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Asymptotic formulae concerning arithmetical
functions defined by cross-convolutions,

I. Divisor-sum functions and Euler-type functions

By L�ASZL�O T�OTH (Cluj-Napoca)

Abstract. We introduce the notion of cross-convolution of arithmetical functions
as a special case of Narkiewicz’s regular convolution. We give asymptotic formulae for
the summatory functions of certain generalized divisor-sum functions and Euler-type
functions related to cross-convolutions and to arbitrary sets of positive integers. These
formulae generalize and unify many known results concerning the corresponding usual
and unitary functions.

1. Introduction

There is a well-known analogy between properties of certain special
arithmetical functions and their unitary analogues such as σ(n) and σ∗(n),
τ(n) and τ∗(n), φ(n) and φ∗(n), representing the sum of divisors and the
sum of unitary divisors of n, the number of divisors and the number of uni-
tary divisors of n, the Euler function and its unitary analogue, respectively,
see [Co60a], [Co60b], [McC86], [Siv89].

Common generalizations of these functions are given in terms of A-
convolutions of arithmetical functions defined by

(f ∗A g)(n) =
∑

d∈A(n)

f(d)g(n/d),

where A is a mapping from the set N of positive integers to the set of
subsets of N such that A(n) ⊆ D(n) for each n, D(n) denoting the set of
all (positive) divisors of n.
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function, asymptotic formula.
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W. Narkiewicz [Nar63] defined an A-convolution to be regular if

(a) the set of arithmetical functions is a commutative ring with unity
with respect to ordinary addition and the A-convolution,

(b) the A-convolution of multiplicative functions is multiplicative,

(c) the function I, defined by I(n) = 1 for all n ∈ N, has an inverse
µA with respect to the A-convolution and µ(pa) ∈ {−1, 0} for every prime
power pa (a ≥ 1).

It can be proved, see [Nar63], that an A-convolution is regular if and
only if

(i) A(mn) = {de : d ∈ A(m), e ∈ A(n)} for every m, n ∈ N, (m,n)=1,

(ii) for every prime power pa (a ≥ 1) there exists a divisor t =
tA(pa) of a, called the type of pa with respect to A, such that A(pit) =
{1, pt, p2t, . . . , pit} for every i ∈ {0, 1, . . . , a/t}.

For example, the Dirichlet convolution D, where D(n)={d∈N : d|n},
and the unitary convolution U , where U(n) = {d ∈ N : d|n, (d, n/d)=1},
are regular.

In this paper we consider regular A-convolutions, see also [McC86],
[Sit78]. For d, n ∈ N, the number d is said to be an A-divisor of n if
d ∈ A(n). Let σA,s(n) denote the sum of s-powers of the A-divisors of n

and let σA,1(n) ≡ σA(n) be the sum of A-divisors of n. Furthermore, for
k ∈ N let φA,k(n) denote the number of integers x (mod nk) such that
(x, nk)A,k = 1, where (a, b)A,k stands for the greatest k-th power divisor
of a which belongs to A(b). The function φA,k(n) was defined by V. Sita

Ramaiah [Sit78], for k = 1 the function φA,1(n) ≡ φA(n) was studied by
P. J. McCarthy [McC68].

For A = D and for A = U we obtain the functions σs(n), σ(n), φk(n)
and their unitary analogues σ∗s (n), σ∗(n), φ∗k(n), respectively. The function
φk(n) was investigated by E. Cohen [Co49], [Co56], φ1(n) ≡ φ(n) is the
classical Euler function and φ∗k(n) was defined by K. Nageswara Rao
[Nag66].

Although asymptotic formulae concerning the usual and the unitary
functions of above have been investigated by several authors, common gen-
eralizations of such formulae seem not to have appeared in the literature.

Narkiewicz’s [Nar63] paper includes certain asymptotic formulae for
arithmetical functions defined by regular A-convolutions, but with an ad-
ditional condition on A, which is not satisfied neither for A = D nor for
A = U .
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The aim of this paper is to establish asymptotic formulae for the sum-
matory functions of σA,s, σA(n), φA,k(n), in fact we will deduce asymptotic
formulae concerning more general functions, if A is a cross-convolution
to be defined in Section 2, which generalize and unify the corresponding
known results concerning the usual and the unitary functions.

