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Introduction

To every C*-mapping of a Riemannian manifold into another it can be as-
signed a vector valued 1-form with values in a vector bundle obtained by pulling
back the tangent bundle of the target manifold along this mapping. Vector bundles
obtained in this way from homotopic mappings can be canonically identified by
means of parallel displacement. So, the theory of such vector valued forms gives
a useful tool for the study of homotopy classes of mappings. Therefore the first
paragraph of this note is devoted to the elementary theory of vector valued forms.
Although the de Rham decomposition theorem is valid for vector valued forms,
the spaces of exact and coexact forms are not necessarily orthogonal to each other.
Avoiding this difficulty, in the second paragraph of this note we deal with the case
when the target manifold is flat. Then the usual identity 4*=0 is valid for the
operator d of exterior differentiation. We give a simple proof for the Eells—
Sampson’s homotopy theorem of [1] in the special case when the target manifold
is flat, by means of reasonings essentially different from the original. In the last
part of this paragraph we examine properties of homotopies between harmonic
mappings. In the third paragraph we define the family of homotopy classes [M, M ]
of mappings of a Riemannian manifold M into another M’. This family depends
only on the homotopy types of the manifolds M and M’. If M'=G is a Lie group
then [M, G] can be endowed with a group structure. By means of a factorization
theorem of Lichnerowicz in [5] we obtain that [M, G]= Zh M) (G holds for any
commutative group G where b, denotes the first Betti number.

I. Differential operators on a Riemannian-connected bundle

Let W—M be a vector bundle over a Riemannian manifold M and denote
T (M)~ M, peN, the bundle of p-covectors of M. Further put

A°(M,W) = SecW
and, for each p€N, put
AP(M, W) = Sec(W @TP(M)).

The elements of A”(M, W) are called p-forms on M with values in W.
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A covariant differentiation on the vector bundle W—M is a linear mapping
V: A(M, W) - AN (M, W)
which satisfies the derivation rule
Viuw) = w@du+puVw
for we A°(M, W) and for every scalar g on M.
The operator V defines a covariant differentiation
1x0V = Vy: AYM, W) — A(M,W)

for every vector field XcX(M) on M. It can be canonically extended to a covariant
differentiation
Vy: AP(M, W) - AP(M, W)

of p-forms, p€N, by the agreement
Vilw®2) = (Vyw)@A4+w@(Vy ).

A covariant differentiation V defines a mapping

T: X(M)xX(M)xSecW — SecW
by
H(X, Y)“’ = VX Vf“'—Vfo“’-V[X.Y]“',

where X, YEX(M) and weSec W. This mapping IT is the curvature of the vector
bundle W— M.

From now on we consider a fixed covariant differentiation V on the vector
bundle WM.

The exterior differentiation of the vector bundle W—M is a linear mapping

d: AP (M,W) - AP*Y(M,W) peN or p=0
for which
diw®2) = (VWA L+wR(dA)

holds for every weSec W and for every p-form A€ AP(M), where d/. is the usual
exterior differentiation of the p-form /. Obviously d=V if p=0.

Now let us suppose that the bundle W-—-M is Riemannian-connected, i.e.
each of the fibres has a positive-definite inner product, which we shall denote by
(, ), and the covariant differentiation V preserves the metric on the fibres of W,
i.e. for each w, w'éSec W and XcX(M)

Vi(w, w) = (Vyw, w)+(w, Vyw')

holds. This inner product can be extended to an inner product of the bundle
AP(M, W)—~M by the agreement

(W@, W) = (w,w)( A)

for each w, w'éSec W and 4, A’€ A?(M), where (7, ") is the usual inner product
of the forms 4 and 2".
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From now on, throughout this note, we shall always assume M to be compact
and oriented and we denote its volume element by v€ A"(M), n=dim M.
The global scalar product of the p-forms @, Y€ A?(M, W) as usual is defined by

(@, %)= [(@, P).

