Differential-geometric Properties of Indicatrix Bundle
over Finsler Space

By MAKOTO MATSUMOTO (Kyoto)

To study indicatrices of a Finsler space is essential for studying the space itself,
as it has been emphasized by many authors (cf. [6]). It should be, however, awaken
that by studying indicatrices we can only see the behavior of tensors derived from
the fundamental function by differentiating with respect to the supporting element
alone. Therefore we naturally intend to study the set of indicatrices at all points
of the space. The set is regarded as a hypersurface of the tangent bundle, and so
we need the differential geometry of tangent bundle.

The author has studied the tangent bundle over a Finsler space ([2], [3], [4]).
In the present paper the tangent bundle is regarded as a differentiable manifold
which 1s equipped with a Riemannian metric called the O-lift and a linear connec-
tion derived from the Cartan connection. Although certain noteworthy results are
obtained in the present paper, it seems to the author that various new questions
have arisen one after another by the present studies.

All preliminary concepts are systematically described in the monograph [7].
The quotation from the monograph is indicated by putting asterisk.

§ 1. Preliminaries

This section consists of extracts from *Chapter 1V (concerned with the differen-
tial geometry of tangent bundle) of the monograph [7] and certain additional remarks.

(1) N-homomorphism

By F(F") is denoted the Finsler bundle of an n-dimensional Finsler space F",
i.e., the induced bundle n;'(L(F") from the linear frame bundle L(F") over F"
by the projection ny: T—F" of the tangent bundle T(F") over F". Next L(T)
indicates the linear frame bundle over 7. If a non-linear connection N is given in
T, we get a bundle homomorphism ¢y: F—L, defined by ¢y(u)=(/,(2),/f(2))
for u=(y, z)¢ F, where Iy is the (horizontal) lift with respect to the N and /] is the
vertical lift. With this bundle homomorphism ¢y the group homomorphism :

G(=GL(n, R))—~G(=GL(2n, R)) is associated, where ¢(8)=[g g] for g€G.
The ¢y is called the N-homomorphism.
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From a local coordinate (x') of x€ F" we obtain the induced coordinates')
(M) =(&!, XD)=(x', y’) of y€T and (X, y', z!) of u=(y, 2)€ F, where y=y'(d/ox’),,
z=(z,) and z,=z!(0/dx"). From the induced coordinate (¥*) the coordinate (¥, z})
of ze L is induced. In terms of these coordinates the N-homomorphism ¢y is written
as follows: For a point u=(y, z)=(x% )", z))é F the coordinate of ¢y(u)=2 is
(x, y', z}), where Z2 are given by

(1.1) (24, 200, 2oy, 200) = (b — 25 N7, 0, 20).

Real valued functions N'; on the domain of coordinate (x‘,)) are connection
parameters of the non-linear connection N. Let (z7')] be elements of the inverse
m~trix of (Z2). Then we get

(1.2) (@91 E %, @, ENR) = (795 0, (7NN (7)),

where (z7')¢ are elements of the inverse matrix of (z

(2) N-decompositions

By an N-homomorphism ¢, Finsler tensor fields are derived from a tensor
field on T as follows: Let V) be the tensor space of (r, s)-type, constructed from
the real vector n-space V and its dual space V'* by tensor product. Then a Finsler
tensor field K of (r, s)-type is regarded as a V] -valued function on F, satisfying the
equation K«B,=g 'K for any g€ G, where f, is the right-translation of F by g.
Similarly a tensor field K of (r, s)-type on T is regarded as a ¥-valued function
on L, satisfying K-y,=g 'K for any gcG, where V=V XV and 75 is the right-
translation of L by g. Now from K of (1, 1)-type, for instance, four Vit-valued
functions K}, &, n=1,2, on F are introduced by

