpha}), g_{\varepsilon_k,2}(\tilde{\alpha}), ..., g_{\varepsilon_k,m}(\tilde{\alpha})\} \leq_r \{g_{\varepsilon_k,1}(\tilde{\beta}), g_{\varepsilon_k,2}(\tilde{\beta}), ..., g_{\varepsilon_k,m}(\tilde{\beta})\}.$$

From here we have, because of the monotony of the function g_{ϵ_k}

$$f_{\varepsilon_k}(\tilde{\alpha}) = g_{\varepsilon_k}(g_{\varepsilon_k,1}(\tilde{\alpha}), ..., g_{\varepsilon_k,m}(\tilde{\alpha})) \leq_r g_{\varepsilon_k}(g_{\varepsilon_k,1}(\tilde{\beta}), ..., g_{\varepsilon_k,m}(\tilde{\beta})) = f_{\varepsilon}(\tilde{\beta}).$$

So, this function class is invariant to superposition, therefore, it is a closed class. This completes the proof.

Denote by $C_{\varepsilon_k}^j(x)$ the next function:

$$\begin{array}{c|c} x & 0 & 1 \dots k & k+1 \dots \\ C^j_{\varepsilon_k} & 0 & j \dots j & 0 & \dots \end{array}$$

Remark 4.4. If the order $<_r$ is the natural ordering 1 < 2 < 3 < ... we get the usual class (\mathcal{M}^1) of monotone functions. The ideas of the proofs of the next few theorems and lemmas are due to Yablonski's paper [12].

Theorem 4.2. The class of monotone functions is generated by the functions: $\max_{\varepsilon_k} (x_1, x_2)$, $\min_{\varepsilon_k} (x_1, x_2)$, $c_{\varepsilon_k}^j(x)$ (j=1, 2, ..., k) and the $m_{\varepsilon_k}^i(x)$ (i=2, ..., k) all of $\mathcal{M}_{\varepsilon_k}^1$, where

$$m_{\varepsilon_k}^i(x) = \begin{cases} 1, & \text{if} \quad 1 \leq x < i \quad \text{and} \quad x \in \varepsilon_k; \\ k, & \text{if} \quad k \geq x \geq i \quad \text{and} \quad x \in \varepsilon_k; \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. Define the function $Z_{\varepsilon_k}^{\hat{\alpha},\beta}(x_1,\ldots,x_n)$ as follows:

$$Z_{\varepsilon_k}^{\tilde{\alpha},\beta}(x_1,\ldots,x_n) = \begin{cases} \beta, & \text{if } 1 \leq x < i \text{ and } x \in \varepsilon_k; \\ k, & \text{if } k \geq x \geq i \text{ and } x \in \varepsilon_k; \\ 0 & \text{otherwise,} \end{cases}$$

where $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n), \alpha_i \in \varepsilon_k$.

Obviously

$$Z_{\varepsilon_k}^{\tilde{\alpha},\beta}(x_1,...,x_n) = \min_{\varepsilon_k} (\beta, m_{\varepsilon_k}^{\alpha_1}(x_1),...,m_{\varepsilon_k}^{\alpha_n}(x_n)).$$

Let $Z_{\varepsilon_k}(x_1,\ldots,x_n)$ be an arbitrary monotone function of $\mathscr{M}^1_{\varepsilon_k}$ then

$$Z_{\varepsilon_k}(x_1, ..., x_n) = \max_{\tilde{\varepsilon}} \{Z_{\varepsilon_k}^{\tilde{\varepsilon}, f(\tilde{\varepsilon})}(x_1, ..., x_n)\}.$$

This completes the proof.

Lemma 4.1. If the function $Z(x_1, ..., x_n) \in M_k$ is not monotone, then with the help of the substitution of C^j we shall obtain the one-variable non:monote function.

PROOF. It will be sufficient to regard the elements from ε_k and so the proof is the same as in [12].