Our method is elementary and applies some standard arguments. It
is used in [T95] for various types of arithmetical functions. We plan to
continue our investigations in forthcoming papers.

2. Preliminaries

If A is a regular convolution, then the generalized Möbius function µA
is the multiplicative function such that, for all prime powers pa (a ≥ 1),

(1) µA(pa) =
{ −1, if tA(pa) = a,

0, otherwise.

For k ∈ N, let Ak(n) = {d ∈ N : dk ∈ A(nk)}. It is known that an
Ak-convolution is regular whenever the A-convolution is regular.

Let S be a subset of N and let ρS denote the characteristic function
of S, that is ρS(n) = 1 if n ∈ S, and ρS(n) = 0 if n /∈ S. The generalized
Möbius function µS,A is defined by

(2) µS,A ∗A I = ρS ,

where I(n) = 1 for all n ∈ N, see [H88]. If S = {1}, then µS,A = µA, and
if A = D, then µA = µ, the classical Möbius function. If A = U , then
µU = µ∗ is the Liouville function.

We say that S is multiplicative if its characteristic function ρS is
multiplicative, i.e. 1 ∈ S and mn ∈ S if and only if m ∈ S, n ∈ S for every
m,n ∈ N with (m,n) = 1.

By (2), (1) and by Möbius inversion we immediately have the following
statements, see [TH96]:

Lemma 1. The function µS,A is multiplicative if and only if S is
multiplicative, and in this case

µS,A(n) =
∏

pa||n

(
ρS(pa)− ρS(pa−t)

)

for every n ∈ N, where t = tA(pa) is the type of pa with respect to A
and pa||n means pa|n and pa+1 - n. If S is multiplicative, then µS,A(n) ∈
{−1, 0, 1} for every n ∈ N.
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Remark 1. If S is not multiplicative, then the function µS,A can take
other values too. Moreover, it can be unbounded, as it is shown in the
following example. Let A = D and let S = P be the set of the primes.
Then

µP(n) =
∑

d|n
ρS(d)µ(n/d) =

∑

d|n
d∈P

µ(n/d),

for every n ∈ N, and for n = p1p2 . . . pr, where p1, p2, . . . , pr are distinct
primes, we get

µP(p1p2 . . . pr) =
r∑

i=1

µ(p1 . . . pi−1pi+1 . . . pr) = (−1)r−1r.

Lemma 2. For every subset S and for every regular convolution A
we have |µS,A(n)| ≤ τ(n) for every n ∈ N, and µS,A(n) = O(nε) for every
ε > 0.

If A is a regular convolution, S ⊆ N and s ∈ R, let σS,A,s be the
function defined by

σS,A,s(n) =
∑

d∈A(n)
n/d∈S

ds.

We have σS,A,s = ρS ∗A Es, where Es(n) = ns for every n ∈ N and it
follows that for S multiplicative σS,A,s is multiplicative too. If A = D and
S = {nk : n ∈ N} where k ∈ N, then we obtain the classical function of
L. Gegenbauer.

Furthermore, for a regular convolution A, for S ⊆ N and k ∈ N
let φS,A,k(n) denote the number of integers x (mod nk) such that
((x, nk)A,k)1/k ∈ S. This function was introduced by P. Haukkanen

[H88] and one has

(3) φS,A,k = µS,Ak
∗Ak

Ek.

The function φS,D,1 was introduced by E. Cohen [Co59]. If S = {nh : n ∈
N}, where h ∈ N and A = D, k = 1 we have the function of E. Cohen
[Co60c], which reduces to the function b of S. Sivaramakrishnan [Siv79]
if h = 2. Let m ∈ N,m ≥ 2. If S = Qm is the set of m-free integers (i.e.
integers not divisible by the m-th power of any integer > 1) and A = D,
k = 1 we obtain the function φm of V. L. Klee [K48]. If S = Q∗

m is the
set of unitarily m-free integers (i.e. integers not divisible unitarily by the
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m-th power of any integer > 1) and A = U, k = 1 we have the function
ϕ∗m of D. Suryanarayana [Sur72].

For S = {1} we get the function φA,k defined in the Introduction.
For other particular cases of the function φS,A,kwe refer to the papers and
books given in the bibliography.

