Sur les groupes d'itération monotones

Par ULRICH ABEL (Heidelberg)

Resumé

L'itération non-entière des (anti) isomorphismes d'ordre sur un ensemble totalement ordonné est examinée avec l'accent sur les rapports entre la monotonie des groupes d'itération ainsi créés et leur continuité.

Summary

The paper studies non-integral iteration of order preserving (reversing) bijections of a linearly ordered set. Emphasis is put on the relations between monotony of the iteration groups which are thus obtained and their continuity.

Cet exposé est dédié à l'étude des groupes d'itération (GI) des isomorphismes d'ordre sur un ensemble totalement ordonné, un sujet qui a été examiné par des auteurs nombrables ([3]—[9]). Un GI est un groupe paramétrique, les paramétres étant des élements d'un sous-groupe de $(\mathbf{R}, +)$.

Dans l'article présent, les notions centrales sont premièrement celles d'un GI monotone qui est défini par la condition de la compatibilité entre l'ordre dans le groupe des paramètres G et dans le GI, et deuxièmement, celle d'un GI continu sur $(X, \mathcal{O} \leq)$, un cas spécial d'un groupe des transformations, voir [6].

I se montre déjà monotone, si $G < (\mathbf{Q}, t)$, et à certaines conditions la continuité et la monotonie sont équivalentes, ce qui généralise des théorèmes de Michel [8] et Aczél et al. [3].

Finalement sont donnés quelques résultats sur la complétion des GI et sur les racines des antiisomorphismes d'ordre.

Notations. A part des changements locaux, nous mettons $i, k, l, m, n \in \mathbb{Z}$. X avec les éléments x, y, \ldots désigne un ensemble totalement ordonné par «<», et portant la topologie $\emptyset \leq$ induite par l'ordre. Toutes les applications sont des auto-isomorphismes d'ordre sur X, à moins que ce ne soit fixé autrement. Pour $f \in \operatorname{Aut}(X)$, F(f) dénote l'ensemble des points fixes de f. Quant aux groupes, «<» désigne la relation de sous-groupe.

Definitions.

a) Pour $g \in Aut(X)$ soit

$$g^{\frac{m}{n}} := \{ f \in \text{Aut}(X) | f^n = g^m \}, \text{ i.e. } g^{\frac{m}{n}} = (g^m)^{\frac{1}{n}}$$

U. Abel 66

> b) Soit (I, 0) < Aut(X) et $g \in I$. I est appelé un groupe d'iteration de g, s'il existe un sous-groupe $G < (\mathbf{R}, +)$ avec $I \in G$ et un épimorphisme $e: (G, +) \rightarrow (\mathcal{I}, 0)$ tel que e(1) = g. On peut donc écrire I comme ensemble à un paramètre $\{g_n\}$ des automorphismes. Les index sont des éléments d'un sous-groupe de (R, +) et

$$g_1 = g$$
$$g_r \circ g_s = g_{r+s}.$$

Puisque généralement G n'est pas uniquement déterminé par I et g, la description précise d'un GI exige les données $(\mathcal{I}, g, G, \varphi)$. Si G < Q, nous dirons que I est un (plein) GI rationnel

Remarque. Dans [1], les rapports entre un GI (sur une catégorie quelconque) et les groupes des paramètres y appartenant sont examinés.

Proposition 1.

a) Soit $f \in g^{\frac{m}{n}}$. Alors F(f) = F(g). b) fg = gf et f(x) > g(x) impliquent $f^m(x) > g^m(x)$ pour tout $m \in \mathbb{N}$. c) $f, g \in h^{\frac{1}{m}}$ et $f \neq g$ impliquent $fg \neq gf$.

d) Soit I < Aut(X) un GI et $f \in I$. Alors pour tout m, n on a $card(f^{\frac{m}{n}} \cap I) \le 1$.

Les démonstrations sont claires.

Définition. Le GI(I, g, G, e) sur (X, <) est appelé monotone, si pour tout x:

$$e_x$$
:
$$\begin{cases} (G, <) \to (X, <) \\ r \mapsto e(r)(x) \end{cases}$$

est une application monotone.

