An extension theorem for a functional equation

By LÁSZLÓ SZÉKELYHIDI (Debrecen)

In this note we deal with extension theorems concerning a functional equation. This problem and the first results are due to Z. DARÓCZY and L. LOSONCZI [1] concerning Cauchy's functional equation. Since then several results and applications have been found ([2], [3], [4]). The present paper contains a new extension theorem for the functional equation $A_y^{n+1}f(x)=0$. In what follows **R** denotes the set of real numbers. If $f: D \subseteq \mathbf{R} \to \mathbf{R}$ is a function, n is a positive integer and $x, y \in D$, then let for $x, x+y, ..., x+(n+1)y \in D$

$$\Delta_y^{n+1} f(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k f[x + (n+1-k)y].$$

If f is a function then dom f and $\operatorname{rg} f$ denote the domain and the range of f, respectively.

Theorem 1. Let r>0 and n be a positive integer. Let $f: [0, r) \rightarrow \mathbb{R}$ be a function such that

$$\Delta_v^{n+1} f(x) = 0$$

for $x, y \ge 0, x + (n+1)y < r$. Then there exists a function $F: [0, \infty) \to \mathbb{R}$ such that

- (i) $\Delta_y^{n+1} F(x) = 0$ for $x, y \ge 0$,
- (ii) $f \subseteq F$.

PROOF. The proof is based on Zorn's lemma. Let \mathcal{F} denote the set of all functions φ with the following properties:

- a) $f \subseteq \varphi$,
- b) dom $\varphi = [0, p)$ for some p > 0,
- c) $rg \varphi \subseteq \mathbf{R}$,
- d) $\Delta_y^{n+1} \varphi(x) = 0$ for $x, y \ge 0$ and x + (n+1)y < p.

As $f \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$. The set \mathcal{F} is partially ordered with the obvious inclusion of functions. Moreover, if $\mathscr{C} \subseteq \mathcal{F}$, $\mathscr{C} \neq \emptyset$ and \mathscr{C} is an arbitrary chain, then for $h = \bigcup \mathscr{C}$ we get $h \in \mathcal{F}$. Thus by Zorn's lemma there exists a maximal element $F \in \mathcal{F}$. Let dom F = [0, R) and suppose that $R < +\infty$. Let $z \in \left[0, \frac{n+1}{n}R\right]$

and

$$\overline{F}(z) = \sum_{k=1}^{n+1} (-1)^{k+1} \binom{n+1}{k} F\left[(n+1-k) \frac{z}{n+1} \right].$$

If $z \in [0, \frac{n+1}{n}R]$ then for k = 1, 2, ..., n+1

$$0 \le \frac{n+1-k}{n+1} z \le \frac{n}{n+1} z < R$$

hence \overline{F} is defined at the point z. Further if $z \in [0, R)$ then

$$\overline{F}(z) = \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F\left[(n+1-k) \frac{z}{n+1} \right] =$$

$$= F(z) - \sum_{k=0}^{n+1} (-1)^k {n+1 \choose k} F\left[(n+1-k) \frac{z}{n+1} \right] = F(z) - \Delta_{\frac{z}{n+1}}^{n+1} F(0) = F(z)$$

that is $F \subseteq \overline{F}$. Let $x, y \ge 0, x + (n+1)y < \frac{n+1}{n}R$, then by the definition of \overline{F} and by $F \in \mathscr{F}$ we have

$$\sum_{j=1}^{n+1} (-1)^{j+1} {n+1 \choose j} \overline{F}[x+(n+1-j)y] =$$

$$= \sum_{j=1}^{n+1} (-1)^{j+1} {n+1 \choose j} \left[\sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F\left[(n+1-k) \frac{x+(n+1-j)k}{n+1} \right] \right] =$$

$$= \sum_{j=1}^{n+1} \sum_{k=1}^{n+1} (-1)^{j+1} (-1)^{k+1} {n+1 \choose j} {n+1 \choose k} F\left[\frac{n+1-k}{n+1} x + (n+1-j) \frac{n+1-k}{n+1} y \right] =$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F\left[\frac{n+1-k}{n+1} x + (n+1-k)y \right] =$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F\left[(n+1-k) \frac{x+(n+1)y}{n+1} \right] = \overline{F}[x+(n+1)y]$$

which implies

$$0 = \sum_{i=1}^{n+1} (-1)^{i} {n+1 \choose i} \overline{F}[x + (n+1-j)y] + \overline{F}[x + (n+1)y] = \Delta_{y}^{n+1} \overline{F}(x).$$