Ki(v*, v) = (K- o)) (", 0), (v,0)),

Ki(@*, v) = (K- on)((", 0), (0,v)),

K$ (", v) = (K- ox)((0, v*), (v,0)),

K3 (v*, v) = (K- @y)((0, v*), (0, v)),
for any veV and any v*e V", where (v, 0), (0, v)eV XV and (v*,0), (0, v*)eV * XV *,
These K, are Finsler tensor fields of (1, I)-type and called N—decomposmons of K.
As to a tangent vector field X of 7, its N-decompositions X' and X? are re-

spectively horizontal and vertical components of X with respect to the N. That is,
putting X=X'(d/dx")+ X" (d/dy"), we have

X = X'(9)ox' — N7,0[dy)) +(X D+ N, X7)(9/dy"),

(1.3)

where X' (resp. X'V +N';X7) are components of X' (resp. X?).

1) Latin indices run from 1 to n, Greek indices run from 1 to 2n and (/) =n- i throughout. -
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(3) Linear connections of Finsler type

Suppose that a Finsler connection FI'=(I', N) be given on the F"; I' is
connection in F(F") and N is a non-linear connection in 7(F”"). By this N we get
an N-homomorphism ¢y and N-decompositions as above mentioned. Further a con-
nection @y () is induced in L. This is a linear connection on 7, said to be of Finsler
type and denoted by FI'. In the following we are mainly concerned with the Cartan
connection CI'; @y(I) is called of Cartan type and denoted by CT.

The relation between /A-basic vector field B"(v) (resp. v-basic vector field B"(v))
of FI' and basic vector field B(¢) of FI is given by qu(B"{u) =B((v, 0)) (resp.
@y (B°(v))=B((0, v))), which implies explicit form of connection parameters I',*,
of FI' in a coordinate (x', »') as follows:

F'k—r‘“‘. F}L’zﬁkN",-i‘N';r.-'a ‘Nrr_;rk
ik

Fpe =0, Pl s L)
(1.4) _‘fm .,x' | |
IJ,'”., (jﬁ r}”‘, LH*N'I*{"N’J'C"*_N"C!'*-
'ru‘llkl =0, Fu‘ai{}m - Cfiu
where I'j,=F/ +C;/.N", (cf. *(9.3)).
N-decompositions of the torsion tensor T and the curvature tensor R of CI
are given by

(1.5) (i a4, Tiles T, Tihas 13%) = (0, R, C, P, 0, 0),
(1.6) (Rru: RFs, RBy) = (B3R, 83 P%, 658Y), &n=1,2
Remark. T*,=R', for instance, means T,*)=R"%€V;', but not T/}=R';
in our usage of indices. In fact, from (1.4), we get
T = N';—8; N+ N*, T — N T — N (T f—=Ty) =
= R‘;,.+P"J-,N’,..—P"k,N’j+ NG N*;—Cf N%).

§ 2. The normal vector and tangent space of indicatrix bundle

We are concerned with an n-dimensional Finsler space F" with a fundamental
function L(x,y)') and the Cartan connection CI'=(I', N). For a fixed point
x=(x")e F* the equation L(x,y)=1 defines a hypersurface /, of the tangent
space F? of F" at x, which is called the indicatrix at x.

Consider the tangent bundle 7(F") over F". In the total space 7 the equation
L(x,y)=1 defines a hypersurface, consisting of indicatrices at all points of F”".

Definition. A hypersurface I(F") of the tangent bundle 7(F") over a Finsler
space F" given by the equation L(x,y)=1 is called the indicatrix bundle over
F". The intersection I(F") of I(F") with the fibre over a point x¢ F" is called the
indicatrix fibre over x.

1) We abbreviate L(x', ..., x", »', ..., »") to L(x, »).
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That is, /(F") is a subspace of T given by the equation L(x, y)=1 for a fixed
point x and is essentially equal to the indicatrix I,.