Il est appelé continu sur (X, \mathcal{O}_{\leq}) , si l'application

$$E \colon \begin{cases} (X, \mathcal{O}_{\leq}) \times (G, \mathcal{O}_{\leq}) \to (X, \mathcal{O}_{\leq}) \\ (x, r) & \mapsto e(r)(x) \end{cases}$$

est continue.

Proposition 2. Soit $(I = \{f_e\}, f, G, e)$ un GI monotone.

a) Pour tout h: $X \rightarrow X$ strictement monotone, $\{\{g_r := h^{-1}f_rh\}, h^{-1}fh, G, e'\}$, avec $e'(r) := h^{-1}e(r)h$, est un GI monotone.

b) $(\{f_r^{-1}\}, f^{-1}, G, e')$ est un GI monotone, où e'(r) = e(-r).

c) Soient $s \in G \setminus \{0\}$ et $x \in F(g_s)$. Alors $x \in F(g_r)$ pour tout $r \in G$.

d) Soit $x \notin F(f)$. Alors e_x est strictement monotone.

DÉMONSTRATION. a) et b) sont clairs. c) Pour $G < \mathbb{Q}$ la proposition est entrainée par Prop. 1a). Soit alors $G < (\mathbb{R}, +)$ arbitraire et $r \in G$. On peut assumer que r>0. Choisissant k tel que ks>r, on obtient e(0)(x)=x=e(ks)(x). Puisque e_x est monotone on conclut e(r)(x)=x. d) Supposons qu'il existe $r, s \in G, r \neq s$, qui vérifie $e_x(r)=e_x(s)$. Alors $f_{r-s}(x)=x$, d'où f(x)=x selon c), par contre à l'hypothèse. \square

Remarque. Si f>id et $x\in X$, Prop. 2d) entraı̂ne — en vertu de [2] — pour tout $y\in e_x(G)$ et tout $r\in G$, que

$$f_r(y) = e(r)(y) = e_x(e_x^{-1}(y) + r).$$

Proposition 3. Soient $h \in f^{\frac{m}{n}}$, $h' \in f^{\frac{m}{n}}$.

- a) Soit $\frac{m}{n} (\ge)0$. Alors sont équivalents f > g et $h(\ge)h'$.
- b) Soit f > id et f = hf. Alors sont équivalents $h(\leq) f$ et $m(\leq) 1$.

DÉMONSTRATION. a) est triviale. b) Pour «>» la proposition vient de Prop. 1b) à l'aide d'une induction. La démonstration pour "<" est analogue. □

Notation. $(\overline{X}, <)$ désigne la complétion de (X, <) par rapport à l'ordre. $\overline{f}, \overline{g}, \dots$ dénotent les extensions de f, g, \dots sur \overline{X} .

Proposition 4. $f \in g^{\frac{m}{n}}$ entraine $\bar{f} \in \bar{g}^{\frac{m}{n}}$.

DÉMONSTRATION. Par une induction, on prouve facilement que $\bar{f}^n(x) = \sup \{f^n(y)|y < x\}$ et $\bar{g}^m(x) = \sup \{g^m(y)|y < x\}$, et ces deux ensembles sont pareils selon l'hypothèse. \square

Proposition 5. Soit $(I = \{g_r\}, g, G, e)$ un GI rationnel, tel que $F(\bar{g}) = \emptyset$ et e_{x_1} est monotone pour un x_1 . Alors le GI est monotone.

