On the monotone classes of maximal limit-logic M

By EVA GARDOS (Debrecen)

1. Introduction

The notion of limit-logic was introduced by S.V. YABLONSKI [13] in 1958.
The necessity of this notion arose in the study of finite-valued logics [12] and in-
finite-valued logics [14]. In particular, the infinite-valued logics contain as many
as continuum functions, thus, working with these logics is very difficult. Therefore
the necessity of a logic was recognized which contains countably many functions
and can be regarded, from a certain point of view, as the model of all k-valued
logics. Contrary to the many- and the infinite-valued logics, the model of limit-
logics has many realizations, or rather there are continuum, pairwise non-isomorphic
limit-logics [1]. In the first place the equivalent classes are examined, and, at the
same time, the question arises with respect to every partial ordering, whether or
not there is a maximal and a minimal element. The best known and simplest equi-
valence is isomorphism. From the references (6, 8, 13) it is well-known that there
are as many as continuum, pairwise non-isomorphic limit-logics. It has been proved
[1] that no maximal and minimal elements exist under the well-known algebraic
ways of ordering. The partial ordering introduced in [1, 11] in a logical way also
decomposes the set of limit-logics into equivalence classes, and under such a partial
ordering there are already maximum and minimum limit-logics. Such a logic is
maximal to the extent that it contains every other limit-logic, and is minimal if
it is contained in every limit-logic. S. V. Yablonski [12] examined the pre-complete
classes of the k-valued logic. These classes have been investigated by him and many
others [4, 5, 7, 14, 18].

The aim of the paper is to examine certain classes studied by Yablonski in
a maximal limit-logic M with help of the method given in [12]. In the A-valued
logic there are finite pre-complete classes. In our paper we shall prove that in the
limit-logic M there are continuum monotone pre-complete classes. We suceeded
in generalizing Yablonski’s concept of monotone pre-complete classes and we have
reached the following results:

a) in a limit-logic M the monotone function class belonging to a linear order
r is pre-complete.

b) a limit-logic M contains continuum pre-complete classes. Moreover, the
number of the pre-complete monotone function classes with respect to linear order
is continuum.
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2. Elements

Definition 2.1 [4). Let E, be an arbitrary set of k elements. Denote by Py
(n=0,1,2,...) the set of functions with n variables, with the variables and values

taken from the set £,. The function set P,= () P} will be called d-valued logic.

n=0

Without loss of generality we suppose E,={0, 1, ..., k—1}, k=2.

Definition 2.2 1f the finite set E, in Definition 2.1 is replaced by the countably
infinite set, Ey , the function-set Py, will be called the infinite-valued logic. In this
paper, Ey, will always be the non-negative integers, that is

Ey,=1{0,1,2,....,n,n+1, ...}

Definition 2.3 [6]. The subset P of the infinite-valued logic (Py,) will be called
limit-logic, if

a) in the function-set P there are countably many functions,

b) for every natural number k (k=2) there exists a function-set 4, (4,< P),
which can be mapped onto the k-valued logic. Let P be a limit-logic, ¢ a subset
of Ey (eS Ey) and g(x,, ..., Xx,)EP.

Definition 2.4. Put

Bl sl B "B BB v ),
gr.(xl'r "'*-‘.n) — { .
0 otherwise.
The function g,(x;,....,x,) will be called the restriction of the function

4o POENCL 3 T R D

Definition 2.5. We say that the function set A4, is the model of the k-valued
logic on the set &={ey. e, ..., e} (k=2), (e« Ey,), if in the set [4,] there is
such a function f(x,. x,) that

el',;_. 1 lf (.‘-1 B -‘-E)E Ek Xﬁk and max (.Y| . xg.) - e".
Jou (21, %) = where 0=i=k-2;
€, If (x,x:)€g,Xg and max(x;, xs) = €,_;.
It is easy to see that if 4, is the model of the k-valued logic on the set ¢, then

in the function set A4, there is at least one function-set, whose restriction to the set
g, is isomorphic with the k-valued logic.

