On a class of a linear functional equations
By LASZLO SZEKELYHIDI (Debrecen)

1. Introduction. In this paper we deal with a class of linear functional equa-
tions on some types of Abelian groups. Our aim is firstly, to find the general solu-
tion of these equations, and secondly, to find the solutions satisfying some regularity
conditions if the groups in question are topological.

In the first part we give the general solution of some functional equations by
means of polynomials on groups. The notion of polynomial on a group has been
introduced by S. MAazur, W. OrLICZ [8], M. FRECHET [3] and G. VAN DER LON [11].
The role played by these functions is similar to that played by polynomials on the
real line. In particular we determine the general form of polynomials on groups
by means of multiadditive functions generalizing the results of M. A. MCKIERNAN [9].

In the second part we determine the regular solutions in case of topological
groups by showing that the usual regularity conditions imply continuity. In partic-
ular we extend some well-known theorems ([6], [7], [10]). The interest of the method
used in this work is that the statements about regularity are derived from the explicit
general solution rather than from the equation.

Equations of similar type have been dealt with in [4] and [6] too.

2. Notations and terminology. Throughout this paper R will denote the set of
reals, C the set of complex numbers. If G is a group, the group operation will be
denoted by “+" even if G is not commutative. A group is said to be torsion-free
if it does not contain any element of finite order except zero. If x is an element of a
group and n is a positive integer, then nx denotes the sum x+x+...+x (n times),
and if » is a negative integer, then nx=—(—n)x. A group is said to be divisible,
if for every element x of it there exists an element y with ny=x. If a commutative
group is divisible and torsion-free then it is a linear space over the rationals.

If G, S are (not necessarily commutative) groups and f: G- S is a function,
then for every yeG let

T,f(x) =f(x+y) (x€G),

and for every »;, Va, ..., V.€G let
& | =(T,~T)T,

;
(l"lv-v--l'n =

Tkl =T

In particular for yeG
a4 =(T,—T,).

A function f: G—S is said to be a polynomial of degree at most n, if
¥ f(x) =0
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for every x, y€G. It is said to be a monomial of degree n, if
A3 f(x) = n!f(y)

for every x, y€G. It is obvious that every monomial of degree at most »n is a poly-
nomial of degree at most n.

If G, S are groups and » is a positive integer, then a function 4: G"—=S is
said to be n-additive, if it is a homomorphism in each variable. It is said to be sym-
metric, if it takes the same value at every permutation of its variables. Let A: G"—=§
be a function, then the function ¢ defined by

o(x) =A(x, x,...,x) (x€G)
is said to be the diagonal of 4, and is denoted by D(A). Further let

A(x, y) = A(ch, - AP f Py Yy s ¥) (%, YEG).
2

-

We use the phrase “0-additive function™ for constant functions.
If f'is a function, then Rgf denotes the range of /.

3. Algebraical results

Theorem 3.1. Let G, S be Abelian groups and let S be torsion-free. Let n be a
positive integer and v,=n!(n—1)!...2! If f: G—S is an arbitrary polynomial of
degree n, then v, «f can be written as the sum of monomials of degree at most n.

The proof can be found in [11].

Theorem 3.2. Let G, S be Abelian groups and let n be a positive integer.
If @: G—+S is a monomial of degree n, then there exists an n-additive symmetric
Sunction A: G"—S such that D(A)=n'@. Further D(A) is a monomial of degree
n for an arbitrary n-additive symmetric function A.

Proor. Let for y,, ..., y,€G

A(}'1 5 iy ]'") = & 47',‘ )(;‘){0)

Then A is symmetric and for y,, v, ¥s, ..., ¥,6G we get
A (J"I +f] 5 }'9_. sany _"'u) "‘A()'l. _,"2-. A _l»‘,,) e A(ﬁl’ }'2, seny ‘l'") =
=( & - 4 - £ o) =

($75 5 PPRTETS 55 RENNY | U B § TRRSTS |

= (Ty3,— Ty = T3, +To) I[ (T, ~To)o(0) =

= (T, ~T)(T3,~Ty) [[(T,,~Te©) = 4"*' ¢(0) =0
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so A is n-additive. Further
D(A)(y) = A39(0) = nlo(y) (y€G).
The other statement is trivial.