It follows that $\overline{F} \in \mathscr{F}$ and by $\frac{n+1}{n} R > R$ this is a contradiction.

Theorem 2. Let n be a positive integer and let $f: [0, \infty) \to \mathbb{R}$ be a function such that $\Delta_v^{n+1} f(x) = 0$ for $x, y \ge 0$. Then there exists a function $F: \mathbb{R} \to \mathbb{R}$ such that

- (i) $\Delta_y^{n+1} F(x) = 0$ for $x, y \in \mathbb{R}$,
- (ii) $f \subseteq F$.

PROOF. Let $F_0 = f$, m be a nonnegative integer and suppose that we have defined the function $F_m: [-m, \infty) \to \mathbb{R}$ such that for $-m \le x + (n+1-i)y$ (i=0, 1, ..., n+1) the equality

$$\Delta_{\nu}^{n+1} F_m(x) = 0$$

holds and $F_m \supseteq F_{m-1}$. Let $x \ge -(m+1)$ and

$$F_{m+1}(x) = \sum_{k=0}^{n} (-1)^{k+1} {n+1 \choose k} F_m(x+n-k+1).$$

Then obviously $F_m \supseteq F_{m-1}$. If $-(m+1) \leqq x + (n+1-i)y$ (i=0, 1, ..., n+1) then

$$\sum_{j=0}^{n} (-1)^{j+1} {n+1 \choose j} F_{m+1}[x + (n+1-j)y] =$$

$$= \sum_{k=0}^{n} (-1)^{k+1} \binom{n+1}{k} \left[\sum_{j=0}^{n} (-1)^{j+1} \binom{n+1}{j} F_m[x+n+1-k+(n+1-j)y] \right] = F_{m+1}(x)$$

thus $\Delta_y^{n+1} F_{m+1}(x) = 0$.

Finally we define $F = \bigcup_{m=0}^{\infty} F_m$, it is obvious that F is a function fulfilling the required conditions.

Theorem 3. Let r>0 and n be a positive integer. Let $f: (-r\sqrt{1+(n+1)^2},$ $r\sqrt{1+(n+1)^2}$ $\rightarrow \mathbf{R}$ be a function such that

$$\Delta_y^{n+1} f(x) = 0$$
 for $x^2 + y^2 < r^2$.

Then there exists a function $F: \mathbb{R} \to \mathbb{R}$ such that

- (i) $\Delta_y^{n+1} F(x) = 0$ for $x, y \in \mathbb{R}$, (ii) $f \subseteq F$.

PROOF. Let $r_1 = \frac{r}{\sqrt{1+n^2}}$. If $x^2 + y^2 < r_1^2$ and $x, y \ge 0$ then $x + iy \in [0, r_1 \sqrt{1+n^2}) =$ =[0, r) (i=0, 1, ..., n). It is obvious that

$$\Delta_y^{n+1} f(x) = 0$$
 for $x, y \ge 0$, $x + (n+1)y < r$

thus, by theorems 1 and 2 there exists a function $F: \mathbb{R} \to \mathbb{R}$ such that (i) holds and F(x) = f(x) for $x \in [0, r)$. If $x^2 + y^2 < r_1^2$ and $x, y \ge 0$ then

$$f[x+(n+1)y] = \sum_{k=1}^{n+1} (-1)^{k+1} \binom{n+1}{k} f[x+(n+1-k)y] =$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F[x + (n+1-k)y] = F[x + (n+1)y],$$

that is F(x) = f(x) for $x \in \left[0, r \frac{\sqrt{1 + (n+1)^2}}{\sqrt{1 + n^2}}\right]$. Now let $r_z = r \frac{\sqrt{1 + (n+1)^2}}{\sqrt{1 + n^2}}$ then by a similar argument we get that

$$F(x) = f(x)$$
 for $x \in \left[0, r\left(\frac{\sqrt{1 + (n+1)^2}}{\sqrt{1 + n^2}}\right)^2\right]$