Definition 2.6 [2]. The system of the finite subsets ¢, will be called the domain
of the function-set 4 and we denote it by 7. The set & = {e,, ¢, ..., ¢,,} belongs
to the domain 7, iff it is model of the k-valued logic on the set g,.

Definition 2.7 [2]. The limit-logic P is called increasing, if its domain 7Tp con-
tains an increasing sequence of the finite sets

(= {8, &, - &y ~)f (8 Sl =23, ..))
Theorem 2.1 [2]. The limit-logic is maximal if and only if it is increasing.

The notions of superposition, closure and pre-completeness are defined as in [12].
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3. § The limit-logic M

We shall define a representation M of the maximal limit logics which we are
going to examine in detail:
Define the function g (x,, x3)€ Py (k=2) as follows:

e, if (x;,x3)€eXe, and max(xy, x;) =e—1,
where 1 =e—-1=k-1;

1, if (x;,x)€8 Xe and max(x,, x,) =k

0, otherwise.

i (X5 Xg) =

Let M, denote the closure of the function-set
{ie(xy %)} ([{pe {x. x2)}]) and M = LL_J) M &] .

Remark 3.1. 1t is easy to see that M, is isomorphic with P, and M is a Limit-
logic.

Remark 3.2. As an illustration we shall give the functions ps(x,, Xs), (X, Xs)
and pu,(x,, X3).

N
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Theorem 3.1. M is a limit-logic.

Proof. By Definition 2.3 we have to show:

a) the function set M is countable, since M =[U Mk], a countable union of
countable sets, k=2

b) for every natural number k (k=2) there is a function subset in M which
can be mapped onto the k-valued logic.

This statement follows from the fact that the functions g, (xy, x,) can be brought
into one to one correspondance with the W, (x,, x,) Webb functions [5]. Furthermore,
let &S Ex N0 be a subset, for which we suppose without loss of generality & =

={0,1, ..., k—1).

Remark 3.3. The functions of the Ilimit-logic have the property
f('\-l‘ veny .Yl‘_]. 0. '\.i5!9 S -\-”):0-

Theorem 3.2. M is a maximal limit-logic.

ProoF. The limit-logic M being maximal follows immediately from the fact
that M is increasing (according to Definition 2.7), a necessary and sufficient con-
dition by Theorem 2.1 for the limit-logic M to be maximal.
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4. The monotone function classes of the maximal limit-logic M

In this paragraph we examine the monotone classes of the maximal limit-
logic M. We prove that the monotone classes of the M are similar to the monotone
classes of P, and their cardinality is continuum. Moreover, in the limit-logic A are
continuum monotone pre-complete classes, while in the k-valued logic there is
but a finite number of them.

Remark 4.1. Of course we shall speak about the elementwise restriction A,
of the function class to &, to. This means no restriction as to the validity of the
theorems. We define the set ¢,, starting from a function f(x,, ..., x,)€ M, as follows:

1. Let z denote the maximum in the range of

S (15 os X0).

2. Let f§ be the largest value, in some n-tuple. on which the function is not equal

to 0. (f(.... B, ...) #0).
3. Let y max(x, ), &,={1,2, ..., 7} (y=k).

Definition 4.1. @=p, if =p; where o;, Bi€E, (i=1,2,...,n). We say that
the function f(x,, ..., x,)€ Px(Py ) is monotone with respect to the linear ordering
if for an arbitrary pair &, fEE, (Ey) a=f implies f(@)=/(f).

Remark 4.2. Let < denote the ordering 1<=2<3<...<n<n+1=.... Let be
0 a distinguished element in this ordering incomparable with any element of Eg \ 0.
Denote by .#/_the set of the all monotone functions with respect to the order

r over g. Then let 4 "= ] ;.
k=2

We shall consider an arbitrary linear order and we shall prove, that the mono-
tone functions with respect to this order are pre-complete, and different pre-complete
classes belong to different linear orders.