Let A be a regular convolution. We say that A is a cross-convolution
if for every prime p we have either A(pa) = {1, p, p2, . . . , pa} = D(pa) or
A(pa) = {1, pa} = U(pa) for every a ∈ N. Let P and Q be the set of the
primes of the first and of the second kind of above, respectively, where
P ∪ Q = P is the set of all primes. For Q = ∅ we have the Dirichlet
convolution D and for P = ∅ we obtain the unitary convolution U .

Furthermore, let (P ) = {1} ∪ {n ∈ N : each prime factor of n belongs
to P}, (Q) = {1} ∪ {n ∈ N : each prime factor of n belongs to Q}. It is
clear that every n ∈ N can be written uniquely in the form n = nP nQ,
where nP ∈ (P ), nQ ∈ (Q) and (nP , nQ) = 1. If A is a cross-convolution,
then A(n) = {d ∈ N : d|n, (d, n/d) ∈ (P )} for every n ∈ N.

Remark 2. According to [Sit78], Theorem 3.3, the following state-
ments are equivalent:

(i) A is a cross-convolution,

(ii) for every prime p, πp is either {0, 1, 2, 3, . . .} or {0, 1}, {0, 2}, {0, 3}, . . . ,
(iii) A = Ak for every k ∈ N,

(iv) d ∈ A(n) if and only if dk ∈ A(nk) for all n, k ∈ N.

Remark 3. If A is a cross-convolution, then σA(n) = σ(nP )σ∗(nQ)
and φA(n) = φ(nP )φ∗(nQ) for every n ∈ N. Similar identities are valid
also for the generalized functions discussed in this paper.

For an arithmetical function f let D(f, z), DP (f, z) and DQ(f, z)
denote the Dirichlet series

∞∑
n=1

f(n)
nz

,

∞∑
n=1

n∈(P )

f(n)
nz

and
∞∑

n=1
n∈(Q)

f(n)
nz

,

respectively. If f(n) = I(n) = 1 for each n ∈ N, then D(I, z) = ζ(z) is the
Riemann zeta function and let DP (I, z) = ζP (z), DQ(I, z) = ζQ(z). The
next assertions follow by the Euler product formula.
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Lemma 3. If the function f is multiplicative and if D(f, z) is abso-

lutely convergent, then

DP (f, z) =
∏

p∈P

(
1 +

f(p)
pz

+
f(p2)
p2z

+ . . .
)
,

DQ(f, z) =
∏

p∈Q

(
1 +

f(p)
pz

+
f(p2)
p2z

+ . . .
)
,

DP (f, z)DQ(f, z) = D(f, z).

If in addition f is completely multiplicative, then

DP (f, z) =
∏

p∈P

(
1− f(p)

pz

)−1

,

DQ(f, z) =
∏

p∈Q

(
1− f(p)

pz

)−1

.

If z ∈ C,Re z > 1, then

ζP (z) =
∏

p∈P

(
1− 1

pz

)−1

,

ζQ(z) =
∏

p∈Q

(
1− 1

pz

)−1

,

ζP (z)ζQ(z) = ζ(z)

DP (µ, z) = 1/ζP (z),

DQ(µ, z) = 1/ζQ(z).

We need the following well-known estimates:

Lemma 4.

∑

n≤x

n−s =





O(x1−s), 0 < s < 1,

O(log x), s = 1,

O(1), s > 1,

(4)

∑
n>x

n−s = O(x1−s), s > 1.(5)
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Lemma 5 (see [T89], Lemma 5 and Lemma 8).

∑

n≤x

τ(n)
ns

=





O(x1−s log x), 0 < s < 1,

O(log2 x), s = 1,

O(1), s > 1.

(6)

∑

n≤x

τ2(n)
ns

=





O(x1−s log3 x), 0 < s < 1,

O(log4 x), s = 1,

O(1), s > 1.

(7)

∑
n>x

τ(n)
ns

= O(x1−s log x), s > 1.(8)

Lemma 6 (see [Ch67], Lemma 2.3). If s ≥ 0 and a ∈ N, then

∑

n≤x
(n,a)=1

ns =
φ(a)xs+1

a(s + 1)
+ O(xsτ(a)).

The following is a key-lemma of our treatment, see also [TH96].

Lemma 7. If A is a cross-convolution, s ≥ 0 and a ∈ N, then

∑

n≤x
(n,a)∈(P )

ns =
φ(aQ)xs+1

aQ(s + 1)
+ O(A(s)

a (x,Q)),

where A
(s)
a (x,Q) = xs or xsτ(a), according as Q is finite or Q is infinite.