DÉMONSTRATION. Admettons que g>id, c.-à-d. que e_{x_1} soit monotonement croissant. Autrement la démonstration serait analogue. Soient $q, q' \in G, q < q'$, et $x \in X$. Alors $e(q'-q)(x_1) = g_{q'-q}(x_1) > x_1$. Si on avait $e(q)(x) \ge e(q')(x)$, on trouverait $g_{q'-q}(x) \le x$. Donc $F(\bar{g}_{q'-q}) \ne \emptyset$, d'où $F(\bar{g}) \ne \emptyset$ d'après la Prop. 1a), par contre à l'hypothèse. Par conséquent $e(q'-q) > \mathrm{id}$ et $e(q'-q) > \mathrm{id}$. I étant rationnel, la Prop. 3 implique que $e(r) > e(r') > \mathrm{id}$ pour tout $r, r' \in G, r > r' > 0$, ce qui donne la proposition. \square

Nous introduisons une relation d'équivalence sur $G \setminus \{0\}$ par: $r \sim s$ s'il existe un $q \in \mathbb{Q}$ tel que r = qs. Par G_j , $j \in \mathcal{I}$, nous dénotons les classes d'équivalence réunies avec $\{0\}$, \mathcal{I} étant un ensemble des index appropriés.

Théorème 1. Soit (I, g, G, e) un GI. Alors pour tout $j \in \mathcal{I}$ et $x \in X$

$$e_{x,j}: \begin{cases} G_j \to X \\ r \mapsto e(r)(x) \end{cases}$$

est monotone.

Comme cas spécial on a: Un GI rationnel est monotone.

68 U. Abel

Démonstration. Soit $r_1 \in G_j$, $r_1 > 0$. Alors $\frac{1}{r_1} \cdot G_j < \mathbb{Q}$, c.-à-d. l'application $a : \begin{cases} G_j \to \varphi \\ r \mapsto \frac{r}{r_1} \end{cases}$

$$a:\begin{cases} G_j \to \varphi \\ r \mapsto \frac{r}{r_1} \end{cases}$$

est une injection croissante.

Donc on a $a(G_j) \cong G_j$, et $(e(G_j), e(r_1), a(G_j), e' := ea^{-1})$ est un GI. En plus la monotonie de $e_{x,j}$ et celle de e'_x sont équivalentes. Par conséquent, il suffit de prouver le cas spécial. Soit alors G < Q et $x \in X$. Si $x \in F(\bar{g})$, la Prop 1a) fournit la proposition. Sinon, $x \in K$ où $K \subset \overline{X}$ est un intervalle maximal vérifiant $K \cap F(\overline{g}) = \emptyset$. Comme en vertu de la Prop. 2b) la monotonie de $I = \{g_r\}$ est équivalente à celle de $I' = \{g_r^{-1}\}$, on peut assumer que $g \mid K > id$. Maintenant la Prop. 3b) donne l'assertion.

Remarque. Le Théorème 1 généralise un résultat de MICHEL [8].

Nous discuterons maintenant les relations entre la monotonie d'un GI sur (X, <) et sa continuité sur (X, \mathcal{O}_{\leq}) .

Exemples. La monotonie d'un GI n'entraîne pas sa continuité: Soit $(X, <) := \mathbb{Q}^2$ (R² resp.) avec l'ordre lexicographique, G := Q(R) et $g_r((x, y)) := e(r)$ $((x, y)) := (x+r, y), r \in G$. Alors (e(G), e(1), G, e) est evidemment un GI monotone. Mais il n'est pas continu, comme on voit immédiatement.

Théorème 2. La continuité d'un GI entraîne la monotonie.

DÉMONSTRATION. Pour $g(\geq)$ id, la proposition se prouve par la méthode de ACZÉL, KALMÁR, MIKUSINSKI [3], qui l'ont montrée pour $X = G = \mathbb{R}$. Cela s'applique alors pour tous les intervalles de $X \cap (\overline{X} \setminus F(\overline{g}))$. Nous montrerons la monotonie pour $x \in F(g)$. Au cas où $G < \mathbb{Q}$, elle vient de la Prop. 1a). Soit $r \in G \setminus \mathbb{Q}$. Supposons que $g_r(x) \neq x$, par exemple $g_r(x) > x$. Il existe $m_i \in \mathbb{N}$, $n_i \in \mathbb{Z}$ tels que $m_i r - n_i \to 0$ (i→∞). En tenant compte de la continuité on déduit

$$g_r^{m_i}(x) = g_{m_i r}(x) = g_{m_i r}(x) = g_{m_i r - n_i}(x) \to x,$$

en contradiction avec $g_{r}^{m_{i}}(x) > x$.