Corollary 3.3. Let G, S be Abelian groups and let S be torsion-free. Let n be
a positive integer and v, as in Theorem 3.1. If f: G—=S is a polynomial of degree
at most n then there exist A,: G*—~S k-additive symmetric functions (k=0,1, ..., n)
such that

n
B
Va 'f = kz{]D(Ak)
This representation is unique.

PrROOF. We have to prove the uniqueness only. For the prooflet > D(A4,)=0,
k=0

where A4, is a k-additive symmetric function (k=0,1,..,n) then for every
X, V1, ..., V,€G we have

sl [tZEf D(Ax)] (x) = of.:,.)D(A”)(x) =nlA, (V1,0 0n)

Oy d) W Sh
and so A,(y, ..., »,)=0. Similarly we get 4,=0 fory/k=0,1,...,n—1.

Lemma 3.4. Let G, S be Abelian groups, let n be a positive integer, let A,: G*—~S
be k-additive symmetric functions (k=0,1,....n) and let f: G—~S be a monomial
of degree n. Then

i) > D(Ay)=0 implies A,=0 (k=0,1,...,n)
k=0
i) foe is a monomial of degree n for every homomorphism ¢: G—G.

ProOF. For the proof of i) see the previous theorem and the proof of the other
statement is an easy calculation.

Definition 3.5. Let G, S be Abelian groups, let » be a nonnegative integer.
The function f: G —S is said to be of degree n, if there exist functions f: G—=S§
and homomorphisms ¢;, ¢¥;: G-G such that Rge,cRgy, (i=1,2,...,n+1)
and the equation

n+1

(1 JX)+ 2 fl@i)+¥iy) = 0 (x, ¥€G)
holds. 4

Theorem 3.6. Let G, S be Abelian groups and suppose that G is divisible. Let
n be a nonnegative integer. The function f: G- S is of degree n if and only if it is a
polynomial of degree n.

PROOF. Yi(x)=ix (i=1,2,...,n+1) is a homomorphism of G and Rgy;=G,
hence every polynomial of degree » is a function of degree n. For the converse we

have to prove only the following statement: if the function f is of degree n then
n+1

A, f is of degree n—1 for every t€G, this implies that { A ]f is identically

Ppasssli g
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zero, i.e. fis a polynomial of degree n. Let 1€G be an arbitrary element and s€G
such that ¢, ,(#)+¥,,,(s)=0. Substituting in (1) x+¢ for x and y+s for y.
and subtracting (1) from the new equation we obtain

@ 4SO+ 2 A Sl + )] = 0
this shows that 4,f is of degree n—1.

Theorem 3.7. Let G, S be Abelian groups such that S is torsion-free and let n
be a nonnegative integer. Let @;: G—+G be homamorphrsmr (i=1,2,...,n42)
and let A{": G*—= S be k-additive symmetric functions (k=0, 1, A=12060 12
The functions

i = ZH’D(A}:'I) (i=12..n+2)
k=0

satisfy the functional equation

3 _“_Zizﬁ[fm(x)wla(y)] — 0 Ee)

if and only if the functions A" satisfy the relations

n+42
(4) Zl' AP(@:i(x), () = 0 (x, y€G)
for j=0,1,....n and k=j,j+1, ....n

ProOOF. Let the given functions satisfy equation (3), then using the obvious
relation

& (k
D(A)(x+y) = > [ }-] A;(x,y) (x, y€G)
i=0

which holds for every k-additive symmetric function 4, we get
) 3 3 3 (anemnon=0 o,

Observe that the function x-—Af(@;(x), ¥;(»)) is a monomial of degree j
for every y€G, and so (5) and thcorcm 3.3 imply

+2 n k
2[ ]Al“ (@:i(x), ¥:(») =0 (j=0,..,nx veG).