Proof. Observe that (n, a) ∈ (P ) if and only if (n, γ(aQ)) = 1, where
γ(m) denotes the product of distinct prime factors of m. Hence

∑

n≤x
(n,a)∈(P )

ns =
∑

n≤x
(n,γ(aQ))=1

ns =
φ(γ(aQ))xs+1

γ(aQ)(s + 1)
+ O(xsτ(γ(aQ))),

by Lemma 6. Here φ(γ(aQ))/γ(aQ) = φ(aQ)/aQ and if Q is finite, then
τ(γ(aQ)) ≤ τ(

∏
p∈Q p) = C, a constant, which completes the proof.

Remark 4. We have A
(s)
a (x,Q) = O(xsaε) for every Q and for every

ε > 0.
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Lemma 8. If A is a cross-convolution and g is an arithmetical function
such that g(n) = O(nε) for every ε > 0 and if s > 0, then the series

∞∑
n=1

g(n)φ(nQ)
ns+1nQ

is absolutely convergent. Let Ss(g) denote the sum of the series. If in
addition g is multiplicative, then

Ss(g) = DP (g, s + 1)
∏

p∈Q

(
1 +

(
1− 1

p

) ∞∑
a=1

g(pa)
pa(s+1)

)
,

and if g is completely multiplicative, then

Ss(g) =
D(g, s + 1)
DQ(g, s + 2)

.

Proof. The absolute convergence of the series follows at once by

g(n)φ(nQ)
ns+1nQ

= O

(
nε

ns+1

)
= O

(
1

ns+1−ε

)
,

where ε is chosen such that ε < s. If g is multiplicative, then the gen-
eral term is multiplicative and the series can be expanded into an infinite
product of Euler-type and we use Lemma 3.

Lemma 9. If A is a cross-convolution and s > 0, then the series

∞∑
n=1

φ(nQ)
ns+1nQ

is absolutely convergent and its sum is ζ(s + 1)/ζQ(s + 2).

Proof. Apply Lemma 8 for the completely multiplicative function
g = I.

Lemma 10. If A is a cross-convolution, S ⊆ N and s > 0, then the
series ∞∑

n=1

µS,A(n)φ(nQ)
ns+1nQ

is absolutely convergent and for S = {1} its sum is

1
ζP (s + 1)

∏

p∈Q

(
1− p− 1

p(ps+1 − 1)

)
.
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Proof. It follows from Lemma 2 that g = µS,A satisfies the condition
of Lemma 8. For S = {1} we obtain by Lemma 3

Ss(µA) = DP (µA, s + 1)DQ(µA, s + 1)

= DP (µ, s + 1)
∏

p∈Q

(
1 +

(
1− 1

p

) ∞∑
a=1

µ∗(pa)
pa(s+1)

)

= DP (µ, s + 1)
∏

p∈Q

(
1−

(
1− 1

p

) ∞∑
a=1

1
pa(s+1)

)

=
1

ζP (s + 1)

∏

p∈Q

(
1− p− 1

ps+2

(
1− 1

ps+1

)−1)

=
1

ζP (s + 1)

∏

p∈Q

(
1− p− 1

p(ps+1 − 1

)
.

3. Asymptotic formulae

Theorem 1. If A is a cross-convolution, g is an arithmetical function

such that g(n) = O(τ(n)), s > 0 and f = g ∗A Es, Es(n) = ns for every

n ∈ N, then
∑

n≤x

f(n) =
Ss(g)
s + 1

xs+1 + O(Bs(g, x,Q)),

where Ss(g) is given by Lemma 8 and Bs(g, x, Q) = xs (s > 1), x log4 x

(s = 1, g unbounded and Q infinite ), x log3 x (s < 1, g unbounded and Q
infinite), x log2 x (s = 1, g unbounded and Q finite or s = 1, g bounded

and Q infinite), x log x (s < 1, g unbounded and Q finite or s = 1, g

bounded and Q finite or s < 1, g bounded and Q infinite), x (s < 1, g

bounded and Q finite).

