On certain graphs associated with an integral domain
and their applications to diophantine problems

By K. GY ORY (Debrecen)

1. Introduction

In [4] and [11], we obtained effective results on certain arithmetic graphs asso-
ciated with the ring of integers of a number field. The results of [11] have appli-
cations among other things to diophantine equations (see [15]) and to algebraic
integers of given discriminant (cf. [16]). The purpose of the present paper is to
extend, in an ineffective form, some results of [11], [15] and [16] to the case of inte-
gral domains of characteristic 0.%)

Let R be an integral domain, and I" a non-empty subset of R. Consider the
directed graph ¥=%(R, I') whose vertex set is R, and whose edges are the ordered
pairs [x, f] of distinct elements «, fER satisfying

p—agrl.

% is in fact a Cayley graph (see e.g. [32] or [23]) of the additive group of R. Since
R is a ring, it is natural to assume that I' has some multiplicative property. From
the point of view of applications, of particular importance is the case when I'=A4"S
where A" is a finite non-empty subset of R, S is a finitely generated multiplicative
subsemigroup of R\ {0} and —1€ S. Many higher dimensional diophantine problems
can be reduced to the study of finite induced subgraphs of such graphs ¥. We remark
that in these applications it is more convenient to remove the direction and regard
% as a simple (undirected) graph.

In [11], we gave a certain characterization of finite induced subgraphs of given
order of ¥ in the case when R is the ring of integers of a number field. Further,
we showed that the structure of these subgraphs becomes simpler whenever they
have sufficiently many vertices. In the is paper we extend, in an ineffective form,
these results to the case of integral domains R of characteristic 0. Our main results
(Theorems 1 and 2) will be stated in Section 2.

Our Theorems 1 and 2 have a number of applications. Some of them will be
presented in Sections 3, 4 and 5.

Theorem 1 enabled us to solve several higher dimensional diophantine problems
which had not been attackable by the earlier methods. Generalizing certain finiteness

*) Added in proof. Effective versions of some results of this paper have been established in
our recent works “Bounds for the solutions of norm form, discriminant form and index form equa-
tions in finitely generated integral domains’ (to appear) and “Integral elements of given discrimi-
nant over finitely generated domains™ (to appear).
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results of [7], [18], [31] and [12—15], in Section 3 we show that the discriminant form
equations, index form equations and certain norm form equations defined over a
field of finite type over Q have only finitely many solutions in any given integrai
domain finitely generated over Z. In the terminology of Lang [21] this means that
the affine varieties determined by such equations have the Siegel property.

In Section 5, general results are established on integral elements of given dis-
criminant over finitely generated rings. These extend some finiteness results of
[8], [9], [10] and [16] to this more general situation. We get as a special case
that if R is an integrally closed ring of finite type over Z with quotient field L and
K is a finite extension field of L, then, apart from the translation by elements of R,
there are only finitely many integral elements over R in K with a given non-zero
discriminant over L. Another consequence is that if R” is an almost finite!) integral
extension of R then up to the obvious translation by elements of R and multiplica-
tion by invertible elements of R, there are only finitely many «€R" with R’=R][«].

Some further applications will be published in a separate paper.

2. The main results

Let R be an integral domain of characteristic 0, S a finitely generated multi-
plicative subset of R (i.e. a finitely generated multiplicative subsemigroup of R\ {0}
containing 1), 4" a finite non-empty subset of R\ {0} and I'=A4"S *). We suppose,
for convenience, that —1€S. For an arbitrary non-empty subset .« of R, we denote
by % (s, I') the graph®) whose vertex set is 2/, and whose edges are the unordered
pairs [x, ] of distinct elements =, fc.of satisfying')

(n a—par.

This section is devoted to the study of finite subgraphs of %(R,I'). Clearly
it suffices to consider the induced subgraphs®). If ¥ and % are finite induced sub-
graphs of %(R,I') with vertex sets o/ and .« and

o =eol+y

with some &S and y€R, then we shall say that %" comes from % by the transla-
tion by an element of R and multiplication by an element of S, or simply that ¥’ comes

) In other words, R’ is an integral extension of R and its quotient field is a finite extension of
L (see [24]).

) The classical algebraic concepts used in the present work can be found e.g. in [33] and [25].

3) For the necessary basic concepts concerning graphs and hypergraphs we refer the reader
to the books [1] and [22]. If % is a graph, then, as usual, V(ff_} denotes the vertex set of ¥4, E(%)

its edge set, |%| its order (the number of its vertices), and % its complement. A subgraph 4’ of
% is said to be an induced one if E(%’) consists of all edges of % having both their endpoints in
V(%’). In this case %’ is called the subgraph induced by the subset V(%) of V(%). If ¥ and
%" are subgraphs of @, 4'v%” will denote the subgraph induced by V(%)LV(%").

Y) Since —1¢8, (1)and f—ad¢ " hold simultaneously.