We take 2n—1 variables «' (1, J, K, ... run from 1 to 2n—1 throughout), in
terms of which the indicatrix bundle /(F") is given by parametric equations

(2.1) xi=xu"), y =y,
where the matrix
(2.2) (Bf)) = (B, B{) = (0x'[ou’, dy'[ou’)

is of rank 2n—1. These 2n—1 vectors B,, with components B}, are linearly inde-
pendent and span the tangent space of /(F"). Denoting N-decompositions (Bj,, Bf,)
of By, by (C;y, D;,) for brevity, we have

(2.2) (C}), D})) = (BY}), B’ + N',B})).

Throughout the paper we are concerned with the space (7, g, CrI), ie., the
tangent space 7 equipped with the O-lift & and the linear connection of Cartan typ€
CTI'. The 0-lift g is by definition a Riemannian metric of 7, whose N-decompositions
are

(2.3") (&11- &12» 822) = (8, 0, 8),

where g is the fundamental tensor of F" (*§ 21). Components of g in a coordinate
(x', ') are given by

(2.3) (&ij» &ipys By = (8ij+8s N'iN*;  N"i8,;5 8ij)s

where N'; are, of course, connection parameters of the non-linear connection N
of Cr=(r, N). Contravariant components of g are

(2.4) (89, g'D, gy = (g, — g N4, g+ g N, NJ)),
and N-decompositions are
(2.4 (258358 =(¢ 0™

where g ! indicates the contravariant fundamental tensor. The scalar product
2(X, Y) of two tangent vectors X, Y of T is given by g(X", Y")+g(X2, Y?). It then
follows that, with respect to the 0-lift g, the non-linear connection N, is orthogonal
to the vertical subspace 77, and if tangent vectors X, ¥ of F" are orthogonal with
respect to a supporting element y, then /,(X) (resp. /f(X)) is orthogonal to /,(Y)
(resp. /2(Y)). -

It should be emphasized that CI" is metrical with respect to ¢ (*Theorem 21.1),
although it is not the Riemannian connection determined by g, provided that F"
1s not Riemannian, as it is known from (1.5).

From the equation L(x,y)=1 of I(F") it follows that (B,)=(dL/dx', IL/0y)
are components of a covariant normal vector B, of /(F"). From L;=0 and
dL/0y' =1, we have components of B, :

(2.5) B, =(I,N";, 1),
and N-decompositions (C,, D,) of B, are

(2.5) (C., D) =(0,1).
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From (2.2°) and (2.5’) the equation dL/du'=0 is written as
(2.6) I,Di, = 0.

From (2.4°) and (2.5") it is seen that N-decompositions (C, D) of the contravariant
normal vector B, corresponding to B, by the O-lift g, are given by

(2.7) (C', DY) = (0, 1)
and components are
(2.7} =005

We recall the intrinsic vertical vector field 1° (*Definition 3.5), which is a vertical
vector field on 7 having the value (/°),=//(y) at a point y. It is written as
V'(0/0y"),. Thus (2.7) or (2.7") shows

Proposition 1. In the tangent bundle (T, g, CI') over F" the intrinsic vertical
vector field 1" is a unit normal vector field of the indicatrix bundle.

Remark. The above shows a conspicuous property of the 0-lift g. There will
be many varieties to introduce a Riemannian metric in 7 from the fundamental
tensor g of F" (cf. *Definition 21.1 and [1]) and we applied g in the present paper
for simplicity alone. It may be said that Proposition 1 is just a reason why the
0-lift is applied (cf. *Theorems 21.1 and 23.2).

It is well-known (cf. *§ 31 and [6]) that /' is a unit normal vector of the indi-
catrix. Therefore, on account of properties of g, we are led to

Theorem 1. Ler (1), be the tangent space at a point y of the indicatrix 1. Then
the tangent space (I(F")), of the indicatrix bundle I1(F") at y is written in a direct
sum N, @ V,, where N, is the value of the non-linear connection N of the Cartan con-
nection CI'=(I', N) and V, is the vertical lift of (I,),. The tangent space of the in-
dicatrix fibre I(F}) is V,.