Definition 4.2. Let B be the sum of the sets $B_1, B_2, ..., B_l$ so that: $B=B_1+B_2+...+B_l$, if

1. $B = B_1 \cup B_2 \cup ... \cup B_l$.

2. B_i , B_i are pairwise disjoint, i.e. $B_i \cap B_i = \emptyset$, if $i \neq j$.

Lemma 4.1.1. If the set is the direct product of two sets & and D which are nonempty and $\tilde{\gamma}^0 \in \mathcal{C}$, $\tilde{\delta}^0 \in \mathcal{D}$ then there are two elements $\tilde{\gamma} \in \mathcal{C}$ and $\tilde{\delta} \in \mathcal{D}$ such that they are next to each other by the ordering \prec_r . Moreover, if $\tilde{\gamma}^0 \prec_r \tilde{\delta}^0$, or, conversely, $\tilde{\gamma}^0 \succ_r \tilde{\delta}^0$, then $\tilde{\gamma}^0 \leq_r \tilde{\delta}^0$ or $\tilde{\gamma}^0_r \geq \tilde{\gamma}^r_r \succ \tilde{\delta}_r \geq \tilde{\delta}^0$, respectively.

PROOF. See [12].

Theorem 4.3. The class of monotone functions \mathcal{M}^1 is pre-complete in the limit -logic M, where \mathcal{M}^1 is the class of monotone functions belonging to an arbitrary linear order.

PROOF. We prove that $[\{f(x_1, ..., x_n)\} \cup \mathcal{M}^1] = M$, $f(x_1, ..., x_n) \in \mathcal{M}^1$. Let $k \geq \gamma$, where $\gamma = \max(\alpha, \beta)$; $\alpha = \max f(\tilde{x})$. Let β be the maximum of the values for which $f(..., \beta, ...) \neq 0$. We show that the function $f_{\varepsilon_k}(x_1, ..., x_n)$ and the set $\mathcal{M}^1_{\varepsilon_k}$ generate the logic $[\{\mu_k(x_1, x_2)\}] = M_k$, which is isomorphic to the k-valued logic P_k .

Let $f_{\varepsilon_k}(x_1, ..., x_n) \in \mathcal{M}^1_{\varepsilon_k}$. Then on account of Lemma 4.1 and with the help of the functions $C^j_{\varepsilon_k}$ we shall obtain the one-variable non-monotone function $g_{\varepsilon_k}(x)$.

Suppose that over x=t

$$g_{\varepsilon_k}\{t) > g_{\varepsilon_k}(t+1) \quad (g(0) = 0)$$

$$h^1_{\varepsilon_k}(x) = \begin{cases} t, & \text{if } x = 1; \\ t+1, & \text{if } x \neq 1 \text{ and } x \in \varepsilon_k; \\ 0 & \text{otherwise}; \end{cases}$$

$$h^2_{\varepsilon_k}(x) = \begin{cases} 1, & \text{if } x \leq g(t+1) \text{ and } x \in \varepsilon_k; \\ k, & \text{if } x > g(t+1) \text{ and } x \in \varepsilon_k; \\ 0, & \text{if } x \notin \varepsilon_k. \end{cases}$$

It is easy to see that $h_{\varepsilon_k}^1(x)$ and $h_{\varepsilon_k}^2(x)$ are monotone functions, that is, $h_{\varepsilon_k}^1(x)$, $h_{\varepsilon_k}^2(x) \in \mathcal{M}_{\varepsilon_k}^1$ and

$$h_{\varepsilon_k}^2\big(g_{\varepsilon_k}(h_{\varepsilon_k}^1(x))\big) = \begin{cases} k, & \text{if } x = 1; \\ 1, & \text{if } x \neq 1 \quad \text{and} \quad x \in \varepsilon_k; \\ 0 & \text{otherwise,} \end{cases}$$

where so $h_{\varepsilon_k}^2(g_{\varepsilon_k}(h_{\varepsilon_k}^1(x))) \equiv j_{\varepsilon_k}^1$ where

$$j_{\varepsilon_k}^i(x) = \begin{cases} k, & \text{if} \quad x = i \neq 0 \quad \text{and} \quad x \in \varepsilon_k; \\ 1, & \text{if} \quad x \neq i \quad \text{and} \quad x \in \varepsilon_k; \\ 0 & \text{otherwise.} \end{cases}$$