%) We shall distinguish between two isomorphic induced subgraphs of % (R, I') if their vertex
sets are distinct.
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from % ®). Further, we shall say that a subgraph of %(R,I') comes from the H,
defined below if it comes from a subgraph belonging to H,,.

Let 4 denote the triangle hypergraph’) of 4. An induced subgraph # of
order =2 of % will be said to be spanned by a connected component of g" if

the set of endpoints of those edges of % which are vertices of this component
coincides with V().

First we give a certain characterization of finite induced subgraphs of given
order of %(R.T).

Theorem 1. Given a natural number m=2, there is a finite subset H,, of induced
subgraphs of order =m of %(R,I') with the following property. If 4 is an arbitrary
induced subgraph of order m of %(R,I) with connected components %, ..., %,
and 9 =%_\|=...=|9,. then at least one of the following cases holds:

(i) I=1 (i.e. ¥ is connected) and, if ¥ is not complete, each induced subgraph
of 4 whose complement is spanned by a connected component of % " comes from H,,,
(i) I=2, |%,|=1, %, is not connected and, for each connected component H
of 9, HNG, comes from H,,
(i) 1=2, 2=|9, =|%,| and both %, and %, are complete,
(iv) 4 comes from H,,.

This theorem can be regarded as an ineffective extension of Theorem 1 of [11]
to integral domains of characteristic 0.

Our theorem above shows that, apart from the translation by elements of R
and multiplication by elements of S, all but a finite number of induced subgraphs
of order m of ¥(R, I') are of the type (i), (ii) or (iii).

It is easy to show (see e.g. the examples given in [11]) that each of the cases (i),
(ii) and (iii) really occurs. Further, any connected graph of order m can be rep-
resented (with suitable 4" and S) as an induced subgraph of % (R, I'). In case (i)
it is not possible to get a more precise but simple characterization. By means of
repeated applications of Theorem 1 (see the remark below) further induced sub-
graphs of % can be obtained from a suitable finite extension of H,,.

It is clear that Theorem 1 is not true if S is not finitely generated or if A" is
infinite. Further, as the example of the graphs %(&.I') having vertex set
&=1{0,1,2,¢ 1 +¢& 2+¢}, ¢€S, shows, Theorem 1 does not remain valid if we

replace q" by that hypergraph whose vertices are the edges of %, and whose edges

are the n-tuples (n=4) of edges of % that form a circuit of length n.
Finally, we remark that the following repeated application of Theorem 1 to
induced subgraphs of order m of ¥(R,I') can provide further information about

*) Both the translation by elements of R and the multiplication by element of § define an
action on (R, I'). The multiplication considered does not act in general on the edge set of ¥(R, I').
However, if e.g. A ={1} and § is a group, both the translation and the multiplication act on

G(R, T).
) The triangle hypergraph %7 of a graph % is that hypergraph whose vertices are the edges
of %, and whose edges are the triples of edges of ¥ that form a triangle (cf. [1], p. 440).

6D
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these subgraphs. Let.#; denote the finite set consisting of 4" and of the differences
of the vertices (as elements of R) of the graphs belonging to H,,=H, (R, TI'), and
put I'y'=A41S. Then 'CTI', and by Theorem 1 there exists a finite subset H, (R, I'})
of induced subgraphs of order =m of %(R, I'y) with the property specified above.
It often happens that some induced subgraph of a graph %(«/, I') of order m does
not come from H,(R, '), but the corresponding induced subgraph of %(s/, I'))
(which has the same vertex set) comes from H, (R, ;). This observation proves
useful in some applications. It is obvious that the above argument can be con-
tinued.

Our next theorem concerns finite induced subgraphs of high order of ¥(R, I').
Before stating it, we introduce an important constant. In Section 6 we shall show
(cf. Lemma 3) that up to the multiplication by elements of S, the equation

(2) x+y+z=0

has only finitely many solutions (x, y, z)éI®. Thus there is a finite set, 7, of solu-
tions such that every solution (x, y, z) of (2) can be written in the form (x, y, z)=
=(mx’, ny’, nz’) with some n€S and (x’,)",z)¢7T. The minimum cardinality of
these finite sets 7" of solutions will be denoted by C=C(R,.4, §). We remark that
C is uniquely determined by R, A" and S.

Theorem 2. Let 4 be an arbitrary finite induced subgraph of %(R,T') with
|%|=3C. Then either

(i) 9 is connected,
or

(ii) % has two connected components %,, 4,, %, =\%4,|, 4, is complete and if
|9, =C then %, is also complete.

In the case when R is the ring of integers of a number field, our Theorem 2 in
[11] gives much more precise information about the structure of finite induced sub-
graphs of high order of % (R, TI).

It is easy to give examples for both cases listed in Theorem 2 (cf. [11]).

There are many cases when C=0. If this is the case, our Theorem 1 reduces
essentially to Theorem 2.