We have the inverse matrix (B", B,) of (B,,, B). The 2n—1 covariant vectors
B"=(B!) are determined by equations

(2.8) (1) BYBi =04, (2) BYB =0

Paying attention to (2.7°), in terms of N-decompositions (C", D) of B, (2.8)
is written in the form

(2.8 (1) chch+DPDyy =8, (2 DPI'=0.

The inverse property of (B, B,) is also written in the form Bf, B}’ + B*B,=d;,.
Therefore, introducing a tensor i by

(2.9) h*
we have

(2.10) i BD = k%,

= - B*B,,

e
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From (2.5), (2.7’) and the fact that N-decompositions of the Kronecker delta 6}
are (91, 03, 07, 03)=(4%, 0, 0, &%), we have N-decompositions of h as follows:

(29') ((Ell)‘ja (h-lz)‘)“ (Ez‘l)ijﬁ (Egﬂ)ij) i (‘S;* 0} 0! hij):

where h';=8i—1'l, and h;=guh*;=(d;d,L)/L are components of the so-called
angular metric tensor. Thus h is called the lifted angular metric tensor.

From (2.9°) we have the N-decomposition form of (2.10):
(2.10%) C,C) =4}, hDY =k, cyD) = Dj,CJ =0.

From the Riemannian metric g of 7 is induced on /(") a Riemannian metric
g with components

(2.11) 91 = £,,B1,BY, = g(Cyy, Cp))+2(Dyy, Dyy).
From (2.10") and (2.11) we have
(2.12) guClCP = g, 9, CP D} =0, 9 DP D} = hy;.
Introducing 2n tangent vectors of /(F") by
(2.13) N, = CP By, Vo = DP By,
the equations (2.12) shows
(2.14) g(Ny, Ny) = gij» 9(Ny, V) =0, gV, V;) = h;.
Now (2.10") shows that N-decompositions of ;, and ¥}, are given by
(2.13) ((NSYL(NBY) = (81,00, ((VH)Y, (VYY) = (0, h')).

Consequently N;, and V, are written in the coordinate as
N“ — Uﬁh"—* N"l"fl)/dyj. V“ = hilf,/()y",

which imply that n independent vectors N;, span the subspace N, of the tangent
space of /(F"), and there are n—1 independent vectors among V;, (cf. *Proposition
16.2) which span the subspace V.

§ 3. Indicatory property in the tangent bundle

In "§31 we have introduced the concept of indicatory property of tensor on
F". A similar property is now introduced for tensor on 7(F"). We have the intrinsic
vertical vector field /" of T(F") whose components as well as N-decompositions
are (0, y') at a point y=(x', y'). With respect to the 0-lift ¢ we get the covariant
vector field /f, corresponding to /¥, whose components are (y,N";, ») (y;=g;;»’)
and N-decompositions are (0, ;).

Definition. A tensor T*, of (1, 1)-type, for instance, on T(F") is called indicatory
in the index pu (resp. 4), if 77%,(/")*=0 (resp. T%,(/{),=0). If a tensor on T(F")
is indicatory in every index, then it is called indicatory.
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From the form of N-decompositions of /* and /! the indicatory property is
expressed in terms of N-decompositions as follows:

Proposition 2. A tensor T*, of (1, 1)-type, for instance, on T(F") is indicatory
in the index p (resp. ), if and only if its N-decompositions (T"y)'; and (T%); (resp.
(T%); and (T%)';) are indicatory in the index j (resp. i) in the sense of F™.

From (1.5). Proposition 2 and well-known properties of torsion tensors of
CI' we have

Theorem 2. (1) The torsion tensor T of the linear connection of Cartan type
CI' is indicatory. (2) The curvature tensor R,*,, of CI is indicatory in the indices
w and v. It is indicatory in x and 7., if and only if the (v)h- and (v)hv-torsion tensors
RY, P' of CI' vanish.