Let
0: AP(M,W) - AP"Y(M,W) peN

be the adjoint operator of d with respect to the global scalar product and put d=0
if p=0. Then for each ®cA?(M, W) and Y€ AP Y (M, W)

(do, V) = (P,0¥)
holds. Finally let

A=dod+dod: AMW) - AM,W) peN or p=0

be the Laplace operator of the Riemannian vector bundle WM. A p-form Q
on M with values in W is said to be harmonic if AQ=0. It is known that there is
a decomposition

AP(M, W) = HP(M,W)&(dAP="(M,W)+dA?* (M, W)), peN

where H?(M, W), the space of harmonic p-forms with values in W, is orthogonal
to the other two summands [1].
Our present aim in this paragraph is to prove the following explicite formula:

od® = —trace {(X, Y) - Vyouy @} = —trace {(X, Y) -ix0Vy ¢'}

for every @€ AP(M, W).
We need the following three lemmas:

Lemma (1.1). Let X and Y be vector fields on M such that Vy X=0 holds. Then
1y and Vy commute on AP(M, W) for each pcN or p=0.

PrOOF. At first we prove that 1y and Vy commute on A?(M). Indeed, if A€ A?(M)
and X,, ..., X, are vector fields on M then we have

((x oV Kas +onr X,) = pVy (X, Xa, ..o X;) = PY(A(X, X, ..., X,))—
P
‘—pj.(V}'X, X-‘_h, suey Xp)_ z pl:-(X, 1"2 ..... Xi—l‘ V"X:., Xf+1, asny Xp) —
f—!

= ((Vyo1x) ) (X, ..., X)).

Tuining to the general case, we may restrict ourselves to decomposable p-forms
on M with values in W, &=w® /., where weéSec W and A€ A?(M). Then

(Vyorx)(w®2) = Vy(wRix2) = (Vyw)@(xA)+wR(Vyoixd) =
= (Vyw)@(1x )+ w1y 0 Vy 2) = 1x((Vy w) @44+ wR(Vy A)) = (1x 0 V) (w®4),
which accomplishes the proof.
Corollary (1.1). trace {(X, Y)—Vyo1y @}=trace {(X, ¥)—~1y0V, ®}.
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PrROOF. Let mé M be an arbitrary point and let ¢,. .... ¢, be a frame in 7, (M).
Extend them to vector fields E,, ..., E, such that g(E. E;)(m)=d;; and
Ve, £;(m)=0 for each i, j=1,...,n. Then we have

n

lrace ‘(X, }’} - V"' “-‘-'jr¢}m = E V":; dl"|¢('") = 2: f,;l. L& V’:i‘p(m) -
i=1 =1

= trace {(X, Y) = iy oV, @},,.
Lemma (1.2). Ler g AY(M) be an arbitrary 1-form on M and let us consider
the (n—1)-form
a = trace {(X, Y) — (1x0)1yv}e A"~ (M).

Then
dx = trace {(X,Y) ~ Vy((iy0)v)}.

Proor. We have
da = d trace {(X,Y) —~ (1y0) 1y} = trace {{X. Y) - d((1y g);,.g-)} —
= trace {(X.Y) — (d o1y)(1y p)v} = trace {(X. Y) «~(tyod+dory)((1y L])['J} -
= trace {(X,Y) —~ Ly((1y@)v)} = trace {(X. Y) — (Ly(ix0))v} =
= trace {(X.Y) — (Vy(1x0))v} = trace {(X,Y) — Vy((1x 0)0)}.

The metric tensor g of the Riemannian manifold M yields a canonical iso-
morphism
y: X(M) - A(M)
by y(X)Y=g(X,Y) for every X, YeX(M).

Lemma (1.3). d@=(—1)" trace {(X.Y)-=(Vy®)\yp(Y)}  holds for every
Pec AP(M, W).