We remark that Theorem 2 is true for infinite induced subgraphs of #(R.T)
as well. The infinite case can easily be reduced to the finite one.

3. Applications to diophantine equations

As an application of our Theorem 1, we extend now (in an ineflective form)
some results of [7], [18], [31], [12], [15] and [14] to the case of fields of finite type
over Q.

Let L be a finitely generated extension field of Q, and K an extension of
L. Let

F{x) = F(%5; 100 2p)ELIN, ooy 2]

be a form of degree n=3 in m=2 variables, and suppose that F is decomposable,
i.e. that it factors into linear factors in some finite extension, G, of L. Let R be a finitely
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generated subring of K over Z with quotient field K’, and f a non-zero element
in K. We shall show that under certain conditions concerning the linear factors of
F the equation

(3) FOtios ) =P

has only finitely many solutions (x,, ..., x,,)€ R™.

We may suppose without loss of generality that K contains G and that the coeffi-
cient a, of x{ in Fis different from zero. Let F(x)=ay/,(x)...1,(x) be the factoriza-
tion of F into linear factors /; with coefficients in G. Suppose that the linear equa-
tion system

(4) Lix)=0, i=1,...,n,

has no non-trivial solution x in L™ and that the system % of linear forms /, ..., /,
can be partitioned into pairwise disjoint subsystems %, ..., %, such that each %,
(l*—‘-‘h{k] is connected (that is, for any distinct i, j with [;, [;,€ %, there is a sequence
Li=1,, !J, —IJ, in &, such that 2; [, +47 .1, ,,€%, for each u, 1=u=v-1,
wuh 'some Ajr A5, €G\{0}; in case of number fields see e.g. [15])%). It will be
apparent from the proof that under these assumptions m=n holds and (4) has no
non-trivial solution in any extension field of L. Further, suppose that there exists
at, 1=t=m, such that if

(5) li(x) =0 for all %,

with some x=(x,, ..., x,,) having components from an arbitrary extension of L
then x,=0 follows for each fixed & (1=h=k) °).

Theorem 3. Under the above hypotheses, the equation (3) has only finitely many
solutions (x,, ..., x,)JER™ with x,#0.

Using a standard argument, from Theorem 3 we can easily deduce (in an ineffec-
tive form) the main results of [12] and [15], obtained in the case of algebraic number
fields L, K’.

When m=2, Theorem 3 follows from a theorem of LANG [19], [20], i.e. from
a generalized version of a theorem of SIEGEL [29] concerning integral points of
curves of genus =1.

It is evident that our Theorem 3 and its corollaries do not remain valid if K’
and R are not finitely generated.

In what follows, we keep the above notations and present some consequences
of Theorem 3. By a solution xéR™ of (6), (7) and (9) we shall mean an x€R™

satisfying L
1!...,,)(:

where /; are the linear factors of the corresponding decomposable form.

#) It is easily seen that if m=2 then every system .% containing at least three pairwise non-
proportional linear forms satisfies these conditions with k=1.

") We remark that if k=1 then the other hypotheses imply this assumption for each r. Thus
in case k=1 the restriction x.#0 can be omitted from Theorem 3. Added in proof. An equivalent
formulation of the conditions concerning (4) and (5) is that rank ¥=m over G and, for each
h x= ¥ ol withea€G.

il €2,

6.
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Let M be a finite extension of degree n=3 of L, and let o, =1, %, ..., %, be
linearly independent elements of M over L with m=2 and M=L(a, ..., %,).
We may assume without loss of generality that K contains the normal closure of
M over L. We canshow in the same way asin case L=Q (seee.g. [3]) thatif x,, ..., x, €L
are variables then the norm F(x)= Ny, (x;+ o Xs+... +,X,) is a decomposable
form of degree n with coefficients in L. It is called a norm form over L. In this case
(3) becomes a norm form equation

(6) NMI,-;_(X;—FB@X:_.-!—...-+-CI,,,X,,,) = ﬁ
over L.

Generalizing a well-know result of Schmidt [28], in the case K" = L=Q Schlicke-
wei [27] gave criteria for (6) to have only finitely many solutions. In the case when
L and K’ are arbitrary number fields, we obtained [12], [14], [15], under certain con-
ditions concerning o,, ..., a,,, effective results on (6). We extend now (in an ineffec-
tive form) some results of [12], [14] and [15] to the above more general situation.

Corollary 3.1. Suppose that in (6) ;. is of degree =3 over L(x,,...,%) for
i=1,...,m—1. Then (6) has only finitely many solutions x¢ R™.

If we restrict ourselves to the solutions x=(x,. ..., x,,)é R" for which x,,=0,
the conditions of Corollary 3.1 can be relaxed.

Corollary 3.2. Suppose that in (6) o, =1, o, ..., %, are linearly independent
over L and that o, is of degree =3 over L(y, ...,o,_,). Then (6) has only finitely
many solutions X=(xy, ..., X,)ER™ with x,,+0.

