On logarithmic property of a degree of finite group

By M. Ju. LJUBIC (Charkow)

Ne 1. A minimal degree n(I') of a permutation group which is isomorphic
to a given finite group I' is called the degree of I'. The question of finding n(I')
was posed in the most general setting by 0. Yu. ScuMiDpT (1, p. 89). For a long
time there existed a hypothesis that the degree n(I") has “a logarithmic property”
(“I-property”): n(AXB)=n(A)+n(B). This property was proved in the following
cases: 1) A and B are Abelian (2—5); 2) The orders of the groups 4 and B are
doprime (5); 3) 4 and B are completely reducible (6).

In the present paper the above-mentioned hypothesis is disproved for a class
of solvable groups. In our counterexample A is solvable and B is Abelian. Besides
we prove the “/-property” for a class of nilpotent groups answering a question posed
by JoHNSON (5). This result follows from some sufficient condition for the validity
of the ““/-property” which is derived here and includes all above-mentioned and some
new cases.

Ne 2. Counterexample. Let us consider the regular representation of the cyclic
groups Z, and Z;. Let I'=Z, ? Z; be a wreath product of the corresponding per-
mutation groups. The group I' is injected in the symmetric group o,, and hence
n(r')=10. Besides it is a semi-direct product of its normal subgroups (Z,)* and
Z, (every element of I' is uniquely representable as o, a,0,0,u, where o,€Z,,
PeZ;; the set of elements with f=1 is a normal subgroup isomorphic to (Z,)*;
the set of elements with «,=1 (i=1,2, ..., 5) is a subgroup which is isomorphic
to Z;). Let B be the center of the group I. The group B is isomorphic to Z, and
consists of a unit element ¢ and a *“‘diagonal” element z=o,-... a; where «,€Z,
are not equal to e. Let 4 be the intersection of I' with an alternating group. The
group A consists of such products which contain even number of elements «;=e.
Hence A is isomorphic to the semi-direct product of the normal subgroup N=(Z,)*
and of Z;. It is obvious that 4 and B are normal subgroups in I'. As z is an odd
permutation, 4\ B=E. Besides, as I'/A~Z,~ B, we have AB=I. Thus I is a
direct product of 4 and B.

Let us show that n(I')<n(A)+n(B). If this is not true, then n(A)=n(I")—
—n(B)=8. Hence A permits a faithful representation 7 in the group a,. But n(N)=
=n(Z3)=8. Thus the representation 7 |N is minimal and has no fixed points.
It follows that a number of orbits of this representation is less than 4. Furthermore,
as N is a normal subgroup of A. the representation 7 is inducing an action of Z,C A
on the orbit set of the respresentation 7'N. As n(Z;)=35 and Z; is a simple group,
this action is trivial, i.e. Z; is invariant on all orbits.

The representation 7N is intransitive (the only faithful transitive representa-
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tion of an Abelian group is a regular one). As the number of orbit elements divides
the order of N which is equal to 16, every orbit contains not more than 4 elements.
If follows from this that Z; acts trivially on every orbit and hence Z;cKer T in
contradiction with the faithfulness of T.

Ne 3. Notation: I'=AXB;, py: '=A, pg: =B are natural projections;
T: I'-0(R) is a representation of I' in the permutation group on 2; O is an arbi-
trary orbit for 7. T, is a restriction of T on O; T’ is a restriction of 7 on Q\ O;
S.=Ker (T,|4), Sz=Ker (T,|B).

A faithful representation 7 is said to be minimal if |Q|=n(I'). We call a mini-
mal representation completely minimal if the number of its orbits is maximal. The
number of orbits of a completely minimal representation will be denoted by m(I).
In what follows we shall assume 7" to be completely minimal.

Proposition 1. A7 least one of the representations T,\A, TyB is transitive.

PROOF. Let proposition 1 be not true and let O, be an orbit of 7, A4, O be
an orbit of TylA4. Let us consider the representation 7;: I'+~0(0,): Ty=R,pa4.
R, being the restriction of T,/4 on O,. In the same way 7,=Rgpy. Consider
the direct sum T=T,+ 7,4 T’ (i.e. T acts on the disjoint union V¥ of the sets O,
Oy and Q\ O where the restriction of 7 on O, coincides with 7; the restriction
of T on Oy coincides with T, and the restriction of 7 on @\ O coincides with 77).