PrOOF. As in the proof of Lemma (1.1), we restrict ourselves to decomposable
p-forms on M with values in W, ®=w®/, where weSec W and A€ AP(M). Then

(Vy(wRA)AP(Y) = (Vew) (LA p(Y))+wR((Vx DA p(Y))
$on dw®2s) = (Vw)Ai+wRds
are valid and therefore it is sufficient to prove the formulas:
(a) (Vw)AZL = (—1)? trace {(X. Y) — (1x o Vw)R(AAp(Y))},
(b) di. = trace {(X,Y) = y(Y)A(Vx A)}.

We verify formula (a) in case when Vw is decomposable, i.e. Vw=v®w holds
for some veSec W and we A'(M). Let meé M be an arbitrary point and choose vector
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fields E,. ..., E, as in the proof of Lemma (1.1). Then
(Vw)hi(m) = e@(w/2)(m) = v® [Zcu(E)y(E )] Ai(m) =

_5:' w(E)e@(y(E)N2)(m) =(— I)P 5' w(EYv@(2Ny(E))(m) =

= (—1)" trace {{X. Y) = (1y o VW)R(AAp(Y)).

Turning to the proof of formula (b), let me M and let E,. ..., E, be as above. Since

[E;, E;J(m)=0 for every i, j=1,...,n we have
4
1A)(E,,, ..., E = — S (—=VE (ME,,.... E; s oors E; ))(m) =
(d)(E;, Jm) (p+l);‘:‘u( VE, (A(E;, b D) (m)
| - :
{p+l)} "{_I)J(V}, ,)(b“l soe E‘:’. “esy !;'F)(”]) -

(P'!'I})Z.‘,(_- l)J r(ﬁgj)(baj}("”{v}.' f)(Elu ey El‘,"' At

- ‘:1( (E)AN(Ve, A))(E,,, ..., E; )(m) = trace {(X.Y) - Y(VIMNVONE,. ..., E; )(m)

E,-p)(m) =

which accomplishes the proof.
Now we are able to verify the previously mentioned formula of the adjoint
operator o as follows:

Proposition (1.1). 0@ = —trace {(X, V)~ 1,0V, @} = —trace {(X. Y )=V o1,®} is
valid for every ®c AP(M, W).

Proor. By virtue of Corollary (1.1) it is enough to prove the first equality.
The adjoint operator of d is unique and therefore we have to check the validity
of the characteristic formula of the adjoint operator d, i.e. restricting ourselves
to decomposable forms, we have to show that

(r@m, d(w®2i)) = (—trace {(X,Y) - (1yoVy)(r@w)}, wR4)
is valid for every v, wéSec W and Z€ AP(M). w€ A?*(M). We have

((ty o V(e Rw), wR2) = (Vx0)R(1y w), wR ) +(0@(1y o Vy) 0, wR 2) =
= (Vxv, W)y @, 2)+ (0, w)(1y(Vy o), 2) = (Vyo, w)(w, (V)N 2) +
+(0, W)(Vy @, p(Y)A2) = (@, 7(Y)A D) X (0, w)— (2, Vyw)(e, 7(Y )A )+
+(e. w) X(, y(Y)A L) = (e, w)(w, Vy(3(Y)A 7)) = X((r, w)(ew, p(Y)N 1)) —
—(0®@w, Vy(w((Y)A D)) = X(0Q@w, wR(y(Y)IA L) —
~(0@w, Vi (wR(y(Y)A2)).
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Now we state that
trace {(X, ¥) ~ [ X(v®w, y(Y)Ai)v} = 0.
M

Using the definition of the inner product on A?*'(M, W)—~M we obtain

(1@, w@(((Y)AL) = (v, w)(o, y(Y)AL) = (v, w)(y, 2) = (1y, (v, W) )
and therefore it is enough to prove that

trace {(X, Y) -~ fX(l,,,u, 1')1?} = trace {(X, 1)~ fvx((‘rﬂ, ")U)} =0
M M

is valid for every uc A?*1(M) and ve AP(M).
Let g€ A*(M) be the 1-form on M defined by

e(X) = (iypn, v), XeX(M).