Let M be as above, and let 1,4, ..., 2, be linearly independent elements of
M over L such that M=L(x,, ...,2,). If x,, x;,..., x,6L are variables, it is
easily seen that the discriminant Dy (o, x,+ ... 4+a,X,) of Xo+ayx,+...+a,x,.
over L is a decomposable form of degree n(n—1) in Xx, ..., x,, with coefficients
in L. Such a form is said to be a discriminant form over L (in case of number fields,
for this concept see e.g. [7], [18] or [13]). Taking F(x)=Dyyp (0t X+ ... +%,X,),
(3) is a discriminant form equation

(7) Dy (0 %+ ...+, X,) = B
over L.

Corollary 3.3. Under the above assumptions, the equation (T) has only finitely
many solutions X€ R™,

In the special case when L and K’ are number fields, Corollary 3.3 implies (in
an ineffective form) the results of Gy6ry [7], [12], [15] and GyOry and Papp [18]
obtained on the finiteness of the number of solutions of discriminant form equations.

Let A be an integral domain with quotient field L, and let B be a subring of M
containing 4. Suppose that B, as an A-module, has a basis of the form {1, w,. ..., ®,}.
Then it is easily seen that

(8) Dy (e X3+ ... +@,X,) = [F(x3, ..., X)) Dy (1, s, ..., @,)
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where Dy, (1, w,, ..., w,)(€ L) denotes the discriminant of the basis {1, w,, ..., ,}
over L and F(x,, ..., x,)EA[x,, ..., x,] 1s a decomposable form of degree n(n—1)/2.
This form is called the index form of the basis {1, w,, ..., w,} of B over A. When
F(x)=F(x,, ..., x,), (3) becomes an index form equation

9) F(xs, ..., X,) = B.

In case of number fields, there is an extensive literature of index forms and
index form equations (see e.g. the references given in [18] and [13]).

Corollary 3.4. With the above notations and assumptions, the equation (9) has
only finitely many solutions (x,, ..., x,)€ R"~1.

Of particular interest is the special case when L and K’ are algebraic number
fields, and A is the ring of integers of L. In this case the above statement was proved,
in a slightly different and effective form, in our paper [15]. For certain special cases
see GYORY [7], [12], TRELINA [31] and GYORY and Papp [18].

4. Applications to polynomials of given discriminant

Let R be an integrally closed integral domain with quotient field L. Suppose
that R is finitely generated over Z. If fER[x] and f*(x)=f(x+a) with some
ac R, then for their discriminants D(f)=D(f")¢R holds. Such polynomials
. f*€R[x] will be called R-equivalent.

Let 4 be a non-zero element in R, S a finitely generated multiplicative subset
in R, and G a finite extension of L. By applying Theorems 1 and 2 we shall prove
the following

Theorem 4. Under the above assumptions, there is a constant ¢ and a finite set
2 of monic polynomials with coefficients in R and with discriminant contained in 6S
such that if f€R[x] is an arbitrary monic polynomial with D(f)€0S and with roots
in G, then n=deg ( f)=c and fis R-equivalent to a polynomial of the form n"f*(n~'x)
where n€S and f*€P.

In the case R=Z and S = {1} this theorem was proved, in an effective form, in
[5] and [6]. In case of arbitrary number fields L see [8], [9] and [16]. Theorem 4
can be easily extended to those monic polynomials f€ R[x] of bounded degree
whose monic polynomial divisor P, (x)€R[x] of maximal degree with non-zero
discriminant has the property D(P,)€dS (cf. [16], Theorem 1).

An easy consequence of Theorem 4 is that up to R-equivalence there are only
finitely many monic polynomials f€ R[x] with roots in G and with D(f)=4. This
implies e.g. that, for given u€R, there are only finitely many monic polynomials
f€ R[x] with roots in G such that D(f)=0d and f(0)=p.

It is easy to see that in Theorem 4 the conditions concerning R and S are
necessary.
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5. Applications to integral elements of given discriminant

Let R, L, 4 and S be as in the preceding section. Let K be an extension field
of degree n=2 of L, and T the integral closure of R in K. If « is an element of
T then its discriminant Dg, (x) over L lies in R. Further, if o"¢T with
a—o*€R then

Dy (%) = Dy (")

Such elements of T will be called R-equivalent.

It is clear that if a=a+4na® with some a€R, n€S and «*€7, then we have

Dy (2) = ’?"‘"‘”Dm:.(“*)-

Theorem 5. There exists a finite set & of elements of T with discriminant con-
tained in 68 such that any a€T with Dy, (x)€dS is R-equivalent to an element of
the form no* where ne€S and o*€é.

Our theorem generalizes (in an ineffective form) some results of ours [9], [16]
obtained in case of algebraic number fields. For further references concerning
earlier results see [13].