Let us consider the following functions:

$$\varphi_{\varepsilon_k}^i(x) = \begin{cases}
1, & \text{if } x < i \text{ and } x \in \varepsilon_k; \\
k, & \text{if } x \ge i \text{ and } x \in \varepsilon_k; \\
0 & \text{otherwise.}
\end{cases}$$

$$\psi_{\varepsilon_k}^i(x) = \begin{cases}
1, & \text{if } x \le i \text{ and } x \in \varepsilon_k; \\
2, & \text{if } x > i \text{ and } x \in \varepsilon_k; \\
0 & \text{otherwise.}
\end{cases}$$

It is clear that $\varphi_{\varepsilon_k}^i(x)$, $\psi_{\varepsilon_k}^i(x) \in \mathcal{M}_{\varepsilon_k}^1$. Thus we have the following functions:

$$C_{\varepsilon_k}^j(x)$$
, $\max_{\varepsilon_k}(x_1, x_2)$, $\min_{\varepsilon_k}(x_1, x_2)$ and $j_{\varepsilon_k}^i(x)$ $(i = 1, 2, ..., k)$.

Lemma 4.3.1. The set of functions $C_{\varepsilon_k}^j(x)$, $\max_{\varepsilon_k}(x_1, x_2)$, $\min_{\varepsilon_k}(x_1, x_2)$ is complete in $M_k([\{\mu_k(x_1, x_2)\}] = M_k)$

$$C_{\varepsilon_k}^j(x) = \begin{cases} j & \text{if } x \in \varepsilon_k; \\ 0 & \text{otherwise.} \end{cases}$$

$$j_{\varepsilon_k}^i(x) = \begin{cases} k, & \text{if} \quad x = i \neq 0 \quad \text{and} \quad x \in \varepsilon_k; \\ 1 & \text{if} \quad x \neq i \quad \quad \text{and} \quad x \in \varepsilon_k; \\ 0 & \text{otherwise}. \end{cases}$$

PROOF. We shall obtain an arbitrary function from M_k from the given function system by induction on the number of the variables. Let $f(x_1, ..., x_n) \in M_k$ be an arbitrary function.

1. If f is 0-ary, then the statement is evident, since the initial system contains i ($i=1,\ldots,k$).

2. Suppose we have constructed every *n*-variable function of the $\mathcal{M}_{\varepsilon_k}^1$ by superposition.

We show next that we can produce an arbitrary function of n+1 variables of $\mathcal{M}_{\ell_k}^1$ and from the functions which were given in Lemma 4.3.1.

Therefore, we assume

$$\max_{\varepsilon_k}(y_1, y_2, \dots, y_n) = \max_{\varepsilon_k} \{\max_{\varepsilon_k} [\dots \max_{\varepsilon_k} (\max_{\varepsilon_k} (y_1, \dots, y_n)] y_n) \}$$

(similarly for $\min_{e_k}(y_1, y_2, ..., y_n)$).

Then

$$f_{\varepsilon_k}(x_1,\ldots,x_n,x_{n+1})=$$

$$= \max_{\varepsilon_k} \left\{ \min_{\varepsilon_k} [j_k^1(x_{n+1}), f(x_1, ..., x_n, 1)] \min_{\varepsilon_k} [j_{\varepsilon_k}^2(x_{n+1}), f(x_1, ..., x_n, 2)] \cdot \min_{\varepsilon_k} [j_{\varepsilon_k}^k(x_{n+1}), f(x_1, ..., x_n, k)] \right\} \quad (\varepsilon_k = 1, 2, ..., k).$$

Hence we obtain the statement.

It follows from the foregoing that this system is complete. So the theorem is proved.