Defining the (n—1)-form « according to Lemma (1.2) we have, by virtue of Stokes
theorem, that

trace {(X. Y) -~ f?x((:r;:,v)v)} = fdor = 0.
M M

So, using Lemma (1.3) we obtain
(®@w,d(w®2i)) = (tQ@w, trace {(X,Y) - Vy(w (y(Y)AAD)}) =
= trace {(X,Y) — (vQw, Vx(w(H(Y)AD))} =
= —trace {(X,Y) = ((1iy o Vy) (v Qw), wR 1)} =
= (—trace {(X,Y) ~ (iy o V) (0 @)}, w®17)

which accomplishes the proof.

II. Homotopy classes and harmonic mappings

Let M and M’ denote complete Riemannian manifolds of dimension n and k
respectively, and suppose further that M is compact and oriented. If f: M~ M’
is a mapping of class C* then let F—~M be the vector bundle obtained by pulling
back the tangent bundle 7M’—~M" along f. Then the elements of A°(M, F) are
canonically identified with the vector fields along f and the tangent map f, can
be considered as a specific 1-form on M with values in F. The covariant differentia-
tion V' of M’ canonically determines a covariant differentiation

Vf: A%M, F) - AN (M, F)
by

o

1x(VFu) = Viu = Vi yuc A°(M, F)

for each X€ X(M) and uc A°(M, F). The metric tensor g’ of M’ canonically induces
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a positive-definite inner product on the fibres of F—~M and so the bundle F—-M
becomes a Riemannian-connected bundle. From now on, if there is no danger of
confusion, we denote the differential operators on F—-M simply by V, d, 0 and
A=dod+0dod omitting the upper index F.

The mapping f: M—M" of class C? is said to be harmonic if df,=0.

Lemma (2.1). f, is closed, i.e. df,=0. The mapping f: M—~M" is harmonic
if and only if Af,=0.

Proor. It is enough to restrict ourselves to the case when f,=w®w, where
wéSec F and w€ A'(M). From the definition of the tangent map f, it follows that
 is exact, i.e. w=du is valid for some scalar ¢ on M. Then we have

df, =d(w®dp) = (Vw)A(dp)+wR(d*n) = (Vw)A(dp).

So, it is sufficient to prove that the form (Vw)/A(du) is symmetric. Indeed, if X
and Y are vector fields on M then

1
1 1
= 3(dﬂ(Y)Vx“’_tlp(X)v‘f W) - 5(dp(Y)V}t(x,w—(f‘u(X)v;-‘(x)w) =

| ; ;
= ) (da“(y)vd,.(x,w“’—dﬂ(X)Vdu(r)w “']:'x o:,,((Vw);’\, (dﬂ)J,

which accomplishes the proof of the first part of the lemma.
Now, suppose that Af, =(dod)f,=0. Then

0 = (AL, fL) = (d0d) s, f.) = 9. ofs)

and therefore f is harmonic. The converse is trivial and thus our lemma is proved.
Now let us consider the de Rham decomposition

f. =du+0.+Q,

where uc A°(M, F) is a vector field along f, 26 A*(M, F) and Q is a harmonic
1-form on M with values in F. Our present aim is to eliminate the second term
of the right hand side. For this reason we calculate the operator «* explicitly as
follows:

Lemma (2.2). Let W~ M be a Riemannian-connected bundle on M and me M.
Let ey, ..., e, be a frame in T, (M) with vector field extensions E,. ..., E, such thar
g(E;, E))(m)=9¢;, and Vg E;(m)=0 for each i, j=1,...,n. Then

l\dx
(W

d*w(m) = — > N(E;, E;))w@y(E)Ny(E;)(m).

r| —
I
I
&

i=1]
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Proor. Using Lemma (1.3) we have

d*w(m) = > VEJ{ HI(VEI w)®y(£,)}f‘-7(£;)(m) =

Jj=1 i=

- ij (Ve, Ve w)@y(E) Ay (E;)(m) =
~ -

-

= 2 2 (Ve Ve, — Ve Ve, —Vig, g, )w}y(ED Ay (E))(m) +
iS1j=
+ 2 2 (Ve Ve, W)@y (E)AY(E;)(m) =

i

i

iy 8 Z, N(E E)w@y(E)Ny(E;)(m) —d*w(m),

i=1]

0\

and hence our formula for d*w is obtained.
From Lemma (2.2), it follows easily that ¢*=0 if the target manifold M’
1s flat Riemannian manifold.