Remark. 1t is easily verified that the condition R'=P'=0 is equivalent to
R*=P*=0. Thus a problem “Consider a class of Finsler spaces with Ry = Py;; =07,
mentioned in the last remark of *§ 30, arises again in the viewpoint of the present
paper.

The lifted angular metric tensor h plays an important role in the procedure
of indicatorization, similarly to the angular metric tensor & in F" (cf. *Definition
31.3). In fact, from the indicatory property of & and (2.9") it follows that h is in-
dicatory in T(F"): hence the procedure

(3.1) TE =P = TL R

yields an indicatory tensor ‘7, called the indicatorized tensor of T. The following
is easily verified by (2.9)":

Proposition 3. N-decompositions of the indicatorized tensor ‘T of a tensor T of
(1, 1)-type, for instance, are given by

(T, =@y  (TYD, =T,k
(TS =(TY i, (T% = (T2 WK,

It is easy to show that the indicatorized tensor ‘g is nothing but i. Further
’I* vanishes and B,, is indicatory; these are rather obvious results, because an in-
dicatory tensor on 7(F") is regarded as the one on /(F"). Corresponding to *Pro-
position 31.2, we have

Proposition 4. Let T%, be a tensor of (1, 1)-type, for instance, on T(F"), and let
T', be the projection of T, into I(F"), i.e., T';=T*,B] B},. Then, as for the in-
dicatorization 'T*,, we have T';='T*,B] B}, and ‘'T*,=T',B}\B).

By introducing the Riemannian connection I'" from the 0-lift g, the tangent
bundle 7 is regarded as a Riemannian space (7, g, I'"). Thus the strain tensor S
of CTI is defined by the equation B"(7)=B(5)+Z(S(#)) (*Definition 21.2), where
B’ (%) is the basic vector field of I'", corresponding to o€V, and Z(A4) is the funda-

T D
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mental vector field on 7, corresponding to an element A of the Lie algebra of G.
Because the covariant strain tensor S, is written as *(21.9) in terms of the covariant
torsion tensor T,, from Theorem 2 we have

Theorem 3. The strain tensor S of the Cartan connection CT is indicatory.

§ 4. The second fundamental tensor of indicatrix bundle

The indicatrix bundle /(F") is regarded as a hypersurface of the space (7, g, CI')
and the vector field B(=1[") is a unit normal vector of 7(F"). Therefore a connection
I' is induced in 7(F") from CI' by the so-called Gauss formula

4.1) 0B} jouw’ +T'*, B}, By, = /X, B+ H,; B,

where I'/X, are connection parameters of I' and H,, are components of the second
fundamental tensor H of I(F") in (7, g, CI'). From (4.1) we have

(4.2) T,,B},B), = T,* ) Biy+(Hpy— Hyp) B,

where T,X, are components of the torsion tensor 7" of I

It should be remarked that the well-known theory of subspaoes of a Riemannian
space can not be carelessly applied to 7(F"), because CI" has the surviving torsion
tensor T in general. It then seems from (4.2) that H is not a symmetric tensor, but
it follows from Theorem 2 that (4.2) leads to the symmetry H,,=H,; by contract-
ing by B;.

Differentiating (2.11) by u*, it is seen that the induced connection I" is metrical
with respect to the induced metric g. Further, differentiating equations g,, B*Bf,=0
and g,,B*B*=1 by «’, and substituting from (4.1), we obtain the so-called Wein-
garten formula
(4.3) 0B*ou’ +I' *, B* By, = — HX, B,
where H;J:gncﬁx].

We shall write (4.1) and (4.3) in terms of N-decompositions of B;, and B. To
do so, we put

(4.4) Ejx = F}Chy+C} D% (=T Bky+ C} BY).
Then, from (1.4) and (2.2") it is seen that (4.1) is written as

(1) oChlow’+Ef;Cjy = I}, Cx,y,

() OD},/ou’ +E/,D}, = [ X, Dk, + Hy,D'.
Similarly (4.3) is written in the form

(4.3) (1) H%Cky=0, (2) oD'ow’+E[;D’ =—H*,Di,.