Proof. Using Lemma 7 we deduce

∑

n≤x

f(n) =
∑

de=n≤x
(d,e)∈(P )

g(d)es =
∑

d≤x

g(d)
∑

e≤x/d
(e,d)∈(P )

es
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=
∑

d≤x

g(d)

(
φ(dQ)

(s + 1)dQ

(x/d)s+1 + O(A(s)
d (x/d,Q))

)

=
xs+1

s + 1

∞∑
n=1

g(d)φ(dQ)
ds+1dQ

− xs+1

s + 1

∑

d>x

g(d)φ(dQ)
ds+1dQ

+
∑

d≤x

g(d)O(A(s)
d (x/d, Q))

≡ T1(x)− T2(x) + T3(x),

where the first term is T1(x) = xs+1

s+1 Ss(g) by Lemma 8, and for the second
term we have

T2(x) = O
(
xs+1

∑

d>x

τ(d)
ds+1

)
= O

(
xs+1 log x

xs

)
= O(x log x),

applying (8). If g is bounded, then

T2(x) = O
(
xs+1

∑

d>x

1
ds+1

)
= O(xs+1x−s) = O(x)

by (5). The third term above can be evaluated as follows:

T3(x) = O
(∑

d≤x

τ(d)A(s)
d (x/d,Q)

)
,

now if Q is finite, then

T3(x) = O
(∑

d≤x

τ(d)(x/d)s
)

= O
(
xs

∑

d≤x

τ(d)
ds

)

=





O(xs), if s > 1,

O(x log2 x), if s = 1,

O(xsx1−s log x) = O(x log x), if s < 1,

by (6). If Q is infinite, then

T3(x) = O
(∑

d≤x

τ2(d)(x/d)s
)

= O
(
xs

∑

d≤x

τ2(d)
ds

)

=





O(xs), if s > 1,

O(x log4 x), if s = 1,

O(xsx1−s log3 x) = O(x log3 x), if s < 1,
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by (7). If g is bounded, then

T3(x) = O
(∑

d≤x

A
(s)
d (x/d,Q)

)
,

where for Q finite one obtains

T3(x)=O
(∑

d≤x

(x/d)s
)
=O

(
xs

∑

d≤x

1
ds

)
=





O(xs), if s > 1,

O(x log x), if s = 1,

O(xsx1−s) = O(x), if s < 1,

using (4), and for Q infinite

T3(x) = O
(∑

d≤x

τ(d)(x/d)s
)

= O
(
xs

∑

d≤x

τ(d)
ds

)
,

and we apply again (6). The theorem follows upon combining the results
of evaluating T1(x), T2(x) and T3(x).

Theorem 2. If A is a cross-convolution, S ⊆ N and s > 0, then for

the function σS,A,s we have

∑

n≤x

σS,A,s(n) =
αS,sx

s+1

s + 1
+ O(Cs(x,Q)),

where

αS,s =
∞∑

n=1
n∈S

φ(nQ)
ns+1nQ

and Cs(x,Q) = xs (s > 1), x log2 x (s = 1 and Q infinite), x log x (s = 1
and Q finite or s < 1 and Q infinite), x (s < 1 and Q finite).

Proof. This is a consequence of Theorem 1 applied for g = ρS , the
characteristic function of the subset S.

For different choices of the subset S we obtain various formulae. We
present some particular cases.
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Theorem 3. If A is a cross-convolution, S = Qk is the set of k-free
integers, where k ∈ N, k ≥ 2, and s > 0, then

∑

n≤x

σQk,A,s(n) =
ζ(s + 1)

(s + 1)ζP (k(s + 1))

×
∏

p∈Q

(
1− 1

ps+2
− 1

pk(s+1)
+

1
pk(s+1)+1

)
xs+1 + O(Cs(x,Q)),

where Cs(x,Q) is given in Theorem 2.