Coroliary (2.1). Let f: M—-M" be a mapping of class C* where M’ is a flat
Riemannian manifold. Then the decomposition

f, =du+Q

holds, where ucSec F is a vector field along [ and Q is a harmonic 1-form on M with
values in F.

ProOF. For the 1-form f, € A" (M, F) the de Rham decomposition
[, =du+0i+Q

is valid, where ucSec F, 26 A2(M, F) and Q is a harmonic 1-form on M with values
in F. Applying the operator d to each side of the above equation and using Lemma
(2.1) we obtain

0 =df, = d*u+doi+dQ = dos.

Hence 0={(do0)4, 2)=(d}, d.), i.e. 4=0, which accomplishes the proof.
Now let /* M~ M’ be a mapping of class C* and let w be an arbitrary vector
field along /. Since M’ is complete we can define a mapping

h: M - M’
by
h(m) = exprimy W MEM.

Let H—-M be the vector bundle over M obtained by pulling back the tangent
bundle 7M"~M" along h. So F-M and H--M are vector bundles over the
common Riemannian manifold M.
Let
T.: Sec F - Sec H

be the canonical isomorphism defined by means of parallel displacement, i.e. if
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ucSec F is a vector field along f and if me M then let 7, ()€ Tym(M’) obtained
by the parallel displacement of u along the geodesic from f(m) to h(m)

S+ €XPrmy (S Wy), 0=s=1

It is clear that 7, is an isomorphism between the vector spaces Sec F and Sec H.
The mapping
t,: AY(M, F) — A°(M, H)

can be extended to an isomorphism
t.: AP(M, F) - A*(M, H)
for every peN by the agreement
7, (u®4) = (1, (u)®4
for each ucSec F and i€ A?(M). Furthermore t,, commutes with iy.
Lemma (2.3). The mappings [ and h are homotopic.

ProoOEF. Let
@: [0, 1]XM - M’
be defined by
@(s, m) = expym(sw,), 0=s=1 and meM.

Obviously @ is a homotopy between the mappings f and h.

The isomorphism t,, ensures a comparison between the vector bundles F—-M
and H- M. Our present aim is to give explicite connections between the covariant
differentiations VF and V# of the bundles F—-M and H-M, respectively.

In the proof of lemma below we use the following notation: If «: (a, b)—~M’
i1s a curve of class C? and a=x=y=5b then

Ta(x.- ."): T:(x)(M’) o Tw[r)(M 3

denotes the parallel displacement along « from a(x) to «(y). If x=0 and y=I
then we use 1, instead of 7,(0, 1).

Lemma (2.4). Let M’ be flat Riemannian manifold. Then the diagram
Sec F—=x-Sec H
vil| [vi'

Sec F—x-Sec H
commutes for every Xe X(M).

PROOF. Let mé M and y: (—e, &)= M a curve of class C~ with y(0)=m and
y(0)=X,,. Put @=foy and Y =hoy. Then woy is a vector field along ¢. If
ucSec F is an arbitrary vector field along f then

.
(twoVit)w =1, 0 Vo = 1, o h {t6{0, B) Mg — Uy} =

2
= 11.1..113 % {10 075(0, h) Mgy — TuUp(o))-



240 Gabor Toth

On the other hand
e |
(VE ot u) = Yoy 7o (0) = }ll_il;l £y {7 (0, h)~1 o1, UGy — Ty le)}-
Since M’ is flat the parallel displacement depends only upon the homotopy classes
of curves and therefore
74(0, h)~1ot, =1,07,(0,h)", —e<h<e
which accomplishes the proof.
Lemma (2.5). If M’ is flat then h,=1,0(f, +dw).