In both equations (4.1") and (4.3") the first equations are simpler than the second

on account of C'=0.
From D'=I' the second of (4.3") is rewritten as

— HX, Dk, = alou? +(F}', Ck + C;i D5 )V =
= [(W, N*;— N',)B),+ ', B+ N', C, .

(4.1)



Differential-geometric Properties of Indicatrix Bundle over Finsler Space 289

From (2.2°) the above is written as HX,Dj,=—Mh;Dj,. This, (1) of (4.3") and
(2.8") yield _ .
HX,6k = HX,(CP Ck)+ DP D)) =—D) thDj,,

which immediately implies
(4.5) Hy; = —hy; D}, D},

or, from h;;=g;;—;/; and (2.6) we have

Proposition S. The second fundamental tensor Hyy of the indicatrix bundle I(F")
as a hypersurface of the space (T, g, CI') is given by H;;=—g(Dy,, Dy)).

Remark. We shall find the second fundamental tensor of 7(F") as a hypersurface
of the Riemannian space (7, g, I'"). The difference between the connections CI°
and I is given by the strain tensor S: j,*,=I* —S,*,, where 7, are connection
parameters of I'" and S,*, are components of the strain tensor S. Then (4.1) is
rewritten as

3 f)B})/BUJ“F'J_’pAvB?; B}) i LJKJBiln'*‘Hu Biﬁsylv Bi’) B};-
Putting s ot 3 g z S
§J T = 5;;‘-3?)3}'13;)9 Vs =L s—S8t",

we obtain S,* Bf,Bj,=S,*;B{, from Theorem 3 and Proposition 4, and (4.1)
is written in the form

4.17) OBh/ou’ +73,%, By By, = y/*; Bk, + Hy, B
Consequently the second fundamental tensor of I(F") as a hypersurface of the Rie-
mannian space (T, g, I") is also given by H;;= —g(D,y, Dy).

Now we consider the second fundamental tensor H in detail. From (2.11)
and Proposition 5 we have

(4.6) Hy;+g1 = g(Cyy, Cpy).
From this, (4.5) and (2.10") interesting equations are obtained:
4.7) () H,CP =0, (2) (Hy+g,)DP =0.

By (2.13) we already introduced 2n tangent vectors N;, and ¥}, which have respective
components C/? and D} in the coordinate (') of 7(F™). Then (4.7) shows the geo-
metrical meaning that N, are principal directions, corresponding to the principal
curvature 0, and ¥, are those, corresponding to the principal curvature —1. Con-
sequently we have

Theorem 4. At every point y of the indicatrix bundle I(F") we have n-ple prin-
cipal curvature 0 and (n—1)-ple one —1. The principal directions, corresponding to
the principal curvature 0 (resp. —1), constitute the subspace N, (resp. V,) in The-
orem 1.

Remark. Theorem 4 shows that I(F") is something like a cylinder defined
by the equation (»')*+...+(»")*=1 in the 2n-dimensional euclidean space with
a orthonormal coordinate (x*, ') in the view point of principal curvature.

‘?-
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§ 5. The torsion and curvature of indicatrix bundle

First we consider the torsion tensor T. The equation (4.2) now becomes

(5.1) T,* B}, B}, = T\*, B,
which is also written in the forms

(5.2) T,X, =T/} B}, B}, BY,
(5.3) T}, =T,X,B) B) B,,

on account of Theorem 2 and Proposition 4.
Similarly. introducing covariant torsion tensor 7, with components T,x=

=gyuTi"x, we obtain
(5.4) Tk = T’..m B?)Bg)B;” :
(3.5) Ty = Trux BYBY BY.