An obvious consequence of Theorem 5 is that up to translations by elements
of R and multiplications by elements of S, there are only finitely many elements in
T with discriminant contained in 65 over L.

Corollary 5.1. Given a non-zero element 6 in R, there are only finitely many
pairwise R-inequivalent elements in T with discriminant & over L.

This implies that for given 6 and t there are only finitely many «€7 with
Dgjp(x)=96 and T,  (2)=t.

Let Q be another finitely generated multiplicative subset in R with S(M1Q={1}.

Corollary 5.2. Let 6 and u be fixed non-zero elements in R. There are only finitely
many elements o in T with Dy, (x)€6S and N (2)€uQ.

Let R* and T™ denote the multiplicative group of the invertible elements of R
and T, respectively. In the special case S={1}, Q=R", u=1 Corollary 5.2 gives
the following

Corollary 5.3. Given a non-zero element 0 in R, there are only finitely many
a€T* with Dy (x)=4.

Finally, we present a consequence of Theorem 5 concerning rings generated by
a single element over R. Let T’ be an arbitrary integral extension of R with quotient
field K. If T"=R[a] for some a7’ and o'=a+ex with some acR and z€R",
then obviously T'=R[x].

Corollary 5.4. Up to the translation by elements of R and multiplication by ele-
ments of R*, there are only finitely many x€T’ with T’ =R][a].

In the number field case BIRCH and MERRIMAN [2], GYORY [5—10], [16] and
TRELINA [30] obtained finiteness theorems on algebraic integers of given discriminant
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and related questions. The results of [5—10], [16] and [30] are effective. Our above
corollaries generalize, in an ineffective form, some of these results.

It is easily seen that the conditions made on R and S are necessary. Theorem 5
and its corollaries do not remain valid if R is not finitely generated. Similarly, in
Theorem 5 and Corollary 5.2 it is necessary to assume S and Q finitely generated.
Finally, Theorem 5 and Corollary 5.1 are not true in general when R is not integrally
closed.

6. Proofs

In proving Theorems 1 and 2 we shall use the basic idea of the proofs of [11].
In place of applying Baker’s method a general and deep ineffective theorem of
Lang [19], [20] will be utilized.

Let R, S and I' be as in Section 2, and let L be the quotient field of R.

Lemma 1. (S. LANG, [20].) Let a, B, y be non-zero elements in L, and let G be
a finitely generated multiplicative subgroup of L*. Then the equation

(10) ax+py =y
has only finitely many solutions with x, yeG.

Since the next simple assertion will be utilized several times, we state it as a
separate lemma. Let =, ..., n, be a fixed system of generators of S.

Lemma 2. Let T be any subset of S. There is a finite subset T" of T such that
for any element o of T there is an element f of T" such that ax=n{...n% and
p=nb...nt hold with a;=b;=0, i=1, ...,s.

Proor. The assertion easily follows by induction on the number of generators.
Lemma 3. Up to the multiplication by elements of S, the equation

(11) x+y+z=0

has only finitely many solutions (x, y, z)eI.

ProOF. Since I'=A4"S and A" is finite, from (11) we get a finite number of equa-
tions of the form
(12) ax+py+yz=0

in x, y, z€ S, where the coefficients «, f, y belong to .4 It is enough to prove the
assertion for the solutions (x, ), z)€S?* of (12) with fixed «, . 7.

Let G denote the multiplicative subgroup of L* generated by S. S being finitely
generated, G is also finitely generated. Further, from (12) we get

x(x/z2)+B(y/z)+7y =0.

So, by Lemma | x/z and y/z can take only finitely many values Xx,, y,€G. Let
us fix such a pair x,, »,. By Lemma 2 there are finitely many (x7, )’, z)€ S® with
X'[2’=xy, ¥'[Z"=y, such that, for every (x,y,2)€ES?® with x/z=x,, y/z=y,, We
have z’|z in S with some z” above. But this implies (x, v, z)=(nx’, ny’, nz’) with
some n€S which completes the proof.
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Lemma 4. Let m=2 be a given natural number. Up to the translation by ele-
ments of R and multiplication by elements of S, there are only finitely many induced

subgraphs # of order m of 9(R,TI) such that # is spanned by a connected com-
ponent of Jf’r“').
Proor. When m=2, the assertion follows from the finiteness of V.

Suppose now m=3. Let # be an arbitrary induced subgraph of %(R,I')
with vertex set o/={a,, ..., %,} and with the prescribed properties. If «;, «; and

o, form a triangle in 3, then
(o —oty) +(at; — o) + (g — ;) = 0.
By Lemma 3 there is a finite subset I, of I" (depending only on .4~ and S) such that

fx,-—dj =8d,-j, 11_;-*0:,‘ =gajt, Oy —0; = EUy;

with some e€S and o, o, au€l,.