Proor. Since t,, and 1y commute and Viw=(iyod)w, it is sufficient to
prove that h (X)=t,0(f,(X)+V{w) holds. Let mc M and let

y: (—&,e)-M >0

be a curve of class C*= with y(0)=m and j(0)=X,,. We verify the above equation
at the point m.

At first we prove the lemma in case when M =R*. Identifying every tangent
space of R* to R* itself we obtain

h(X) = (hoyy ©) = lim —{h(()) ~ h((O)} =

e l,‘_‘.‘},'i‘ {FG@)-f(O)} +1. l,iﬂ'} o0 =Wy} =

= 1,,0(f01) (0 +7,, 0 Vi o yyW = T O(fu(Xu) + VRx W) =
= 1, o(fu (X) + V£, W).

Now let M’ be an arbitrary flat manifold and choose a simply connected open
neighbourhood U of f(m). Then there exists an isomerty ¢: U-—~R*

At first we investigate the case when w is small at mc M with respect to U,
i.e. there exists a neighbourhood ¥ of m such that exp (-, (tw, )€U holds for every
m'eV and 0=t=1. ¢, w|V is a vector field along ¢of|V and

@(h(m)) = @ (EXP )W) = CXP::f(m))(‘P* w)
holds. From the first step of our proof it follows that
0 oh(X,) = (9 0 M) (X,) = T, (9 0 (X + Vigo puxp(@4W)) =

3 Tvnw(q’* Of* (Xm_) T, (Vf\t( -\’m)“’)) = @y {rw(f* (Xm) P Vfo(l'...)w)}
and hence
h*(Xm) =Tw o[f*(Xm) +Vf¢(lm)w)
holds.

Turning to the general case let w be an arbitrary vector field along / and let
{(U,, 9,): € F} be an atlas for M’ such that for every «€.# the mapping ¢,: U, ~R"
is an isometry. Let » be a positive integer such that for every mé M and 0=1=1
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the vector field 7, [% w] is small at mé M with respect to some U,. Then let us

define the functions
W: M-+M, k=0,...n
by h°=f and
h*(m) = expe-i(m) [tk_, (—}'- w]]

for every me M. It is easy to see that h"=h. It follows that

hi(X,) = L, [f;(X’“Hvx"'[]? w]]

and

06 =7, (3] [hi CARAA LW (> u]]] =

=t ) e e () e (. (7)) -

= Ty [_f,(Xm) +%me w]. .
Hence by induction we have

hE(X,) = T4 [f,, ) +kv, ]
=N n

for every k=1,...,n. If k=n then our result is obtained.

Theorem (2.1). Let M be compact, oriented and let M’ be flat, complete Rieman-
nian manifold. Then every mapping f: M- M’ of class C?, p=2, is C?-homotopic
to a harmonic mapping.

Proor. Consider the de Rham decomposition
f.=du+2Q,

where ucSec F and Q is harmonic. Let

h: M- M’
be defined by
h(m) = exps (—u,) meM.

Then, from Lemma (2.3), it follows that f and & are C?-homotopic. We show that
h is a harmonic mapping. Indeed, from Lemma (2.4) we have

oh, = —trace {(X,Y) - V¥, h,} = —trace {(X,Y) - Vg1, ([, —du)} =
= —1_,trace {(X,Y) - Viiy(f, —du)} = —1_ (trace {(X,Y) - V51, Q}) =
=—1_,0Q2)=0

which accomplishes the proof.