Consider (5.5) in terms of N-decompositions. It is observed that, for instance,
(Talll)i}'k= TIJKCI)DJ)DE}. From (2.13) it fOllOWS that LJKCE)Dj)Df’:
=T,(Ny, Vp, Wy)- Thcrcforc (1.5) yields T,.(N;, ¥V}, Wy)=P;. Similarly we
obtam

(1) T.(Ny, Njy, Ny) =T (Viy, Njy, Viy) = T, (Vyy, V), Viy)) = 0

(5-6] (2) T (N.)» HE Nk)) o R;‘jkv I.,(N.';- V;,. V;)) — Pij:.-.
T (N|]9 i Vk}) s Uk

By using notations N, and ¥, the above results are expressed in the following in-
variant form:

Theorem 5. Values of the covariant torsion tensor T, of indicatrix bundle I(F")
in the directions NXV XN, NXVXV and NXNXV are respectively equal to the
covariant (v)h-, (v)hv- and (h)hv-torsion tensors Rk, P, C, of F". On the other
hand values in NXNXN,VXNXV and V XV XV vanish.

We turn our discussion to integrability conditions of (4.1) and (4.3). The con-
ditions are nothing but the Gauss and Codazzi equations:

(5.7) R, BiyBY By, Bxy = Ry'jx —(Hy; H'x — Hyx H' ) (= 04" %),
(5-8) ij'm-Bf: BJ.B:;)BK’) = HIJ;K _HIK:J+HIHTJ"K(:QHK)‘

where R,',x are components of the curvature tensor of /(F") and (:) denotes co-
variant differentiation with respect to the induced connection I'. (We put right-
hand sides of (5.7) and (5.8) as Qy')x and Qyx respectively).

Pay attention to (5.7). The curvature tensor R,*,, may be changed for indi-
catorized ‘R,*,, because of Proposition 4:

(57’) 'Rx nv HlB“B:‘;!BI\I = QH’J'K‘
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Consequently we also have
(5.9) ‘R, = Qu';x BY B}, B BY, 'Ry = Quux BY BY B)) BY,

Wherc Qm{ngu QHLJK and' ’Rxluv ___‘g-'iq’Rxa_uv' e g
According to the rule of indicatorization (Proposition 3), (1.6) yields

Ry, ‘Rinsgs ‘Ryrees "‘Rased) = (RS, PR, S2, S
('le)m,'x T _('Rmz)mjs (’R2221)M;‘k = _('Rzm)mj-.
(’ﬁzm)mjt = Ryiju— lnRiju+ i Ry jics

(CRossodnije = Prig—nPij+ i Pujs

(5.10)

R;,,;, =0, £ #=n
Then, similarly to the case of torsion, we obtain
Q(N,., Ny, N i) Ny) = Rkuh Q(Nyy. N;y, NJ,, V) = Phijln
Q(Ny, Ny, V. Vi) = (Vi Viys Viys Viy) = Shijis
(5.11) QWsys Vs Njyy Nyy) = Ry — LR+ 1Ry,
Q(Viy Vs Njy, Vi) = Priju— L Pij+ 1 Ry js
Q(Nyy, Vi, *, *) =Q V3, Ny, *, *) =0,

where (7) indicates N or V.
Next we treat left-hand sides of (5.11). To do so, we put H,,=H,, B)B)’
and find N-decompositions of H,,. From (4.5) and (2.10")

(H")U e HUCEHC}” o '_hth? D..kr Cj“CH = ),
(Hy)i; = H”Df'Df' — hy D! Dﬁ)D' S T

Similarly we get

(5.12) (Hy, Hys, He) = (0, 0, —h).