-‘=1 K=j

Similarly we get
2

S AV (@), ¥:(1) =0 (x, yEG)

=
+

v

(6)

t

I
-

for j=0,...,n k=j, ..., n because S is torsion-free. To prove the converse multiply
k .
(6) by (’] and add the equations first for k=j, j+1, ..., n, then for j=0.1....n
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Corollary 3.8. Let G, S be linear spaces over the rationals, let n be a positive
integer, let p;, q; (i=1,2,...,n+2) be rational numbers and let A{": G*—S
(k=0, ...,n; i=1,2, ...,n+2) be k-additive symmetric functions. The functions

L= FOUM) teld 042
k=0

satisfy the equation

n+2
(7) Zl filpix+4q,y) =0 (x, y€G)
if and only if the functions A" satisfy the relations
n+2
(8) 2 plgtID(AP)(x) =0 (x€G)
i=1

for j=0,1,....,n and k=j,j+1, ...,n. (Here 0°=1.)
Proor. If G, S are linear spaces over the rationals, then
Aj(px, qy) = P’ q*74;(x, p)

holds for every k-additive symmetric function 4 and rationals p, ¢. By the previous
theorem we have to show only that (8) implies the equations

n4-2

2 ALy (pix, qiy) =0 (x, y€G)

for j=0,1, ...,n; k=j,j+1,...,n. Let 0=j=n and j=k=n be arbitrary. Then
by (8) we get

n4-2 k k n+2 :
0= "3 plat- U+ = 3 (§) Z piat it ).

Hence for s=0,1, ...,k
n+2

i_Z; plgt i Al(x, ) =0 (x, y€G).

In particular, for s=; we obtain

=
-

2

Lbv

. AH’;(P.‘-"- q:y) =0 (x, yeG).

Theorem 3.9. Let G, S be Abelian groups and suppose that G is divisible and S
is torsion-free. Let n be a nonnegative integer and let ¢, \y;: G—=G be homomorphisms
of G onto itself such that Rg (Yo —@00;)=G for i#j(i,j=1,2, ....n+]1).
The functions f;: G- S (i=0, ..., n+1) satisfy the functional equation

n+1
®) .!ﬁ(x)+21’ Jiloi()+y: (0] =0 (x, y€G)
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if and only if there exist A\": G*—~S k-additive symmetric functions
k=0,1..,ni=01,..n+l)

such that
(10) fi= i’D(A,E") i=0,1,...,n+1)
k=0
and the equations
n+1
(11) ALY X, 0+ 2 A0, ¥i(3) =0 (x, y€G)

kold for j=0,1, ....n, k=j,j+1, ..., n.

Proor. Let the functions f; satisfy (9) and let 0=i=n+1 be arbitrary. Further
let u, y¢G be arbitrary and x=¢;  (u)—¢; oy, (»).
Then by (9) we have
n+1

0 = fi(w) +folor M) — @i oy (»)+ El filojooi (w)+(W;—o 007 o) ().

J#i

Here Rg¢;'=G=Rg¢;'oy; and

Rgpjopit =G =Rg(W;o¥j'—@;o0i") = Rg(Y;—@;o0i'cy))
so by 3.3 and 3.6 every f; has the form (10). Conversely by (11) we get
n+1l

120 AP ((x), () =0 (j=0,...,n, k=], ..., n, x, yEG)

and by 3.7 the proof is complete. (Here ¢4(x)=x, o(x)=0 for x€G.)