We shall show that Ker R,=S5,. Obviously, S,cKerR,. On the con-
trary, as Ker R, is a normal subgroup of I', a set of the fixed points of Ker R,
is invariant with respect to the representation 7. This set contains O,. But O is
the smallest invariant set containing O,. Hence all points of O are fixed under
the action of Ker R, and it follows that Ker R, S,. Thus Ker 7y,=p;" Ker R,=
=Ker R,XB=S,XB. In the same way Ker T,=A4XSz. Now Ker T'=Ker 7,/
MKer T,MNKer T'=(S,X Sg)NKer T'cKer T, Ker 7'=Ker 7. As the represen-
tation T is faithful, T is faithful as well.

Now we shall show that |[V|=|Q|. To prove this let us consider the set W of
orbits of I' contained in O. As A is a normal subgroup in I', T is inducing a transi-

tive action of I on W. Hence |O,||W|=|0l. As O,#0, we have '.OAIE%.
|
Analogously |O,,[§i—(2)'. Therefore, [V |=|0,|+!05+ |2\ 0| =|0|+ |2\ 0| =|Q].

We have already proved that T is a minimal representation of I'. But the num-
ber of orbits of T exceeds that of T by one.

Remark. We have assumed above that if T is transitive, then T+ 7,4+ 7T'=
=T+ T,: Ker T’=T. In what follows this agreement will be observed without
comment.

From now on we assume 7,/4 to be transitive. Let us consider an action of
B/Sg on O induced by T,|B. It is obvious that the orbits of this action coincide
with the orbits of B which lay in O.

Proposition 2. The action of B/Sy is semiregular, i.e. regular on each orbit.

PrROOF. Let x€O be a fixed point for b€ B. As b commutes with A4, the set
of fixed points for b is invariant with respect to the action of 4. As A4 acts transi-
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tively on O, b acts trivially on O, i.e. beS,. So the stabilizer of any point x€0
in B is equal to Sy and hence the stabilizer of x€O in B/Sy is trivial.

Now note that T induces the action of A4/S, on the set W of orbits of B which
lay in O. Let K be the number of such orbits and let N be a Kernel of the induced
action (i.e. N consists of such elements of 4/S, which are invariant on all above-
-mentioned orbits of B).

Proposition 3. The group N is injectable in the group (B|Sg)X.

Proor. Let O; (j=1, ..., K) be orbits of B on 0. Choose x;60; and sup-
pose a€N. As o is invariant on O;, there exists f;€B/Sp such that ox;=f;'x;
(j=1, ..., K). The elements 8; are uniquely defined as the action of B/S; is semi-
regular. Let us consider a homomorphism i: N--(B/Sg)* such that a—(f,, ..., fx)
and show that i is an injection. To prove this let ;=1 (j=1, ..., K), y be any
element from the orbit O; and y be an element from B/Sy mapping x; into y. Then
ay=ouyx;=yfj ' x;=yx;=y. As jis arbitrary, all elements from O are fixed under a.
The action of N on O being faithful, it implies a=1.

Let j: I'-I'/Ker T, be a natural homomorphism. The group A4/S, permutes
a natural injection into jI': A/S,~jA=]I.

Proposition 4. Let Z be the center of A/S,. Then N(\ZCjB.

Proor. Let (¢ NN Z. Using notation from proposition 2 we have (x,=pfx,
(where x,€0,, BcB/Sg). Let y€0. As A/S, acts on O transitively, there exists
€ A/S, such that y=oax,. Hence (y={ax;=alx,=0afx,=pax,=pfy (we used com-
mutativeness of o with { as {€Z and with § as j4 commutes with jB). Thus { acts
on 0 in the same way as f=jb (b€ B), which is equivalent to {=jb€jB.

Proposition 5. Let T,|B be intransitive and nontrivial. Then j(Ker T")()
MNN#=E.

Proor. Let us consider the following representations: 7,=gp,p4, 04 being
the induced action of 4 on the set W of orbits of B contained in O; T,=Rgpg,
Ry being the action of B on one of these orbits Oy (7T, has been already considered
in Proposition 1). Put T=T,+T,+T’; T acts on the set V=WUOU(\0).

Now, assuming that j(Ker 7")(\ N=E, we shall obtain a contradiction with the
complete minimality of 7. Indeed, Ker 7,=p;'(Ker g,)=Ker g, XB=(n"'N)XB
where n: A—~A/S, is a natural homomorphism. While proving Proposition 1 we
have shown that Ker 7,=4XS;. Hence, Ker T=Ker 7, Ker T, Ker T'=
=[(p~*N)XS;]Ker T’. Let L be the group (1 'N)XxXSz]. We have j(Ker T)C
cjLNj(Ker T")=NNj(Ker T")=E by supposition. It follows now that Ker T
—Ker T,NKer T"=E, and T is a faithful representation.