4+
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In the proof of Theorem (2.1) the homotopy @ between the mappings / and
h has the property that for every mée M the curve @( -, m) is a geodesic. Two mappings

fih: M- M’
of class C?, peN, are said to be strictly homotopic if there exists a C”-homotopy

@: [0,1]XM M’
between them such that
d(.,m): [0,1] - M’

is a geodesic for every mé M. The mappings f and h are called geodesically homo-
topic if there exist mappings /hy, ..., h,: M—~M" with hy=f and h,=h such that
for every i=1, ..., q the mappings 4;_, and h; are strictly homotopic.

Lemma (2.6). The relations of homotopy and geodesic homotopy are identical
to each other.

ProoOF. It is sufficient to show that if the mappings
fih: M- M’

are homotopic then they are geodesically homotopic too. Let @ be a homotopy be-
tween them. From the compactness of M it follows that there exists a positive
number ¢ such that if mé M and ¢, s€[0, 1] with |t—s|<=¢ then the points ®(z, m)
and @(s, m) can be connected with a unique minimal geodesic. Let O0=t,<t,<...
...=t,=1 be a partition of [0, 1] such that max {|t;—¢#_,|: i=1, ..., q}<e. Then
the mappings @(t;_,,.) and @(z;,.) are strictly homotopic for every i=1, ..., q.

The following statement enlightens the connection between homotopic har-
monic mappings:

Proposition (2.1). Let M’ be flat and complete Riemannian manifold and let
fih: M - M’

be strictly homotopic harmonic mappings of class C*. Further let uc Sec F be the vector
field along f with h(m)=exps.,u,, for every mc M. Then for every mycM there
exists a neighbourhood U, of m, and there exists a vector field X, on the set f(Uy)c M’
such that

ulUy = Xpof
is valid.
ProOF. By virtue of Lemma (2.5) we have
h, = 1,(f,+du).
Applying the operator d to each side of this equation we have
0 = oh, = ot (f,+du) = 1,(0f, +9du) = t,0du,

i.e. we obtain that du=0. So Viwu=0 is valid for every vector field XcX(M).
Now let my¢ M and let f(U,) be a simply connected neighbourhood of f(m,).
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We state that w,, =u,, holds for every m,, m,,cU, with f(m,)=f(my). To see
this let
y: [0,1] = U,

be a curve of class C*= such that ]:(0) =m and y(1)=m,. Further let Z be an ex-
tension of § to M. Then Vfu=0, i.e. u is parallel along y. But f (y(O))-f (m,)=
=f(my)=/(y(1)) and the loop foy is 0-homotopic because f(U,)= M’ is simply
connected. The manifold M” is flat and so the parallel displacement depends only
upon the homotopy classes of curves. It follows that wu, =uwu,,. Now let X, be de-
fined on f(U)c M’ by X,(f(m))=u,, mcU,. It is clear that u|Up=X,0f and
so our statement is proved.

Theorem (2.2). Let M be compact, oriented and let M’ be flat, complete Rieman-
nian manifold. Further let f: M—M" be a harmonic mapping. If f is homotopic
to a constant map then f itself is constant.

ProOOF. By virtue of a theorem of Hartman in [3] there exists a homotopy
®: [0, 1]XM -~ M,

with @(0, -)=f and (1, -) = constant map, such that for every 0=¢=1 the
map ®(t, -): M—~M’ is harmonic. Hence, by virtue of Lemma (2.6) we may sup-
pose that there exist harmonic mappings h,, ..., h,: M—M’ with f=h, and h, =
= constant map such that for every s=0,...,¢g—1 the mappings &, and A, ,
are strictly homotopic by a vector field w, along A,.

Let us suppose that A, is constant for some s+1=¢. Then we have
(hs)* i Tr.;r"((h.+1)gl +dus) =~ Tux(d!i"').

Applying the operator o to each side of the above equation we obtain that du*=0.
So (hy),=0, ie. hyis a constant map. Thus our theorem is proved.

Corollary (2.2). On flat, complete Riemannian manifold there is no closed geo-
desic which is 0-homotopic.

As the isometries S'--S* show, we cannot expect the extension of the above
corollary to non-flat manifolds.