Corollary 3.10. Let G, S be linear spaces over the rationals. Let n be a non-
negative integer and let p;q; be rationals different from zero such that p;q;+p;q;
for i#j (i,j=1,2,....n+1). Then the general solution of the functional equation

(12) J%(x)+:=2+:ﬂ(pax+q;y) =0 (x,y€G)
has the form

fi) = SDAP) (=0,1,..,n+1)
k

where the functions A{: G*~S are k-additive symmetric ones (k = 0,1, ...,n,
i=0,1,...,n+1) for which the relations

(13) DU+ S DU =0 (X€G,j=1,....n—1,k=j+1, ..., n)
i=1

n+1
(14) > plat DA (x) =0 (x€G,j=1,...,n—1,k=j+1,...,n)
i=1

n¥l

(15) D ¢ D(AP)(x) =0 (x€G,k=0,....n)
i=1

hold.



On a class of linear functional equations 25

Proor. By 3.9 it is sufficient to show that with the notations
@i(x) = pix, Yi(x)=¢q;x (i=1,..,n+1, x€G)

(11) is equivalent with (13), (14) and (15). If we write in (11) j=k, then we get
(13), and with j=0 and arbitrary k we obtain (15) from (11). Now let 1=j<k=n
and x, y€G be arbitrary, then from (14) we have

p+l1 k k a1l )
0= "3 plat-p(apy = ()3 plat atx. )

and hence for s=0,1, ... k
n+1 ,
2 plat T Al(x, ) =0
i=1
and in particular for s=; we have
n+1l

‘21 AP (pix+qy) =0 (x, y€G)

which completes the proof.

4. Topological results

Lemma 4.1. Let G be an arbitrary group, let n be a positive integer and A: G"—~R
be an n-additive symmetric function. If ky, ks, ..., k, are positive integers, then there
exists a positive integer N such that for every x{",x{", .., xcG (i=1,2,....n)
the relation

A +... +x, .., X+ .. +xM)| = N- 12!2_5‘ |4 Gl XBY, vven i)
holds.

The proof is a simple calculation.

Theorem 4.2. Let G be a topological group, let n be a positive integer and let
Ay: G*—=R be k-additive symmetric functions for k=1,2,....n. If 2"' D(A,) is
continuous then A, is continuous for k=1,2, ..., n. &4

Proor. Let C} denote the set of all combinations of k-th class of the set
{1,2,....,n} and for (i, i, ..., i))€C} we define the function pg, i, G"=G as
follows:

Y

Pein, ...t iy sses X)) = Xp b oon b X, (Xyy oo X)EC™

Observe that for f= Zn’ D(A,) we have
k=1

(17) A, = 2.3 2 2 (=D)"*fopgu,..m
n!xShg,. e o



26 L. Székelyhidi

If fis continuous, then so is 4, by (17). Then f—D(A,) is continuous and by (17)
A, -, 18 continuous too. Continuing similarly we get our statement.

Theorem 4.3. Let G be a topological group, let n be a positive integer and let
Ay: G*—=R be k-additive symmetric functions for k=0,1,....n. Let G, denote

n
the component of the identity in G. If > D(A,) is continuous at the identity then
k=0

A, is continwous on G§ (k=0,1, 2, ..., n).

PrOOF. We know by (17) that A, is continuous at (0, 0, ..., 0). It is sufficient
to show that any n-additive symmetric function A: G"—~R which is continuous at
(0,0, ...,0), is continuous on Gjj. First we show that for arbitrary y,, ya. ..., 7,6 G,
the function x-—-A(x, ys, ..., »,) is continuous on G,. Let ¢=0 be given and let
Wi, Wi, ..., W, be neighbourhoods of the identity in G such that for every
(X1, ooy X)EM X ... X W, we have |A(x,, ..., x,)|<e. Itis known that in G every
neighbourhood of the identity generates G,. Let z{", z{", ..., z{"€W, such that
4. +z"=y; (i=2,...,n) and let N be the same positive integer as in 4.1. Let
UCW1 be a nelghbourhood of the identity in G such that for x,, x,, ..., xyéU
we have x,+...+xy€W,. Then heU implies N-heW; and we have