Remark 4.3. Let .#;_be the set of all the functions f(xy, ..., x,) from the set
" of monotone functions with respect to <, for which f(x,,...,e, ..., x,)=0
if eq e, is true.

Theorem 4.1. The function classes .#; and M" are closed.

Proor. Replace the variables by all the functions, which are monotone by
o L

Jou (@i Xy, o X)) = gsk(gzn.l(xl‘ s Kads Ban B\Hes vavn Mok wivs B itlXes 1305 )

where the functions g, , g .15 ---s &,.m are monotone according to <,. We shall
show that the function f is monotone according to <. Let us consider two sequ-
ences & and f3, so that &<, . It is clear that by the condition

gn,,i(i) ér glk.i(ﬁ)‘ (f - I’ 29 sesy "I)
holds. therefore the sequence

{8},01(&)» gzk,z(&)9 *Eny gzk.m('i)} and {gr,k.'l.(l})' gu,&(ﬂ)! ALt | g:k.m([}}}
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are such that

{ga;‘.l(&)" gtg.2(&J9 bl | geg.m(i)} ér {gck.l(ﬂ}! gak.2(ﬂ)= sy g:k.m(ﬁ)}'

From here we have, because of the monotony of the function g,

f;k (&) o gzk(gn‘.l(&)’ 2R g:k.m (i)) :—ér gn‘(gsk.l(ﬁ)‘ ey gak.m (B)J — .f;.(B)

So, this function class is invariant to superposition, therefore, it is a closed class.
This completes the proof.
Denote by C7 (x) the next function:

X |Gk
Cil0] 1.7
Remark 4.4. If the order <, is the natural ordering 1<=2<3<=... we get the

usual class (.#"') of monotone functions. The ideas of the proofs of the next few
theorems and lemmas are due to Yablonski's paper [12].

k+1 ...
0

Theorem 4.2. The class of monotone functions is generated by the functions:
max,, (x;, Xo), min,, (x;, Xp), ¢l (x) (j=1,2,...,k) and the mi(x) (i=2,...,k)
all of M}, where

I, if 1Ex<=i ond xce:
m(x) =1k, if k=x=i and x€g;:
0 otherwise.

Proor. Define the function ka’”(xl, ..., X,) as follows:

B ot 1lz:x<] and XC&:
Zf,‘y_‘ﬂ(x‘~ s X) =1k, f k=x=i and x€g;
0  otherwise,
where a=(x,, ..., ®,), G€&.
Obviously

Zf;ﬂ(xl, cey Xp) = min, (B, mgl(xy), ..., men(x,)).

Let Z,(x,, ..., x,) be an arbitrary monotone function of .#; then
Z, (%, -y %) = max, {Zo"O(x,, ..., x)).
This completes the proof.

Lemma 4.1. If the function Z(x,, ..., x,)€ My is not monotone, then with the
help of the substitution of C’ we shall obtain the one-variable non:monote function.

Proor. It will be sufficient to regard the elements from g, and so the proof is
the same as in [12].

Definition 4.2. Let B be the sum of the sets B,, B,, ..., B, so that: B=B,+
+By+...+By, if

1. B=B,UB,U...UB,.
2. B;, B; are pairwise disjoint, i.e. B;[1B;=0, if i=j.
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Lemma 4.1.1. If the set is the direct product of two sets € and % which are non-
empty and €€, 8°€ D then there are two elements 5% and 3¢ such that they are
next to each other by the ordering <,. Moreover, if 7" -<,5", or, conversely, 7°>,°,
then P=,7<,0=Z,8° or 0z=7,>06,=08" respectively.

PrOOF. See [12].

Theorem 4.3. The class of monotone functions .#* is pre-complete in the limit
-logic M, where 4" is the class of monotone functions belonging to an arbitrary linear
order.

Proor. We prove that [{f(x,, ..., x)}UM]=M, f(x,, ..., x,)EM". Let k=7,
where y=max (z, f); x=maxf(X). Let f be the maximum of the values for which
S(... B, ...)#0. We show that the function f, (xi, ..., x,) and the set .4, generate
the logic [{u(x;, x5)}]=M,, which is isomorphic to the k-valued logic P,.