Les exemples cités ci-dessus montrent que la séparabilité de (X, <) ou la nondenombrabilité de I ne suffisent pas singulièrement pour entraîner la continuité d'un GI monotone. Cependant:

Théorème 3. Soit (X, <) séparable et (I, g, G, e) un GI monotone et nondénombrable sur X. Alors I est continu sur (X, \mathcal{O}_{\leq}) .

DÉMONSTRATION. Une analyse du théorème 4 de Aczél et al. (qui assert la proposition analogue dans le cas $X=G=\mathbb{R}$) montre qu'à part de l'ordre sur \mathbb{R} , la preuve n'utilise que les hypothèses du théorème ci-dessus, ce qui nous autorise à la généralisation.

Le théorème suivant résoud le problème de la complétion d'un GI continu sur (X, \mathcal{O}_{\leq}) .

Théorème 4. Soit (I, g, G, e) un GI continu sur (X, \mathcal{O}_{\leq}) . Alors $(\overline{I}, \overline{g}, \overline{G}, \overline{e})$ est un GI continu sur $(\overline{X}, \mathcal{O}_{\leq})$, où \overline{G} est la complétion de (G, <) dans $(\mathbb{R}, <)$,

$$\bar{e}(r) := \sup_{\substack{s \in G \\ s \leq r}} \overline{e(s)} \ et \ \bar{I} := \bar{e}(\bar{g}).$$

DÉMONSTRATION. On peut présupposer que $\overline{G} = \mathbb{R}$. Autrement on aurait $\overline{G} = G$ et la proposition est claire. Il faut prouver trois assertions:

- (i) Pour tout $r \in \overline{G}$, on a $\overline{e}(r) \in Aut(X, <)$.
- (ii) \bar{e} : $\mathbf{R} \rightarrow I$ est un épimorphisme.
- (iii) L'application

$$\overline{E}: \begin{cases} (\overline{X}, \mathcal{O}_{\leq}) \times (\mathbf{R}, \mathcal{O}_{\leq}) \to (\overline{X}, \mathcal{O}_{\leq}) \\ (x, r) & \mapsto \overline{e}(r)(x) \end{cases}$$

est continue.

Ad (i): Pour $r \in \mathbb{R}$, l'application $\bar{e}(r)$ est monotone, continue et injective: La monotonie vient de la définition, la continuité de (iii), l'injectivité est une conséquence de (ii), où pour $\bar{e}(r)$ est établie l'existence de l'inverse. Ad (ii): Soient $r, s \in \mathbb{R}$ et $x \in \overline{X}$. Alors $\bar{e}(r)(\bar{e}(s)(x)) = \sup_{t} \left\{ \bar{g}_{t}(\sup_{u} (g_{u}(x))) \right\} = \sup_{t} \sup_{g} \sup_{t} \bar{g}_{u}(x) = \sup_{t} \sup_{g} \sup_{t} g_{u}(x)$, le« sup» étant pris pour t < r, u < s $(t, u \in G)$. On conclut sup $\sup_{t} \overline{g}_{t}(x) = \sup_{t} \sup_{g} \sup_{t} g_{u}(x) = \sup_{t} \sup_{t} \sup_{t} g_{u$

tion est purement technique et donc omise.

Remarque. Un GI continu (I, g, R, e) est appellé un «flow».

- 1) Soit (X, <) séparable et dense dans lui-même. S'il existe $g \in \operatorname{Aut}(X, <)$ avec $F(g) = \emptyset$ et un flow contenant g, (X, <) est localement isomorphe à $(\mathbf{R}, <)$ par rapport à l'ordre. Il est possible de construire des exemples qui montrent qu'aucune des hypothèses de cette constatation peut-être supprimée sans affecter la validité.
- 2) Pour tout $g \in Aut(\mathbf{Q}, <)$, il existe un GI continu (I, g, \mathbf{Q}, e) . (La démonstration de FINE—SCHWEIGERT [4] peut être transcrite littéralement sur le cas de \mathbf{Q} au lieu de \mathbf{R} .)
 - 3) Pour tout $g \in Aut(\mathbf{R}, <)$ il existe un flow (I, g, \mathbf{R}, e) .