By hypothesis # is spanned by a connected component of #". Consider
those edges of # which are vertices of this component. There is a numbering
i1, ..., iy of these edges of # (with N depending only on m) such that for each u
(1=u=N-1) the i,-th and i,,,-th edges form a triangle in # together with a

suitable edge of #. Of course, in this sequence one edge may occur several times.
Denoting by f; one of the differences of the endpoints (as elements of R) of the
i,-th edge, our above argument gives

(13) Bi, or —Bi.=¢. 7. Bi. =&,V

with & €S and y,,9. ,,€l,, u=1,..,N—1. Since both I'y and the number of
possible numberings of edges is finite, it suffices to prove the assertion for those
graphs #°(s/,I') of order m for which N, y, .y, (u=1,...,N—1) and the
signs have the same values in (13). Thus, by Lemma 2 there exists a finite number of
(€lys -oos & )ESN-1 satisfying (13) for some graphs considered above such that
&, is divisible in S by at least one of these £ . From this it follows that

& =ne, u=1,..,N-1,
with some n€S. Finally, we have for each numbered edge [a,,%,] of #
(14) %, =%y = Ny

with some «) €' belonging to a finite subset of I".
For every a; and «; there is a path of length at most m from 2; to #; which

consists of numbered edges of H#. So, from (14) we obtain

o;—0; = Nt

10) It is clear that any induced subgraph of %(R, I") which comes from a subgraph .# having
the property specified here also has this property.
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with finitely many possibilities for o;. Writing «;,=0, there are only finitely many
possibilities for each of «f,, al,, ..., o,,. This shows that there are finitely many
graphs #'=#"(of’,I') with vertex set o' ={o],, a3, ..., %y} Such that any of
these '’ has the prescribed properties, and such that any induced subgraph #
of order m of %(R, ') having the properties specified in Lemma 4 comes from one
of these graphs .

PrROOF OF THEOREM 1. We shall use the besic idea of the proof of Theorem 1
of [11]. Let /= {a,. ..., 0y} be the vertex set of 4. It is easﬂy seen that if /=3
then both 4 and 4 are conne(,ted So % is spanned by %" and so, by Lemma 4,
% comes from a finite subset of induced subgraphs of order m of %(R,I'). Thus
(iv) holds.

Suppose /=2. First assume |94,/=2. If both 4, and ¥, are complete, (iii)
follows. Suppose now that e.g. %, is not complete. Let [x,.x,] be an edge of %,,
and let # =% (o', I') denote the subgraph of ¥ mduced by o ={a,, ¢, JUV(%).
Since Z is spanned by a connected component of F', . by Lemma 4 we have for any
two distinct vertices ;. o; of F#

If_aj = 80,;

with some &€ S and with J;; belonging to a finite subset of R. Let .4" denote the
finite set consisting of 4" and of the finite subset of R mentioned above. Let
I'=A"8. We can now apply Lemma 4 to the graph %(«/, I'") with I'" in place
of I', and for ¥ (o, I') (iv) follows with a suitable finite set H,,.

Assume now that |%,/=1. If &, is connected, by Lemma 4 % has the property
(iv). Further, if 4, is not connected and # is a connected component of %,, by

Lemma 4 (ii) holds for XV@ .
Finally, if /=1 and % is not complete, then by virtue of Lemma 4 (i) follows.

PROOF OF THEOREM 2. Let again %,,...,%, be the connected components of
% with |9|=...=|%,|. In the case /=3, let %; and «; denote one vertex of % and
of 4,_,, respectively. Then we have

(15) (=), (x;—2a,) (o, —a)ET

and

(16) {ai _:‘j]+{-g__r'_3n)'-‘ {-1,,—’.!,-) =0

for each vertex «, of %, _...... %,. The number of these z, is at least |4|/3. On the

other hand, since x;—; is fixed in (16), by Lemma 3 we have at most C such
vertices o,. Thus we obtain C=|%/3 which contradicts the assumption.

Let now /=2. Assume that |%,/=2 and that %, is not complete. Then (15)
and (16) hold for a fixed edge [x;, 2] of %, and for each vertex o, of %,. Therefore,
by Lemma 3 we obtain C=|%4!/2 whu.h is impossible. If '4,|=C and %, is not
complete, we get a contradiction in a similar manner.

It remained the case /=1, and so our theorem is proved.

Our Theorem 3 will be deduced from Theorem 1. In deducing it, we shall
use the basic idea of the proof of Theorem 1 of [15] and the following deep theorem
due to ROQUETTE [26].
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Lemma 5. (P. ROQUETTE, [26]).) Let R be a finitely generated integral domain
over Z. Then the invertible elements R* of R form a finitely generated group.