Therefore Q in (5.11) may be changed for R,, except Q(V,, ¥V, Vi) Viy) = Shijis
which is equal to R_(V,,. V;,. V). Vo)) = hyj i+ Iy i, Consequently we obtain

B {N“, N N_” Nkl) a5 Rhuk
(5]3) B*(Nh)o N,,s NJ Vn) LD Phuk
R.(Nu. Ny, Vi Viy) = Spijics

R, (Vi) . Viys Njys Ny = Ryiju— L Riju+ 1 Ry ju

(5.14) R. (V. Vi, N.n Vi) = Pujp—lwPij+1; Pyp
R (Vlr] Vn VI.I) — ‘Shuk"l"(hh; ik — hkkhu).-
{5.]5) E‘(NM, i *® ﬁ):g‘(l/m‘ e * *)_—.0

Thus we have
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Theorem 6. Values of the covariant curvature tensor R, of indicatrix bundle
I(F") in the directions NXNXNXN, NXNXNXV and NXNXV XV are respect-
ively equal to the covariant h-, hv- and v-curvature tensors R:, P37, Si of F". Values
in VXVXNXN,VXVXNXV and VXV XV XV are respectively equal to tensors
Rkljk_!k RU* +!leﬂc’ Pkijk—’h Pijk +!i Phﬂc ﬂ'nd Shi}k+(hﬁ}hik_hhkhij)' On fhe other
hand values in NXV X % X % and VXNX % X % vanish.

Remark. Every equation of (5.14) is noteworthy. In fact,
"Pzjk = Prij— W Piju+ 1 Py
is nothing but the indicatorized tensor of Py, in the sense of F" (cf. the end of *§ 31).
Next the tensor Sy +(y,;hy—huh;y) is interesting in the viewpoint of the

concept “‘S3-likeness” (cf. [5] and *Definition 31.4). From *Theorem 31.6 it is
seen that if the indicatrix 7, is flat, this tensor vanishes. We have an explicit example

of such a space: an n-dimensional Finsler space equipped with a | Berwald—Modr

metric L=()')2...y")'" [8].
Finally the tensor Ry, —/, R;jx+/; Ry is rather strange. In fact, this is not
the indicatorized tensor "Ry;; of Ryj:

'R.wk = (an =l Rm +1; ank)+"j Ryixo— lx Ryijo—
—lyl; Rio—1; I Ryjo+ Iy Rijo+ "ifj Rio -

In case Of P’Il'_ﬂ(" we have Phi_fD:PﬁfO:O'
Now we are concerned with the Codazzi equation (5.8). If we put Q,,, =
=Qy;x BYB)BY, the left-hand side of (5.8) gives
Qi.mr = Ri.xuva_B”Bxﬁcxyv BZ'

Since CT" is metrical, R,,,, is skew-symmetric in ¢ and %, so that the second term
of the right-hand side of the above vanishes. Then, putting R,,,=—R,*,, B,,
we get Q,,,= —R;,,. We shall find N-decompositions of R;,,. For instance, from
(1.6) and (2.5") we have

_(le)u.k — (Re'u):";‘k C*h +(R2211)ihjk D, =- Rijk ’
Similarly we have

(5.16) (Ru1»> Roys Ryzas Rages Ryzas Rasy) = (0, RY, 0, P, 0, 0).

On the other hand, we put U,,,=(H;;T,%x)BYB)BY, which is equal to
H,,T,*,, as it is easily verified from Theorem 2. From (1.5) and (5.12) it is seen that
N-decompositions of U,,, are given by (U, Usi, Uns, Uss, Usss, Uses) =
=(0, R%,0, P1,0,0), so that U,,,=R;,, from (5.16):

(5.17) Hy IJHK = “ij'pvgf) B, Bﬁ) B;()
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and (5.8) is written in the form
(5.18) Hyyx—Hik,s +2HIH.TJHK =0.
Summarizing up the above, we have

Theorem 7. Putting Hy;x=H;;.x—Hg.;, values of Hp;x in the directions
NANXAN,NXNXV,NXVXV and VXV XV vanish. On the other hand values
H(WVXNXN)and HVXNXV) of Hyx in VXNXN and VX NXV are respectively
equal to —2R} and —2P!t.
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