|ACh, Yas s Y| = |A(h, 2+ ...+ 28D, ..., 2 +... +2V)| =
= N.Max |A(h, z{?, ..., z{")| < Max |A(Nh, z{?, ..., z{")| < e.
We can prove similarly that for every | =k=n the function
(360 vae Xop) = 3G vy X YEsvvis Ja)
iIs continuous at ((1)' 9, E)). whenever y,€G, (j=k+1,...,n). Now let &¢=0
be arbitrary (x,. oy x:)e G" and let U be a neighborhood of the identity in G such

that if A€U and x;=h for some i then |A(x, ..., x,)|<e If W=UX...XU,
and (hy.....h,)eW, then

|A(xy+hy, ..., X, +h)—A(xy, ..., x,)] < Cee
where the constant C depends on n only. This completes the proof.

Theorem 4.4. Let G be a locally compact group, let n be a positive integer and let
: G*~+R be k-additive symmetric fum tions for k=0,1,2,....,n. Let G, denote

the component of the identity in G. !f 5’ D(Ay) is bounded in some neighbourhood

of the identity, then A, is continuous an G (k=0,1,2, ..., n).

PrOOF. By (17) A, is bounded in some neighbourhood W of (0,0, ..., 0) that
is (xq, ..., X, )E W implies
|4.0%, s X)) = K

Let U be a neighbourhood of the identity for which UX...XUcCW and suppose
that D(A,) is not continuous at the identity. Then there exists an £=0 such that
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every neighbourhood of the identity contains an element z satisfying the inequality
ID(4,)(2)| = e.

Let m>]/§' be a natural number and V< U be a neighbourhood of the

identity such that z€V implies mze U. Choose an element z€V with the property
ID(A,)(z) =e. Then mzeU, (mz, mz, ..., mz)é¢ W and

|A,(mz, ...,mz)| = m"|D(A4,)(z)| = K

which is a contradiction. Thus by 4.3 the proof is complete.

Lemma 4.5. Let G be a locally compact group, KC G be a compact set and let
4. denote the right Haar-measure. Then the function

(X1, ..0n x,) = A[(K—=x) N ... 1(K=x,)]
is continuous on G" for every positive integer n. (See (5], [6].)

Theorem 4.6 Let G be a locally compact group, let n be a positive integer and
let A,: G*—+~R be k-additive symmetric functions for k=0, 1. ....n. Let G, denote

n
the component of the identity in G. If > D(A,) is bounded or measurable on some
k=0
measurable subset of G, of positive measure, then A, is continuous on Gj
(k=0,1, ..., n).

Proor. The second statement is a consequence of the first one. For if

f= 2 D(A,) and f is measurable on some measurable set with positive measure,
k=0

then it is measurable on some compact set of positive measure. By Lusin’s theorem
(see e.g. [2]) the restriction of f on some compact set of positive measure is continu-
ous, and so it is bounded on this compact set. Now let f be bounded on some meas-
urable set of positive measure, then it is bounded on some compact set K, with
/K=0. The function x—Ai[KMN(K—x)...\(K—nx)] is continuous on G by
lemma 4.5, and its value at the identity is positive. Thus we can choose a neigh-
bourhood U of the identity such that A[KM(K—x)...[(K—nx)]=0 for x€eU.
Then there exists a yve KN(K—x)N..."N(K—nx) ie. vEK,yEK—x, ..., y+nxeK.
Observe that

DAY = — 42 f(3) = = [ ) vr-tr et k)

which implie:. the boundedness of D(A, ) on U. Then by 4.4 A,, is continuous on
G and by repeating this argument for Z D(A,) instead of 2 D(A,) the proof

is complete.
It is easy to see that the results of this paragraph remain valid if the ranges
of the functions in question are in some linear topological space.
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