A generalized Pexider equation

By JOHN A. BAKER (Waterloo, Canada)

In [2] the general solution of the functional equation
Fx)+G(y) = P(x+»)+Q(x/y), x,y =0,

was found among functions F, G, P and Q mapping the positive real numbers into
an additive abelian group H in which division by 2 is uniquely defined. By this we
mean that for every x¢ H there exists a unique y€ H such that x=2y, in which
case we write y=x/2. In this paper we study the functional equation

(1 f(x)+2(y) = p(x+y)+q(xy)

which s a generalized Pexider equation (see [1]). Using different techniques than
those employed in [2] we will prove

Theorem 1. Let (H, +) be an abelian group in which division by 2 is uniquely
defined and suppose f, g.p,q: (0, =)—~H. Then (1) holds for all x,y=0 if and
only if f(x)=a(x*)+a(x)+m(x)+b. g(x)=a(x*)+a(x)+m(x)+c, p(x)=2(x*)+
Fa(x)+ p and q(x)= —2x(x) 4+ m(x)+y forall x=0where b, ¢, f and y are constants
in H with b+ c=p+vy and where x, a, m: (0, =)~ H such that for all x. y =0, a(x+y)=
=x(x)+2(y), alx+y)=a(x)+al(y) and m(xy)=m(x)+m(y).

If p and g satisfy the Pexider equations p(x+y)=p,(x)+pa(¥), g(xy) =g, (x)+
+qy(y) for x,y=0 then clearly p(x+y)+q(xy)=f(x)+g(»y) where f=p,+q,
and g=p,+¢.. But Theorem | shows that not every solution of (1) can be obtained
in this way. Thus (1) may be thought of as a generalized Pexider equation.

If (1) is assumed to hold for all real x and v, then putting y=0 shows that
/ and p differ by a constant. Putting x=0 shows that g and p differ by a constant.
Thus, for an appropriate Q, p(x)+p(y)=p(x+y)+Q(xy) for all real x and y.
This equation was studied by Ecsepr and Hosszu [5].

Equation  x* ]; also equivalent to what might be called a generalized Jensen
equation (see [\ 4 )-or if (1) holds for x, y=0 and if we replace x by x/2, y by /2

2
and let R{_\‘):q(-'%—] we find that

[.1’ +y
p

5 ]+ R(Vxy) = o(x)+¥(y)
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where ¢(x)=f(x/2) and Y(y)=g(»/2). Interchanging x and ) we see that ¢
and  differ by a constant and so we have

5 [r;t] +R(Vxy) = T(X)+T().

Putting x=y we find 27(x)=p(x)+ R(x) so that

2p [x;”'] +2R(Vxy) = p(x)+p() + R()+ R(y)

which is a generalized Jensen equation.

In order to get some feeling for theorem 1 and its proof let us consider the
“regular” solutions of (1). Suppose f, g, p and ¢ are real valued, twice differentiable
on (0, =) and satisfy (1) for all x, y=0. Differentiating (1) with respect to x and
then differentiating the resulting equation with respect to » we conclude that

p(x+y)+q(xy)+xvq”(xy) =0 for all x,y=0.

From Lemma 1 below we deduce that p” is constant and hence p(x)=axx*+ax+fi
for all x=0 where %, a and § are real constants. Similarly, since ¢"(x)+xg"(x)=
= —2a for x=0, we find that ¢(x)= —2xx+k log x+7y, x=0, where k and y are
real constants. Having found p and ¢ it is easy to determine f and g.

To prove Theorem | we determine p using results of Djokovi¢ [3] concerning
a difference analogue of the differential equation p”(x)=0. We then use a theorem
of Daréezy, Lajkoé and Székelyhidi [4] to find g.

Lemma 1. /I S is a set and F, G: (0, =)= S such that F(x+y)=G(xy) for
all x,v=0 then F and G are constant.

Proor. Fix k=0 arbitrarily. Then F[.\'+%]:G(kl for all x=0. If r=2}Vk

then there is an x=0 such that .\*+%—r. Hence F(1)=G(k) for t=2}k, ie.

F is constant on (2)k, =) for any k=0. Thus F is constant on (0, =) and hence
so is G.
We will also need

Lemma 2. If S is a set and F,G: (0, =)~ S such that FQ2x+y)=G(x+2y)
for all x,y=0 then F and G are constant.

2u—vp 20—u

Proor. For O-c;{).--r:u-a.?r put x= 3 =0 and y= 3 =0 so that

—

2x+y=u and x+2v=v. Thus F(u)=G(v) for —=u-==2r and hence F is con-

9|

v .
stant on [7‘ 21') for any v=0. It follows that F is constant on (0, =) and hence

G 1s as well.



A generalized Pexider equation 267

Notation. (H, +) denotes an abelian group in which division by 2 is uniquely
defined. If f: (0, =)~ H and ¢t=0 we let A,/ (x)=f(x+1)—f(x) and &, f(x)=
=f(tx)—f(x) for all x=0.

PrROOF OF THEOREM 1. Suppose f. g.p.q: (0, =)-H and (1) holds for all
X, y=0. Then
p2x+y)+q(2xy) = f(2x)+g(»)

and
p(x+2y)+q(2xy) = f(x)+g(2y)
so that
) p2x+y)—p(x+2y) = @(x)+y(y) for all x,y =0

where @(x)=f(2x)—f(x) and Y(y)=g()y)—g(2y) for all x, y=0.
Replace x by x+r in (2) and subtract (2) from the resulting equation to get

(3) A, p(2x+y)—A,p(x+2y) = 4, ¢(x) for x,y,r=0.
Replace v by y+s in (3) and subtract to get
(4) 4,4, p(2x+y) = 45,4, p(x+2y) for x,y,r,s=>0.