ITI. Mappings into commutative groups

Let M and M’ be Riemannian manifolds and let [M, M’] denote the set of
homotopy classes of continuous mappings of M into M’. If M’=G is a Lie group
then [M, G] can be endowed with a group structure from G by means of the point-
wise multiplication.

If M, and M, are Riemannian manifolds and

e Ml—’Mg
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is a continuous mapping then it induces a mapping

n,: [My, M'] - [M;, M’]
defined by
n,(f) =fon for every f: My~ M’,

If M’=G is a Lie group then n_ is easily seen to be a homomorphism of [M,, G]
to [M,, G].

Proposition (3.1). If n, 0: M,~M, are homotopic continuous mappings then
", =0,

Corollary (3.1). If M’ is contractible then [M, M’] is trivial, i.e. there is only
one homotopy class.

Now let
. M - M;
be a continuous mapping of M; to M;. 7 induces a mapping
T [M, M] -~ [M, M;]
defined by
t™(f) =tof for every f: M - Mj.

If G, and G, are Lie groups and t: G,—~G, is a Lie group homomorphism then
™ is a homomorphism of [M, G,] to [M, G,].

Proposition (3.2). If 1, 0: M{—~M; are homotopic continuous maps then 1" =a".

Corollary (3.2). If G is contractible then [M, G] is trivial. Especially [M, R*]
is trivial.

Proposition (3.3). If G, and G, are Lie groups then
[M! Gle2] — [M’ GI]X[Ms G2]

Now we want to determine the group [M, G] for every commutative group G.
We need two lemmas as follows:

Lemma (3.1). A mapping f: T"—T is affine if and only if it is harmonic.

ProoF. Let E,, ..., E, be the canonical coordinate fields of T" and let us sup-
pose that f: T"—T is an affine mapping. Then f/ maps geodesics of T" onto geo-

desics of T, i.e.
Vies fL(E) =0
holds for every i=1, ..., n.
So

of, = ';%1 Vi [ (E) = —gﬁ; Veaeo [ (E) =0,

i.e. f1s harmonic.
Conversely, let us suppose that f: T"—T is a harmonic mapping. Then, by
virtue of a theorem of Lichnérowicz of [5] f=hoJ, where J: T"~B(T") is a uni-
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quely determined harmonic mapping of T” into its canonical torus B(T") and h:
B(T")--T 1is an affine mapping. From b,(T")=dim B(T") it follows that B(T")=T"
and J=idqm, i.e. f=h.

Lemma (3.2). [T", T]=Z".

ProOF. Every homotopy class of [T", T] contains a harmonic mapping and
so it is easy to see that [T", T] is isomorphic to the group of affine mappings of
T" to T which sends 0¢T" into 1€T. But if f: T"-T is an affine mapping with
f(0)=1 then there exists (ry, ..., r,)¢Z" such that

f(‘|91~'--a (P,,}ZCXP[I. _Z;rjtpj}s (‘Pl"".‘(pn)ET"
Jj=
which accomplishes the proof.

Theorem (3.1). Let M be compact, oriented Riemannian manifold and let G be
a commutative Lie group. Then

[M, G] = ZnM0-b,),

PrOOF. At first let G=T. Then, by virtue of the factorization theorem of
Lichnérowicz, we have [M, T]=[B(M),T]). From dim B(M)=5b,(M) it follows
that [B(M), T]=Z"™ and so the statement is proved when G=T.

In the general case G=RPXTY, p+qg=k, and hence
[M, G] = [M, R*XT1) = [M, R?)X[M, T =
= [M, T9) 2= [M, T|® = ZhMa = Zh(Mnb©G),

Thus our theorem is proved.
As an easy consequence of the above theorem we obtain the well-known the-
orem of [5] as follows:

Corollary (3.4). Let M be compact and oriented Riemannian manifold. Then
by (M)=0 if and only if every continuous mapping of M into a torus is homotopic
to a constant mapping.
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