# On a conjecture concerning additive arithmetical functions II 

By KATALIN KOVÁCS (Budapest)


#### Abstract

If $f$ is completely additive and $f(2 n+A)-f(n)$ is monotonic from some number on, then $f(n)=c \log n$.


In 1946 Erdös [2] proved the following theorem:
Theorem 1 (Erdös). If a real valued additive function $f$ is monotonically increasing, then $f(n)=c \log n$.

As a possible generalization of this result I proposed the following conjecture:

Conjecture. Let $f$ be an additive function. If $f(a n+b)-f(c n+d)$ is monotonic from some number on, then $f(n)=c \log n$ for all $n$ coprime to $a c(a d-b c)$.

If $f$ is bounded, then $f(a n+b)-f(c n+d)$ is convergent and the conjecture is true by a theorem of Elliott [1]. In [3] we proved some special cases of the conjecture, including the following theorem:

Theorem 2. Let $f$ be an additive function and let $a$ be an integer. If $f(n+a)-f(n)$ is monotonic or it is of constant sign from some number on, then $f(n)=c \log n$ for all $n$ coprime to $a$. If $f$ is completely additive, then $f(n)=c \log n$ for all $n$.

Here we prove the conjecture in a further special case:
Mathematics Subject Classification: 11A25.
Key words and phrases: characterization of additive functions.
Partially supported by the Hungarian National Foundation for Scientific Research Grant No. T 017433, by CEC grant No. CIPA-CT92-4022 and by Fulbright Grant

Theorem. Let $f$ be a completely additive function. If

$$
\begin{equation*}
f(2 n+A)-f(n) \tag{1}
\end{equation*}
$$

is monotonic from some number on, then $f(n)=c \log n$ for all $n$.
Proof of the Theorem. We may assume that $A$ is odd in (1). (Otherwise by Theorem $2 f(n)=c \log n$ for all $n$.)

We consider now that (1) is monotonically increasing.
We put $z=n\left(n+\frac{3+A}{2}\right)$. By comparing the value of (1) at the pairs of numbers $(z, n)$ we have

$$
\begin{equation*}
f(2 z+A)-f(n)-f\left(n+\frac{A+3}{2}\right)>f(2 n+A)-f(n) . \tag{2}
\end{equation*}
$$

By connecting the pair $\left(2 z+A, n+\frac{3-A}{2}\right)$ we obtain

$$
\begin{equation*}
f(4 z+3 A)-f(2 z+A)>f(2 n+3)-f\left(n+\frac{3-A}{2}\right) \tag{3}
\end{equation*}
$$

We observe that $4 z+3 A=4 n^{2}+2(A+3) n+3 A=(2 n+A)(2 n+3)$, therefore adding the rows (2) and (3) we obtain

$$
f\left(n+\frac{A-3}{2}\right)-f\left(n+\frac{A+3}{2}\right)>0 .
$$

Applying Theorem 2, we have $f(n)=c \log n$.
Background of the proof: We put $z=\left(n+a_{1}\right)\left(n+a_{2}\right)$. We apply (1) for the pair $\left(z, N_{1}\right)$ (we determine $N_{1}$ later). So we have

$$
\begin{equation*}
f(2 z+A)-f\left(n+a_{1}\right)-f\left(n+a_{2}\right)>f\left(2 N_{1}+A\right)-f\left(N_{1}\right) . \tag{4}
\end{equation*}
$$

To cancel the $f(2 z+A)$ term by addition, we apply (1) for the pair $(2 z+$ $A, N_{2}$ ) (we determine $N_{2}$ later). So we have

$$
\begin{equation*}
f(4 z+3 A)-f(2 z+A)>f\left(2 N_{2}+A\right)-f\left(N_{2}\right) . \tag{5}
\end{equation*}
$$

If we had $4 z+3 A=4 n^{2}+b n+c=\left(2 n+A_{1}\right)\left(2 n+A_{2}\right)$ with integers $A_{1}$ and $A_{2}$, and also $2 n+A_{1}=2 N_{1}+A$ and $2 n+A_{2}=2 N_{2}+A$, then we could cancel some terms. We can do it only if $A_{1}$ and $A_{2}$ are odd. Then adding the rows (4) and (5), we have

$$
-f\left(n+a_{1}\right)-f\left(n+a_{2}\right)>-f\left(n+\frac{A_{1}-A}{2}\right)-f\left(n+\frac{A_{2}-A}{2}\right)
$$

If $a_{1}=\frac{A_{1}-A}{2}$ and $a_{2} \neq \frac{A_{2}-A}{2}$, then we arrive at a special case of Theorem 2 .

By solving the equation $4 z+3 A=4\left(n+a_{1}\right)\left(n+a_{2}\right)+3 A=0$, we get $A_{1,2}=a_{1}+a_{2} \pm \sqrt{\left(a_{1}-a_{2}\right)^{2}-3 A}$. To satisfy the condition $a_{1}=\frac{A_{1}-A}{2}$, we need the choice $a_{2}=\frac{A+1}{2}+1+a_{1}$. Therefore $A_{1}=2 a_{1}+A$ and $A_{2}=2 a_{1}+3$ are odd integers and we arrive at

$$
f\left(n+a_{2}-A\right)-f\left(n+a_{2}\right)>0,
$$

i.e. by Theorem $2 f(n)=c \log n$.

## References

[1] P.D.T.A. Elliott, Arithmetic functions and integer products, Grundlehren der mathematischen Wissenschaften, Bd. 272, Springer Verlag, New York - Berlin, 1985, MR 86j: 11095.
[2] P. Erdös, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1-20, MR 7-416.
[3] K. Kovács, On a generalization of an old theorem of Erdös, Studia Sci. Math. Hungar. 29 (1994), 209-211.
[4] K. Kovács, On a conjecture concerning aditive number theoretical functions II, Publ. Math. Debrecen (to appear).

KATALIN KOVÁCS
EÖTVÖS UNIVERSITY
DEPT. OF ALGEBRA AND NUMBER THEORY
H-1088, BUDAPEST, MÚZEUM KRT. 6-8
HUNGARY
E-mail: pkovacsk@ludens.elte.hu
(Received August 2, 1996; revised September 26, 1996)