Let f, (x;,...,x,)E.#}. Then on account of Lemma 4.1 and with the help
of the functions C/ we shall obtain the one-variable non-monotone function g, (x).
Suppose that over x=t¢

g, {0 =g, (t+1) (g(0) =0)

A if x=1;
hi(x)=4t+1, if x#1 and x€g,;
0 otherwise:

1, if x=g(t+1) and x€g;
h (x) =1k, if x=>g(t+1) and xcg;
0, if xge,.
It is easy to see that /} (x) and A; (x) are monotone functions, that is, A (x),
hi (x)e.#} and
k£ %=}
he (g, (B (x) =11, if x=#1 and xcg;
0 otherwise,

where so h} (g, (hi (x))=j. where
k, if x=i#0 and x€g;
ja@ =11, if x#=i and x€g;
0  otherwise.

Let us consider the following functions:
1, if x<i and x€g;
i (x) =1k, if x=i and x€g;
0 otherwise.
(

1, if x=i and x€g;
Yi(x) =12, if x=i and x€g;
|0 otherwise.
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It is clear that ¢f (x). yi (x)¢.#} . Thus we have the following functions:
C_,i(x), max,, (x;, x), min, (x;,x,) and jjk(.\') i {28 P A .

Lemma 4.3.1. The set of functions C/J(x), max,_(x,, x,), min,_(x;, x,) is com-
plete in My ([{(xy, x2)}]= M)

. j' ff -“E‘EA 3
el x) = {* g X
(%) 0 otherwise.

ks i 2=1#0 aomd x€a;
R@=11 if x=i and x€g,;
0  otherwise.

Proor. We shall obtain an arbitrary function from M, from the given function
system by induction on the number of the variables. Let f(x,, ..., x,)¢ M, be an
arbitrary function.

1. If f is O-ary, then the statement is evident, since the initial system contains
J(J=1, ..., k).

2. Suppose we have constructed every n-variable function of the .#} by super-
position.

We show next that we can produce an arbitrary function of n+1 variables
of .#} and from the functions which were given in Lemma 4.3.1.

Therefore, we assume

max,, (¥1, Vs - s Vo) = max,, {max, [...max,, (max, (3, ..., vy}

(similarly for min,, (¥y, Ve, ..oy ¥))-
Then
j‘l‘k(“rl Y ;tn, ""‘[‘1):

=max,, {min, [/}(x,;1)s f(xy, ..., X,, 1)] min,, LIt i) .0 iy Xy 2N ¢
+ming, [j§ (641 S5 ooy %, B} (& =1,2, ..., K).

Hence we obtain the statement.

It follows from the foregoing that this system is complete. So the theorem is
proved.

From the Theorem 4.3 follows

Theorem 4.4. In the limit-logic M the monotone function class (M#") belonging
to any linear order is pre-complete.

ProoF. If .4 is the dual of the function class .#; by the permutation

: Oy Byy sy iy
"‘*("):(l % sl )

then the results concerning the class .#; can be extended (because of the duality
principle) to the function class .4 .

Corollary 4.1. Every function class .#;_is pre-complete in M,.
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Theorem 4.5. The cardinality of the pre-complete monotone classes is continuum
in the limit-logic M.

Proor. Since in M there are countably many functions, so in M there cannot
be more pre-complete classes than continuum. That is

a) the number of the different orders <, is continuum,
and

b) different .#"-s correspond to different orders.

Corollary 4.2. In the limit-logic M there are as many as continuum pre-complete
classes.

Summary. In this paper we prove, that the maximal limit-logic to be examined
contains as many as continuum monotone pre-complete classes.
We obtained the following results:

I. In the maximal limit-logic M any monotone function class which belongs
to a linear order r is pre-complete.

2. The number of pre-complete classes of monotone functions with respect
to the linear ordering is continuum.
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