PrOOF OF THEOREM 3. We may assume without loss of generality that K’ con-
tains G, and that R contains 8, f~1, a, and all the coefficients of thel inear factors
' AT 18

Let X€R™ be an arbitrary but fixed solution of (3). Put /;(x)=§;,j=1,...,n.
Since BER*, we have B;cR* for each j. Let / be a fixed integer with 1=h=k,
and 4, the set of indices j satisfying /;€.%,. We may suppose without loss of gen-
erality that h€.,. By assumption %, is connected, so if jef\{h}, there is
a sequence /,=l;,....I; =I; in &, such that for each u, 1=u=v—1, we have

J1? J
= A
with /[, €%, and with non-zero elements i} , 27 .., 4; .., contained in G.
Since GE K’ and K’ is the quotient field of R, we may choose these elements 4
to belong to R. Let 4, denote the finite subset of R consisting of 0 and 4] f;, .
2esiBiusys =1, ..., v=1, when j runs through S\ {h}. The elements of %,
can be chosen so that Card #,=2n. Further, let .4" be the finite set consisting of
all non-zero 4., 27, ..+ 4j..ui1s *fusr—*ju., and of the non-zero differences of
45, when j runs through #\{h}. Write I" for A"R*, where by Lemma 5 R* is a
finitely generated multiplicative group.
For fixed h and je# N\ {h} we have now

;‘}..ﬂj.._;"i-+|ﬂju+ 1€r‘ =1 ..,v=-1
then
)".;...w:ﬁfn<]_A;’nolﬁjlnlEr

for every u with 1=w=0v—-2. Let us define the graph %,=%,(#,, ') as in Sec-
tion 2. Since both %, and ’&,,r are connected, by Theorem | we have

(17) /By =md; for all jeg,,

o ”
"J'.nl‘ju *ijwrl’ju-rl Jusus 1 Jurus

- ’ : 1M
and’ If ;'ji(+l;:/-jlat'l‘

where /e, n,€ R* and J; can take only finitely many values. Finally, (17) holds
with i3=8,=1 if S={h).

From (17) we get
(18) iil(x) = n,o; for all jeg,.

Consider (18) as a linear equation system in x=(x,, .... Xx,,). By the hypothesis
(5 x, is uniquely determined by (18). Consequently, we have x,=mn,0, where
there are only finitely many possibilities for ¢,. A=1. ..., k. Since by hypothesis
x,#0, we obtain n,=n,0,/e,. Putting ¢,=g, for je.#,, we get

(19) Li(x)=m8;, j=1,..,n,

where 3;=(0,0;)/(e;%]) also belong to a finite subset of K".

In view of Fe¢ fol, ...y X)), Z consists of the conjugates of /; over L, j=1, ..., n.
Since by hypothesis (4) has no non-trivial solution x in L™, hence the argument of
the proof of Lemma 2 of [17] applies in this more general situation as well, and it
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follows that (4) has no non-trivial solution x in K™ (which implies m=n). So the
X=(xq, ..., X,,)é R™ considered above is the only solution of (19) in K™ Hence
we get

Xy =T

where the v; can take only finitely many values from K’. Finally, from (3) we obtain
MF, .. Vo) = B,

whence it follows that, for each fixed (v,,...,v,), n, also takes only finitely many
values from R*. This completes the proof of Theorem 3.

PROOF OF COROLLARY 3.1. Let x=(x,, ..., x,)ER™ be an arbitrary but fixed
solution of (6), and let 1 be the greatest integer for which x,=0. Since the case
t=1 is trivial, we suppose 7=2. Then (6) can be written in the form

F(x) = (Npg . (ey+ 0 x3+ ...+, x))% = B

where M,=L(ay, ...,,) and n,=[M:M,]. We can prove in the same way as in
the proof of Theorem 3 of [15] that F,(x) satisfies all conditions of our Theorem 3,
and so the assertion follows.

PrROOF OF COROLLARY 3.2. It suffices to apply the above proof with r=m.

PROOF OF COROLLARY 3.3. The case m=1 being trivial, we suppose that m=2.
Further, we may assume that D, (2,)>0. Indeed, if this is not the case, there are
non-zero ds, ..., a,€ RN L such that for a=a,+ayas+ ... +a,x, Dyp(x)70 holds.
Then we can consider the equation

Dy (X} + 0233 + ...+ 2 X3) = B

in place of (7), where x{—=x,, x/=—a;x;,+x;, i=2, ..., m. This equation satisfies
all conditions of Theorem 1 with k=1 (cf. the proof of Theorem 5 in [15]) and so
the assertion is proved.

PROOF OF COROLLARY 3.4. In view of (8) every solution xe R"~' of (9) satisfies
D__“I-L(.m:!.‘-g‘i‘ o +UJ".\.H) = I‘zDM.-'L(I‘ Woy r+y w")A

Since {1, w,, ..., w,} is a basis of M/L, Corollary 3.3 applies and the assertion
follows.

We shall now deduce Theorem 4 from Theorems | and 2. In our proof below
the arguments of the proof of Theorem 1 of [16] will be utilized.