Proof. We have

αQk,s =
∞∑

n=1
n∈Qk

φ(nQ)
ns+1nQ

=
∏

p∈P

(
1 +

1
ps+1

+ . . . +
1

p(k−1)(s+1)

) ∏

p∈Q

(
1 +

φ(p)
ps+1p

+
φ(p2)

p2(s+1)p2
+ . . . +

φ(pk−1)
p(k−1)(s+1)pk−1

)

=
∏

p∈P

((
1− 1

pk(s+1)

)(
1− 1

ps+1

)−1)

×
∏

p∈Q

(
1 +

1
ps+1

(
1− 1

p

)(
1 +

1
ps+1

+ . . . +
1

p(k−2)(s+1)

))

=
ζP (s + 1)

ζP (k(s + 1))

∏

p∈Q

(
1 +

1
ps+1

(
1− 1

p

)(
1− 1

p(k−1)(s+1)

)(
1− 1

ps+1

)−1)

=
ζP (s + 1)

ζP (k(s + 1))
ζQ(s + 1)

∏

p∈Q

(
1− 1

ps+1
+

1
ps+1

(
1− 1

p

)(
1− 1

p(k−1)(s+1)

))

=
ζ(s + 1)

ζP (k(s + 1))

∏

p∈Q

(
1− 1

ps+2
− 1

pk(s+1)
+

1
pk(s+1)+1

)
.

For A = D (Q = ∅) and for s = 1 this result is due to E. Cohen
[Co60c], Theorem 3.1.

Theorem 4. If A is a cross-convolution, S = Sk is the set of k-th
powers of the positive integers with k ∈ N and s > 0, then

∑

n≤x

σSk,A,s(n) =
ζ(k(s + 1))

(s + 1)ζQ(k(s + 1) + 1)
xs+1 + O(Cs(x,Q)),
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where Cs(x,Q) is given in Theorem 2.

Proof. We get

αS,s =
∞∑

n=mk=1

φ(nQ)
ns+1nQ

=
∞∑

m=1

φ((mk)Q)

(mk)Qmk(s+1)
=

∞∑
m=1

φ(mQ)

mQmk(s+1)

=
ζ(k(s + 1))

ζQ(k(s + 1) + 1)
,

by Lemma 9.

Theorem 5. If A is a cross-convolution, S = P is the set of primes
and s > 0, then

∑

n≤x

σP,A,s(n) =
xs+1

s + 1

(∑

p∈P

1
ps+1

−
∑

p∈Q

1
ps+2

)
+ O(Cs(x, Q)),

where Cs(x,Q) is defined in Theorem 2.

Proof. In this case we have

αP,s =
∞∑

n=1
n∈P

φ(nQ)
ns+1nQ

=
∑

p∈P

1
ps+1

+
∑

p∈Q

φ(p)
ps+2

=
∑

p∈P

1
ps+1

−
∑

p∈Q

1
ps+2

.

Theorem 6. If A is a cross-convolution, S = {m} with m ∈ N and
s > 0, then

∑

n≤x

σS,A,s(n) =
xs+1

(s + 1)ms+1

∏

p|m
p∈Q

(
1− 1

p

)
+ O(Cs(x,Q)),

Cs(x,Q) being defined in Theorem 2.

Theorem 7. If A is a cross-convolution and s > 0, then

∑

n≤x

σA,s(n) =
ζ(s + 1)xs+1

(s + 1)ζQ(s + 2)
+ O(Cs(x,Q)),

∑

n≤x

σA(n) =
π2x2

12ζQ(3)
+ O(C(x,Q)),

where C(x, Q) ≡ C1(x,Q) = x log x (Q finite), x log2 x (Q infinite).

Proof. Apply Theorem 4 for k = 1.
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In the unitary case (Q = P) these formulae were proved by E. Cohen

[Co60a], Corollary 4.1.1 for s = 1, and by J. Chidambaraswamy [Chi67],
Corollary A/(ii) for s ≥ 1.

In what follows we deduce asymptotic formulae for certain functions
of Euler-type.

Theorem 8. If A is a cross-convolution, S ⊆ N and k ∈ N, then

∑

n≤x

φS,A,k(n) =
βS,kxk+1

k + 1
+ O(Ck(S, x, Q)),

where

βS,k =
∞∑

n=1

µS,A(n)φ(nQ)
nk+1nQ

and Ck(S, x, Q) = xk (k > 1), x log4 x (k = 1 and Q infinite), x log2 x

(k = 1 and Q finite or k = 1, Q infinite and S multiplicative), x log x

(k = 1, Q finite and S multiplicative).

Proof. From (3) and Remark 2 we have φS,A,k = µS,A ∗A Ek. Now
apply Theorem 1 for g = µS,A and use Lemmas 1, 2 and 10.