DÉMONSTRATION. a) Cela vient de 2) en vue de théorème 4. b) L'assertion est un corollaire trivial d'un théorème de KNESER [7], qui dit, que tout $g \in Aut(\mathbf{R}, <)$ est (topologiquement) équivalent à l'application $x \mapsto x+1$. c) Il y a plusieures démonstrations directes dans la littérature, voir [4], [5], [9].

Nous nous occuperons maintenant des itérées non-entières des antiisomorphismes d'ordre (aio) sur (X, <), c.-à-d. des bijections décroissantes. Evidemment un aio ne posséde que des racines impaires dans l'espace des bijections monotones. J:=]0, 1[et J':=]0', 1'[dénotent deux copies de l'intervalle standard ouvert (avec les éléments x, y, \ldots et x', y', \ldots resp.). D'une façon analogue on définit \mathbf{R} et \mathbf{R}' . L'application

$$p: \begin{cases} J \to J \\ x \mapsto x' \text{ est une isométrie.} \end{cases}$$

70 U. Abel

Pour $A \subset \mathbb{R}$ nous définissons:

$$\varphi(A) := \left\{ f: A \cup A' \to A \cup A' \middle| \begin{array}{l} f \text{ est un homéomorphisme,} \\ f|_A: A \to A' \text{ est un aio} \\ \text{tel que } F(f^2) = \emptyset \end{array} \right\}$$

et

$$t_r: \begin{cases} \mathbf{R} \cup \mathbf{R}' \to \mathbf{R} \cup \mathbf{R}' \\ x & \mapsto (x+r)' \\ x' & \mapsto x+r, \quad \text{c.-à.-d. } t_r \in \varphi(\mathbf{R}). \end{cases}$$

Lemme 1. Soit $g \in \varphi(J)$. Alors il existe une bijection $b : \varphi(J) \rightarrow \varphi(\mathbf{R})$ telle que pour tout $n \in 2Z+1$ et tout $f \in \varphi(J)$:

 $b(f^n) = (b(f))^n$

et

$$b(g) = t_1$$
.

DÉMONSTRATION. Soit $x_0 \in J$ et $x_n := g^n(x_0)$, $n \in \mathbb{Z}$. Nous choisissons un isomorphisme d'ordre $\tau_0: [x_0, x_2] \to [0, 1]$ quelconque, et l'étendons sur un isomorphisme d'ordre $\tau_1: J \to \mathbb{R}$ en posant

$$\tau_1(x) := \begin{cases} \tau_0(x) & x \in [x_0, x_2] \\ n + \tau_0(g^{-n}(x)) & x \in [x_n, x_{n+2}], \ n \in 2\mathbb{Z}. \end{cases}$$

D'une façon analogue nous définissons $\tau_2: J' \rightarrow \mathbf{R}'$ par

$$\tau_2(x') := \begin{cases} (\tau_0 \circ g^{-1}(x'))' & x' \in [x_1, x_3] \\ n' + (\tau_0 \circ g^{-n}(x'))' & x' \in [x_n, x_{n+2}], \ n \in 2\mathbb{Z} + 1. \end{cases}$$

Puisque $F(g^2) = \emptyset$, on voit facilement que les fixations ci-dessus définissent vraiment τ_1 et τ_2 sur tout J et J' resp. Maintenant nous déterminons $\tau \colon J \cup J' \to \mathbf{R} \cup \mathbf{R}'$ par $\tau|_J := \tau_1$ et $\tau|_{J'} := \tau_2$, et $\beta \colon \varphi(J) \to \varphi(\mathbf{R})$ par $b(h) := \tau h \tau^{-1}$.