From the Theorem 4.3 follows

Theorem 4.4. In the limit-logic M the monotone function class (M^r) belonging to any linear order is pre-complete.

PROOF. If $\mathcal{M}_{\varepsilon_k}^r$ is the dual of the function class $\mathcal{M}_{\varepsilon_k}^1$ by the permutation

$$s_{\varepsilon_k}(x) = \begin{pmatrix} a_1, a_2, \dots, a_k \\ 1, 2, \dots, k \end{pmatrix},$$

then the results concerning the class $\mathcal{M}_{\varepsilon_k}^1$ can be extended (because of the duality principle) to the function class $\mathcal{M}_{\varepsilon_k}^r$.

Corollary 4.1. Every function class $\mathcal{M}_{e_k}^r$ is pre-complete in M_k .

Theorem 4.5. The cardinality of the pre-complete monotone classes is continuum in the limit-logic M.

PROOF. Since in M there are countably many functions, so in M there cannot be more pre-complete classes than continuum. That is

a) the number of the different orders <, is continuum,

and

b) different M^r -s correspond to different orders.

Corollary 4.2. In the limit-logic M there are as many as continuum pre-complete classes.

Summary. In this paper we prove, that the maximal limit-logic to be examined contains as many as continuum monotone pre-complete classes.

We obtained the following results:

- 1. In the maximal limit-logic M any monotone function class which belongs to a linear order r is pre-complete.
- 2. The number of pre-complete classes of monotone functions with respect to the linear ordering is continuum.

References

- [1] J. Demetrovics, A határérték-logikák homomorfizmusairól Alk. Mat. 2 (1975), 125-138.
- [2] J. Demetrovics, Az M maximális határérték-logikáról Alk. Mat. 2 (1976), 57-66.
- [3] S. L. LEE, E. T. LEE, On Multivalued Symmetryc Functions IEEE. Trans. on Computers C—21. (1972), 312—317.
- [4] I. ROSENBERG, Über die Verschiedenheit maximaliter Klassen in P_n. Rev. Roma math. pures et apl. 14, 3 (1969), 413—438.
- [5] D. L. Webb, Generation of any n valued logic by one binary operator Proc. Mat. Acad. Sci. 21 (1935), 252—254.
- [6] Г. П. Гаврилов: О мощности множества предельных логик, обладающих конечним базисом, Сб. «Проблемы кибернетики» вып. 21, М., «Наука» (1969), 115—126.
- [7] В. М. Гниденко: Нахождение порядков предполних классов в трехзначной логике, Сб. «Проблемы киберпетики», вып. 8. М. (1962), 341—346.
- [8] Я. Деметрович: О числе попарно неизоморфных предельных логик, Сб. «Дискретный анализ», вып. 24. Новосибирск, «Наука». (1974), 21—29.
- [9] Я. Деметрович: О сравнении предельных логик при моделировании в них конечнозначных логик. Acta Cybernetica, (1975), (2). 307—312.
- [10] Я. Деметрович: О свойствах минимальной предельной логики. Штудиа Мат. Акад. Шси. Нунг. 9. (1974). (1—2).
- [11] Я. Деметрович: О некоторых гомоморфизмах и отношениях для предельных логик, Сб. «Проблемы кибернетики» 30. Москва. (1975), 5—42.
- [12] С. В. Яблонский: Функциональные построения в к-значной логике, Труды МИ. АН. СССР. ЛИ. (1958), 5—142.
- [13] С. В. Яблонский: О предельных логиках, Дан. 118. 4. (1958), 657-660.
- [14] С. В. Яблонский: О некоторых свойствах счетных замкнутых классов из Р. Дан. 124. 5. (1959), 990—993.
- [15] С. В. Яблонский, Г. П. Гаврилов, В. Б. Кудрявцев: Функции алгебры логики и классы Поста, Наука, Москва. (1966).
- [16] É. GÁRDOS, Az M határérték-logika monoton osztályáról MTA. SZTAKI. Közlemények 21. (1978), 7—20. (Hungarian).

(Received October 19, 1977)