Theorem 9. (A = D) If S ⊆ N and k ∈ N, then for the function

φS,D,k ≡ φS,k we have

∑

n≤x

φS,k(n) =
ζS(k + 1)

(k + 1)ζ(k + 1)
xk+1 + O(Ck(S, x)),

where ζS(z) = D(ρS , z), Ck(S, x) = xk (k > 1), x log2 x (k = 1 and S not

multiplicative), x log x (k = 1 and S multiplicative).

Proof. Apply Theorem 8 and use that by (2) we have D(µS , z) =
D(ρS , z)D(µ, z) = ζS(z)/ζ(z), Re z > 1.

For k = 1 this result was given in [ST90], Theorem 2 and it is cited in
[MSC96], page 33, with the remainder term O(x log2 x) for every S, and
for k = 1 and S = {nk : n ∈ N} we have the formula due to E. Cohen

[Co60c], Theorem 4.1.
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Theorem 10. If b is the function of R. Sivaramakrishnan, then

∑

n≤x

b(n) =
π2

30
x2 + O(x log x).

Proof. Using Theorem 9 for S, the set of squares and k = 1, we
obtain

ζS(k + 1)
(k + 1)ζ(k + 1)

=
ζS(2)
2ζ(2)

=
ζ(4)
2ζ(2)

=
π2

30
.

From Theorem 8 one can deduce the known asymptotic formulae for
the function φm of Klee, see U. V. Satyanarayana, K. Pattabhira-

masastry [SP65], for the function ϕ∗m of D. Suryanarayana, see [Sur72],
Theorem 3.2, and for other particular functions investigated in the litera-
ture.

Theorem 11. If k ∈ N, then

∑

n≤x

φA,k(n) =
βk

k + 1
xk+1 + O(Ck(x,Q)),

where

βk =
1

ζP (k + 1)

∏

p∈Q

(
1− p− 1

p(pk+1 − 1)

)

and Ck(x,Q) = xk (k > 1), x log2 x (k = 1 and Q infinite), x log x (k = 1
and Q finite).

Proof. Apply Theorem 8 with S = {1} and Lemma 10.

For A = D and k = 1 we have the classical formula of F. Mertens, for
A = U it was established by E. Cohen [C60a], Corollary 4.4.2 for k = 1,
and [C61], Corollary 3.1.2 for k > 1.

Remark 5. An asymptotic formula for an even more general Euler
function, including all the above functions is given in [TH96].

The formulae obtained in this paper are very general, the remain-
der terms can be improved for particular choices of S,A, s and k. As an
example, we have the following result, see Theorem 7:
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Theorem 12. If A is a cross-convolution, then

∑

n≤x

σA(n) =
π2x2

12ζQ(3)
+ O(D(x, Q)),

where D(x,Q) = x log2/3 x (Q finite), x log5/3 x (Q infinite).

Proof. We have the identity

σAP (n) =
∑

d2e=n

h(d)σ(e), n ∈ N,

where the multiplicative function h is defined by

h(pa) =
{ −p, if p ∈ Q, a = 1,

0, otherwise,

for every prime power pa (a ≥ 1), see [SS73].
Using now the following result of A. Walfisz [W63]

∑

n≤x

σ(n) =
π2x2

12
+ O(x log2/3 x),

we get
∑

n≤x

σA(n) =
∑

d2e=n≤x

h(d)σ(e) =
∑

d≤√x

h(d)
∑

e≤x/d2

σ(e)

=
∑

d≤√x

h(d)
(π2x2

12d4
+ O

( x

d2
log2/3 x

d2

))

=
π2x2

12

∑

d≤√x

h(d)
d4

+ O
(
x log2/3 x

∑

d≤√x

|h(d)|
d2

)

=
π2x2

12

∞∑

d=1

h(d)
d4

+ O
(
x2

∑

d>
√

x

1
d3

)
+ O

(
x log2/3 x

∑

d≤√x
d∈(Q)

1
d

)

=
π2x2

12

∏

p∈Q

(
1− 1

p3

)
+ O(x) + O(D(x,Q))

=
π2x2

12ζQ(3)
+ O(D(x,Q)),
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applying (5), (4) and Lemma 3 and using that for Q finite
∞∑

d=1
d∈(Q)

1
d

=
∏

p∈Q

(
1− 1

p

)−1

is a constant.

In the unitary case this formula was established by R. Sita Rama
Chandra Rao and D. Suryanarayana [SS73], formula (1.4).
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