Thinking of r and s as parameters and using Lemma 2 we conclude from (4)
that 4,4, p(2x+)y) depends only on s and r. Hence we may write 4.4, p(x)=
=C(r.s) for x,r,5s=0, and then conclude that

(5) 4,4,4,p(x) =0 for all x,r,s,t=>0.
Now from [3] it follows that
(6) p(x) = A(x,x)+a(x)+p, x=0

where A: (0, =) X(0, =)— H 1s symmetric and biadditive, a: (0, =)~ H is additive
and f is a constant in H.
Using (1), (6), the symmetry and biadditivity of 4 and the additivity of a we
find that
g(tx) = f(IO+f(x)—A(@, 1) —24(x, )—A(x, x)—a()—a(x)-f
so that
(7) 0,q(x) = q(ix)—q(x) = @)+ B(x,1) for x,t=0

where @(1)=f(1)—f(1)—A(t,t)+A(1, 1)—a(t)+a(l) and B(x,1)= —2A(x, 1)+
+2A4(x, 1) for all x,t=0. Notice that B(x+y,1)=B(x,1)+B(y,t) for all
x, .10 and so from (7) we conclude that

(8) 20,q [x-;y] = 0,4(x)4+d,q(y) forall x,y, t=0.

It follows from theorem 1 of [4] that, because of (8),

9) g(x) =mx)+J(x) for x=0
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where m. J: (0, ==)~H such that

(10) m(xy) = m(x)+m(y)
and
(11) 83 (“t}] = J(x)+J(y) forall x,y=0.

Now it is well known that since J satisfies (11) there must exist an additive function
a,: (0, ==)~R and a constant y€ H such that J(x)=a,(x)+7y for all x=0. It is
notationally convenient to let «,(x)= —2x(x) so that (9) may be written

(12) q(x) = m(x)—2a(x)+y, x =0,
where a: (0, =)~ H such that
(13) a(x+y) =a(x)+a(y) for all x,y=0.

It remains to show that A(x, x)=ua(x?) for x=0 and to determine f and g.
Interchange x and y in (1) and deduce that

(14) p(x+)+q(xy) = h(x)+h(y). x.y =0
where
(15) h(x) = —f(x}-zi-g(x} for x=0.

From (14), (6), (10), (12), (13), the biadditivity and symmetry of 4 and the
additivity of @ we find that

Ax, x)+24(x, )+ Ay, ) +ax)+a(y)+p+m(x)+m(y)—22(xy)+7y = h(x)+h(y)

or

(16) A(x,y)—a(xy) = k(x)+k(y) forall x,y=0

where

(17) 2k(x) = h(x)—A(x, x)—a(x)—m(x)—-ﬁ:iz_—? for x=0.
From (16) it follows that

(18) A(x, 1)—a(x) = k(x)+k(1)

and

(19) A(x,x)—a(x?) = 2k(x) for x =0.

From (18) and (19) we find

(20) A(x, x)—a(x?) = 24(x, 1)=2x(x)—2k(1), x = 0.
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Replacing x by 2x in (20), using additivity and dividing by 2 we find

(21) 2A(x, x)—2a(x®) = 24(x, 1) —=2a(x) - k(1).
Subtracting (20) from (21) gives
(22) A(x, x)—a(x?) = k(1).
From (19) and (22) it follows that 2k(x)=/k(1) for all x=0 and hence
(23) k(x) =0 for all x=0.
Now (19) and (23) imply A(x, x)=u«(x?*) so, from (6),
(24) p(x) = a(x*)+a(x)+p for x=0.
From (17) and (23) it follows that
(25) h(x) = ot(x”)+a(x)+m(x)+ﬁ+}' for x=0.

>
But from (1) and (14) we find

f(x)+g(y) = h(x)+h(y) for x,y=0

from which it follows that f (and g) differ from /& by a constant. Thus we have

(26) f(x) = a(x*)+a(x)+m(x)+b
and
(27) g(x) = a(x*)+a(x)+m(x)+c for x=0

where b and ¢ are constants.

From (1), (12), (24), (26) and (27) it follows that f+y=b+c.

An casy calculation shows that the converse is true. This completes the proof
of Theorem 1.

Theorem 2. Suppose f,g,p,q: (0, )=R (the real numbers) such that (1)
holds for all x,y=0. If there exist Lebesgue measurable subsets S and T of (0, =)
of positive Lebesgue measure such that p is bounded on S and q is bounded on T then
there exist real constants b, ¢, B, v, 0, 6 and © such that f(x)=px*+ox+1tlog x+b,
g(x)=px*+ox+tlogx+e, p(x)=pox+ox+p and q(x)=-—2p0x+tlogx+y for
all x=0.

Proor. From (5) we have A4?p(x)=0 for all x,7=0 and p is bounded on
a set of positive measure so, from a theorem of KEMPERMAN [6], it follows that

p(x) = ox*+ox+p for all x=0

where ¢, ¢ and f are real constants. Hence we conclude from (12) that m is bounded
on a set of positive measure and satisfies (10). It follows that m(x)=rtlog x for
all x=0 where 7 is a real constant. To see this let M(t)=m/(e’) for t real so that
M(s+t)=M(s)+ M(t) for all real s and 7 and M is bounded on a set of positive
measure. Thus (see [6]) M (r)=1t for all real r where 71 is a real constant. Therefore
m(x)=M (log x)=tlog x for all x=0. This completes the proof.
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