Alors b est bijectif, et on a $b(h^n) = (B(h))^n$, pour tout $h \in \varphi(J)$ et tout $n \in 2\mathbb{Z} + 1$. Il reste à montrer que $b(g) = t_1$. Soit $x \in \mathbb{R}$ (la démonstration pour $x' \in \mathbb{R}'$ est analogue), soit $x = \tau_1(y)$ avec $y \in [x_n, x_{n+2}] \subset J$, $n \in 2\mathbb{Z}$. Alors $\tau^{-1}\tau_1(y) = y$ et $g(y) \in [x_{n+1}, x_{n+3}] \subset J'$, d'où

$$b(g(x)) = \tau g \tau^{-1}(x) = \tau g(y) = \tau_2 g(y) =$$

$$= (n+1)' + (\tau_0 g^{-(n+1)} g(y))' = (n+1)' + (\tau_0 g^{-n}(y))' =$$

$$= (n+\tau_0 g^{-n}(y) + 1)' = (\tau_1(y) + 1)' = (x+1)' = t_1(x).$$

Lemme 2. Soit g: R→R un aio. Alors

- (i) $F(g^2)$ est fermé dans $(\mathbb{R}, Q \leq)$. Le complément de $F(g^2)$ est alors une réunion des intervalles K_i de R.
- (ii) Pour tout K_i : $g(K_i) \cap K_i = \emptyset$

$$g^2(K_i) = K_i$$
, et $g^2 \in \operatorname{Aut}(K_i, <)$.

DÉMONSTRATION. Triviale.

Théorème 5. Soit $g: \mathbb{R} \to \mathbb{R}$ un aio. Alors pour tout $n \in 2\mathbb{Z} + 1$, il existe un aio

DÉMONSTRATION. On considère les intervalles K_i d'après le Lemme 2. Pour $x \in F(g^2)$ on prend f(x) := g(x), et on construit f sur chaque ensemble $K_i \cup g(K_i)$ singulièrement. A cause de $K_i \cong]0, 1[\cong g(K_i),$ on peut — en vue du Lemme 2 appliquer Lemme 1 mettant $J:=K_i$, $J':=g(K_i)$. Si l'on fixe $f:=b^{-1} \cdot t_{1/n}$, on obtient

$$f^n = (b^- \circ {}^1t_{1/n})^n = b^{-1} \circ t_{1/n}^n = b^{-1} \circ t_1 = g.$$

Remarque. On peut prouver qu'un GI sur (X, <) qui contient un aoi n'est pas continu.

Bibliographie

- [1] U. ABEL, Sur les groupes d'itération. Bielefeld, 1978.
- [2] J. Aczél, Vorlesungen über Funktionalgleichungen und ihre Anwendungen. Basel, 1961.
 [3] J. Aczél—L. KALMÁR—J. C. MIKUSISNKI, Sur l'équation de translation. Studia Math. 12 (1951), 112-116.
- [4] N. J. FINE—N. E. SCHWEIGERT, On the group of homeomorphisms of an arc. Ann. Math. 62 (1955), 237—253.
- [5] M. J. FORT JR., The embedding of homeomorphisms in flows. Proc. Am. Math. Soc. 6 (1955), 960-67.
- [6] W. H. GOTTSCHALK-G. A. HEDLUNG, Topological Dynamics. Am. Math. Soc., Coll. Publ. New York, 1955.
- [7] H. KNESER, Kurvenscharen auf Ringflächen. Math. Ann. 91 (1924), 135-54.
- [8] H. MICHEL, Untersuchungen über stetige monotone Iterationsgruppen ohne Differenzierbarkeitsvoraussetzungen. Publ. Math. (Debrecen) 9 (1962), 13-46.
- [9] W. R. Utz, The embedding of a linear discrete flow in a continuous glow. Coll. Math. 15 (1966), 263-70.

DKFZ, Inst. 09 Im Nevenheimer Feld D-6900 Heidelberg

(Reçu le 11 décembre 1978)