PROOF OF THEOREM 4. Let f be an arbitrary but fixed monic polynomial in R[x]
with D(f)€8S and with roots %, ..., %, in G. Then all z; belong to the integral
closure T of R in G. Since S is finitely generated, D( f) can be written in the form
y""-1 B where €S and f belongs to a finite subset of 4S. Consequently, it suffices
to prove our assertion for a fixed f. Then we get
(20) [T (ly—aly)? = B.

l=i<=j=n
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Since R is finitely generated over Z, by a well-know theorem (see e.g. [33],
Ch. V, Th. 7) T is contained in a finitely generated subring of G over Z. Thus the
ring A=T[S !, =] generated by {s '/s¢S} and B! over T is also contained
in a ring of this type. By Lemma 5 the invertible elements of this latter ring form
a finitely generated group. A™ being a subgroup of this group, it is also finitely
generated.

Since a;/y—o/yeA and PeA’, it follows from (20) that

(21) oy —oyly€A*

for each distinct j, i with 1=j, i=n. Consider the graph % whose vertices are the
elements «,/y, ..., 2,/y and whose edges are the unordered pairs [x;/7, 2/y] not
satisfying (21). Then ¥ has only isolated vertices, and so, by Theorem 2, » is bounded.
Further, by virtue of Theorem | we have

(22) yly—afy =gy, l=i<j=n,

with some &€4" and with ¢;€A4" taking only finitely many values. (22) and (20)
imply that for fixed f# the number of these ¢ is also finite. Thus, we have

(23) afy—afy=eu, 1=i<j=n,

where ¢;€7[S~'] can take only finitely many values.

For fixed f and n, let us fix now such a system of elements ¢, (I1=i<j=n).
Consider all the pairs £, y (f with roots =, ..., 2, satisfying (20) and (23). By
Lemma 2 there are finitely many y* among the y under consideration such that
any of these y can be written as y=y*n with some y* and n€S. Consequently,
among the pairs considered there are finitely many ones /", y* (/" with roots
21, ..., 4y) such that for every f, y considered above

(24) OCJ-;—G,- = zj;ai y L=i<j=n,

holds with some y" and ay, ..., 2y such that y/y*=n€S. But a,+...4+a,=a and
% +...+a) =a* lie in R, so (24) gives

n(e;—nay) =a—na*, j=1,..,n.

This implies that the element «;—na; lies in L. Further, this element is integral
over R. Since by hypothesis R is integrally closed, hence «;—nx; takes the same
value from R for each j, and so f(x) is R-equivalent to »"f*(y~'x). This completes
the proof.

We deduce now Theorem 5 from Theorem 4.

PROOF OF THEOREM 5. Let G be the normal closure of the extension K/L.
Let o be an arbitrary element of T with Dg,;(2)€dS. Since Dy, (2)#0, o is a
primitive element of K/L. Denote by f(x) the minimal polynomial of « over L.
R being integrally closed, by a well-know theorem (cf. [33], Ch. V, Th. 4) we have
fE€R[x]. Further, D(f)=Dg, (x) and all roots of f lie in G. We can now apply
Theorem 5 and thr assertion immediately follows.
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PROOF OF COROLLARY 5.2. Let « be an arbitrary element in 7 with Dy, (2)€4S
and Nk, (x)€uQ. By Theorem 5 we have

a=a+nat

with some a€R, n€S and «"c& (where & is a finite subset of 7). Since Q is finitely
generated, every element of uQ can be written in the form p’t" with 7€ Q and with
W epuQ which can take only finitely many values. It suffices to prove the asser-
tion for fixed «* and u’. Then, if n=3, from Corollary 3.1 it follows that the
equation

(25) Nii((a/t)+(n/r)a*) = p’

has only finitely many solutions in a/t, 5/t with a, n, T having the properties specified
above.

The multiplicative semigroup {S, Q} generated by S and Q is finitely gen-
erated. In {S, Q} consider all the elements nt (y€ S, 1€Q) for which n/t has
the same value. Using Lemma 2 and the hypothesis SN Q={1}, we can easily
see that there are only finitely many » and t with this property. Thus, in (25) there
are only finitely many possibilities for @ and so, in case n=3, our assertion is proved.

When n=2, we can reduce the equation (25) to the equation (10) and we obtain
then that n/t can take only finitely many values. Then the above argument applies
and this completes the proof.

PrROOF OF COROLLARY 5.4. Suppose that there exists a7 with the property
T'=R[a]. Then Dg;(x)=4 is a non-zero element in R. Since {l,a, ....a"""}
is a basis of 77 as an R-module, a standard argument shows (see [33] or [25]) that
o divides Dy, («) in R for every o’ T’. From this follows that if 7'=R[a'] with
another «’€T’ then Dy, (2)€6R". Thus Theorem 5 gives «’=a+na" with some
ac R, n€ R* and with an «" belonging to a finite subset of the integral closure of
R in K. Because of 7" R we have now o*¢7T” and 7’= R[«*]. This proves our
assertion.
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