Now we shall prove that V|=1Q|. First we have |W|-:|0z/=|0|. As B acts
on O nontrivially, !W]*:‘-@. As B acts on O intransitively, I()BIEL%. Finally,
V|=|W|+|0s+|2\0|= |0+ |2\ 0= Q.

We proved that 7 is minimal. But 7 has one orbit more than 7' which leads to
a contradiction.

Corollary. /f B acts nontrivially on O. then N~ E.
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ProOOF. If B acts intransitively on O, then even N[ |j(Ker T")#E. If B is
transitive, then N=A/S,=E (as A acts transitively on O too and a minimal repre-
sentation has no one-element orbits).

The following proposition is of a key significance.

Proposition 6. If T, B is non-trivial, then B|Sy is isomorphic to the cyclic
group Z s or to the generalized group of quaternious Qyr.

ProoOF. It is sufficient to prove that a minimal subgroup of B/S; is unique.
If this is not true, let us consider two cases.

1) Let all minimal subgroups of B/S; be invariant; H, and H, are two such
subgroups. As H; is a normal subgroup in the whole group jI', T induces a repre-
sentation 7; of I on the set W, where W, is the set of orbits of H; contained in O
(by the way, H acts only on O). Let us show that the representation 7=7,+ 7,4+ T
on the set V=W, W, J(Q\ 0) is minimal.

Let O, and O, be some orbits of H, and H,. Then the intersection 0,(10,
contains no more than one point. Really, if x€O then H,x(MNH,x=x as the
action of B/Sy is semiregular and H,\H,=E (H, and H, are different minimal
subgroups in B/Spg).

Furthermore, Ker 7,(1Ker 7,=Ker 7,. An inclusion Ker 7,cKer 7,/
(1Ker T, is obvious. On the other hand, if y¢Ker 7, Ker 7T,, then y is invariant
on all orbits of H, and H, and hence on all pairwise intersections of these orbits.
But, as it was proved above, these pairwise intersections divide 0 in one element
sets. Hence y€Ker 7.

Now the faithfulness of 7 is obvious: Ker T=Ker 7,/ 1Ker 7, Ker7’ =
=Ker ToNKer T'=Ker T=E,

The inequality |V |=|W| follows from O = W, « H; (as B/Sg acts semi-
regularly). As T contains more orbits than 7 (one orbit more), the case 1 is ruled out.

2) Now let B/Sz contain a noninvariant subgroup H. Put Ty=r, p,. ry
being an action of 4 on the space W of orbits of H (contained in O); T,=rgp,
rg being an action of the group B on the homogeneous space U=(B/Sp)/H (rg
is not induced by 7 as against all preceding developments). Construct the repre-
sentation T=T7,+ T,+ 7’ as previously. Let us prove the faithfulness of 7.

We shall prove that Kerr,=S,. Really, let acKerr,. It means that a is
invariant on all orbits of H. So there exists f€H such that ax,=fix,, x,€ 0. Let
now x be an arbitrary point from the orbit Bx,. Then x=7v,x, where y, is a uniquely
defined element of B/Syz. But then ax=a(y.xo)=7.(axy)=7pxo=0.fyz")x. As
a is invariant on Hx, there exists f,€ H such that B, x=ax=(y,fy:")x. At last
as the action of B/Sj is semiregular, y, fy:'=p,€ H. If x runs through the orbit
Bx,, then y, runs through the whole group B/S;. It follows now that all elements
conjugated with fcH belong to H. But as H is the minimal and noninvariant
subgroup, f=1. Hence ax,=px,. As x, is an arbitrary element of O, we have
ac S,. This proves that Ker R, S,. The inverse inclusion is obvious.

Furthermore, Kerrg=S,; as H does not contain the normal subgroups of
B/Sg and hence the action of B/Sy; on the homogeneous space (B/Sg)/H is faith-
ful. Now the proof of faithfulness of 7 is the same as in Proposition 1.
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Minimality of 7 follows from |U|- H|=|B/Sg/=|0| and |W||H|=|0|
Besides, the number of orbits of T is greater by one than that of 7. This gives a
contradiction, g.e.d.

Ne 4. A representation of the group I'=A4 X B will be said to have a canonical
structure if either A4 or B acts trivially on every orbit of I'. If a completely minimal
representation of I is canonical, then n(I')=n(A)4n(B), m(I')=m(A)+m(B).