As $\frac{\sqrt{1+(n+1)^2}}{\sqrt{1+n^2}} > 1$ continuing this process we arrive at

$$F(x) = f(x)$$
 for $x \in [0, r \sqrt{1 + (n+1)^2})$.

If $x \in (-r\sqrt{1+(n+1)^2}, 0]$ then by a similar method we get

$$F(x) = f(x)$$
.

Thus $f \subseteq F$.

Definition. If $D \subseteq \mathbb{R}^2$ and n is a positive integer then let for k = 0, 1, 2, ..., n+1

$$D_k = \{x + (n+1-k)y : (x, y) \in D\}.$$

Theorem 4. Let $D \subseteq \mathbb{R}^2$ be an open and connected set with $(0,0) \in D$. Let n be a positive integer and $f: \bigcup_{k=0}^{n+1} D_k \to \mathbb{R}$ be a function such that

$$\Delta_y^{n+1} f(x) = 0 \quad for \quad (x, y) \in D.$$

Then there exists a function $F: \mathbb{R} \to \mathbb{R}$ such that

- (i) $\Delta_y^{n+1} F(x) = 0$ for $(x, y) \in \mathbb{R}^2$,
- (ii) $f \subseteq F$.

PROOF. Since D is open and connected, and $(0,0) \in D$, it is obvious that $\bigcup_{k=0}^{n+1} D_k$ is an open interval containing 0, for instance $\bigcup_{k=0}^{n+1} D_k = (-a,b)$ where a,b>0. As $(0,0) \in D$ there exists an r>0 such that $\{(x,y): x^2+y^2 < r^2\} \subseteq D$ and

$$\{(x,y)\colon x,y \ge 0, \ x+y < r\} \subseteq D.$$

By theorem 3 there exists a function $F: \mathbb{R} \to \mathbb{R}$ for which (i) holds and F(x) = f(x) for $x \in (-r, r)$. Let

$$p_0 = \sup \{p \colon F(x) = f(x) \text{ for } x \in [0, p)\}.$$

Obviously $r \le p_0 \le b$. Assume that $p_0 < b$. As $\bigcup_{k=0}^{n+1} D_k = (-a, b)$ for every $t \in (p_0, b)$

there exists $(x, y) \in D$ such that

Then

$$x, y \ge 0, x, x+y, ..., x+ny < p_0, x+(n+1)y = t > p_0.$$

$$f[x+(n+1)y] = \sum_{k=1}^{n+1} (-1)^{k+1} \binom{n+1}{k} f[x+(n+1-k)y] =$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} F[x + (n+1-k)y] = F[x + (n+1)y]$$

which contradicts the definition of p_0 . Consequently $p_0 = b$. Similarly we obtain

$$-a = \inf \{q \colon F(x) = f(x) \text{ for } x \in (q, b)\}.$$

References

- Z. Daróczy, L. Losonczi, Über die Erwiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. (Debrecen) 14 (1967), 239—245.
- [2] K. Lajkó, Applications of Extensions of Additive Functions, Aequationes Math. 11 (1974), 68-76.
- [3] J. RIMÁN, On an Extension of Pexider's Equation, Recueil des travaux de l'Institut Math. Nouvelle série, No. 1 (9), 1976.
- [4] L. Székelyhidi, Nyílt ponthalmazon additív függvény általános előállítása, MTA III. Osztály Közleményei 21 (1972), 503—509 (Hungarian).

(Received July 30, 1978.)