The principal lemma. Let the following condition be satisfied for any pair of
homomorphic images A, B of the groups A and B:

(c) If 1) either A or B ( for example B) is isomorphic to Z,s or Qy and 2) N#E
is an arbitrary normal subgroup of A permitting injection into B* then every normal
subgroup L+#E contained in N has a nontrivial intersection with the center Z of A.

Then the “‘l-property” is true for the degree and the number of orbits: n(AX B)=
=n(A)+n(B); m(AXB)=m(A)+m(B).

If there are no A, B satisfying the suppositions of condition (c), then any completely
minimal representation T of AXB has the canonical structure.

Proor. We shall construct the faithful reEresentation T: '-o(Q) with the
properties 1) 7 is invariant on O and Q\ 0 2) T, is transitive; 3) T'=T’; 4) either
A or B are in Ker 7. '

If B acts on O trivially, let 7=T. If not, B/Sz~Z, or Q (Proposition 6)
and A/S, contains a normal subgroup N as described in Proposition 3 which is
injectable in (B/Sg)*. By the corollary from Proposition 5, N=E. Thus the sup-
positions of condition (c) are satisfied for quotient groups A4/S,, B/S;.

Hence NNZ=E. But NNBcjB (Proposition 4) and thus NNZcj B jA.
It follows now that j is non-injective, i.e. T, is not a faithful representation. Thus
T is non-transitive.

Furthermore, let us consider the commutative diagram

r——riKerT,
wl t

I W
(A/S4) X(B/Sp)

where ¢ and ¥ are the natural homomorphisms. As S,=AKerj, @=y|(4/S,)
is a monomorphism. Let us denote Ker 7° by G. To avoid unconvenient nota-
tions let us introduce identifications by isomorphisms: N~@ N, Z~©'Z. Let
us show that ¢G@B=E or @G(IN=E. Otherwise @G(l@eB>oH,, H, being
the only minimal subgroup in ¢ B. On the other hand, by the condition (¢) L=¢G/)
MNNZ#E. But yLCjGNNNZc jB (Proposition 4) and hence Yy H,C L. Define
H,cL by the condition Yy H,=yH, Then ¢G> H,XH, in contradiction with
the injectivity of |G.

Hence, if 7,/B is not transitive, then @G \@B=E (Proposition 5). If T,'B
is transitive, then N=¢@A. In both cases ¢GN@B=E or oGMNeA=E. To be
definite, let @GN@B=E. Then T=(T,A)p,+ T is a faithful representation
with the properties 1)—4). These properties are obvious. Let us check the faith-
fulness. As Ker (7,/4)=S,, we have Ker 7=(5,XB)NG and ¢(Ker T)c
ceBNeG=E. Thus Ker %‘c Ker ¢=5,XSy. Besides, Ker TcG. It follows
now that Ker T=E.
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The consecutive application of this construction to all orbits turns 7 into the
representation of canonical structure with the same space Q and the same space of
orbits. This proves the *“‘/-property™.

We proved above that if A4 acts transitively on O and B acts nontrivially on O,
then the suppositions of the condition (c) are satisfied for the quotient groups A4/S,
and B/Sy. Hence if they are not satisfied for any homomorphic images 4 and B,
then either 4 or B acts trivially, i.e. T has the canonical structure.

Ne 5. The principal lemma implies the following.

Theorem. The logarithmic property for the degree (n(AXB)=n(A)+n(B)) and
Jfor the number of orbits of completely minimal representation (m(A X B)=m(A)+m(B))
is true in the following cases:

1) A and B are nilpotent groups; 2) there are no groups Z,s and Q, among the
homomorphic images of A and B; 3) A and B are completely reducible (cf. (6));
4) A i.; completely reducible, B is nilpotent; 5) the orders of A and B are coprime
(cf. (5)).

Every completely minimal representation of AXB is of the canonical structure
in the cases 2) and 5).

PrROOF. In the case 2) the first supposition of condition (c) is not satisfied.
In the case 5) it may be satisfied but the second supposition is ruled out (as any
prime number dividing the order of N is the common divisor of the orders of A
and B).

In a nilpotent group any nontrivial normal subgroup has non-void intersec-
tion with the center. In a completely reducible group any normal subgroup which
is injectable in (Z,)* or (Q.)* is Abelian and, being complementable, is central.
As transition to the homomorphic images preserves nilpotentness and complete
reducibility, condition (c) is satisfied for the pair of groups 4 and B if 4 and B are
independently nilpotent or completely reducible. This proves the theorem in the
cases 1), 3), 4).
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