Multiplier algebras and minimal embeddability

By W. G. LEAVITT (Lincoln, Neb.) and L. C. A, VANLEEUWEN (Groningen)

1. Introduction

Let K be an algebra over a commutative ring & with 1. We will say that K is
minimally embeddable (and designate it m.e.) if whenever there is a ring 4 such
that K<1A4 then there exists some B<1A4 such that either A=K& B or else there
is some z€A such that A4 is generated by K& B and z, with A/(K® B)=k. If K
has this property but only when A4 is a k-algebra then we will say K is algebra minimally
embeddable (designated a.m.e.). Clearly any algebra with unit is an m.e. algebra
and in a recent paper [l] simple m.e. algebras without unit were constructed over
any k=Z,. In the present paper we will show that there exist simple a.m.e. algebras
without unit over an arbitrary field k. We will give a method for constructing such
algebras and show that there are simple m.e. algebras without unit, different from
those of [1], including certain algebras of J. C. RoBsoN [2].

Our construction begins with any k-algebra R with unit containing a regular
element a. Let 7 be the right ideal of R generated by «a, and let T the idealizer of /
in R. We show that there exists a certain “algebra of multipliers” which we will
call “Mult-7", and prove that the algebra Mult-7/ is k-isomorphic with 7. It then
follows that for any K=/ imbedded as an ideal of a k-algebra A, the k-mono-
morphism K—7 can be lifted via Mult-/ to a k-homomorphism 4-—-T7. As a con-
sequence we obtain a criterion for minimal embeddability: A necessary and suffi-
cient condition for K to be an a.m.e. algebra over a field k (or an m.e. algebra if
k=Z,) is that either T=1 or T=/I+k.

2. Multiplier algebras

Let k be a commutative ring with 1 and suppose there exists a k-algebra R
with unit containing a regular element ¢. Write /=aR and let T be the idealizer
of 7in R, that is T={x€R|xacl}. Writing k-lin I for the algebra of all k-module
endomorphisms of 7 we will call a pair (2, 2")¢(k-lin 1@ (k-lin I)°® a multiplier
of I if it has the property:

(1) xa'(y) = a"(x)y

for all x, yel. Clearly the set of all multipliers of / is a sub-k-algebra of (k-lin /)&
B (k-lin 7)°* and we will call it Mult-I. For tcT let L, and R, denote left and
right multiplication by f, then from associativity in R it is clear that the pair
(L,, R)EMult-1.
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Lemma 1. The map ¢: T--Mult-1 given by t—-(L,, R,) is a k-algebra iso-
morphism.

Proor. Clearly ¢ is a k-algebra homomorphism and if 1€ Ker ¢ then L,(a)=
=ta=0 implies r=0. It thus suffices to show that ¢ is surjective. Suppose
(¢’, 6")eMult-/ and let ¢'(a)=af. ¢"(a)=ag. Then from (1) we have ac'(a)=
=6"(a)a so a*f=aga. By the regularity of a we get af=ga and thus g€ 7. Then
for any arbitrary aucl we have o'(au)=aw for some weR., and so

a*w = ao’(au) = d”(a)au = agau.
Thus ¢’(au)=aw=gau=L,(au). Also ¢"(au)=av for some véR so
ava = ¢"(au)a = aus'(a) = auaf.

Thus va=waf=uga and so v=ug. It follows that ¢"(aw)=av=aug=R,(au), that
is (0", 0")=(L,. R,).

3. Minimal embeddability

Theorem 2. Let K<s A where K and A are k-algebras. If K==I then there
exists a k-homomorphism A—~T extending the monomorphism K—I<T.

PrROOF. Let @: K—I bte the given k-isomorphism. For an arbitrary z€A
the mappings ¢'=0L.0" ' and ¢"=OR.,O ' are k-linear maps of 7 and by
associativity in A the pair (¢’, ¢”)¢ Mult-I. Clearly the map A -—-Mult-/ given by
z—+(6’,6") is a k-homomorphism so x: A—-T where a(z)=¢ ' (c’,0") is a
k-homomorphism of 4 into 7. Now by definition, if ¢"(a)=ar then ¢~'(¢’,c")=1.
But ¢”(a)=OR,07'(a)=0(0© (a)z). Thus if z6€K we have ¢"(a)=a@(z) so
x(z)=0(z) and hence x extends K—-/C T.

Corollary 3. Let K=1I where K and I are Z,-algebras for some prime p. Then
if K<aA for A an arbitrary ring, there exists a homomorphism A—~T extending the
monomorphism K-~I1<T.

Proor. Since K has characteristic p we may regard K as an ideal of the Z,-
algebra A/pA and map A—A/pA—~T.
For the case k a field we can now establish a criterion for minimal embeddability.

Theorem 4. Let k be a field and R any k-algebra with unit containing a regular
element a. Write I=aR and let T be the idealizer of I in R. Then all k-algebras
K=1 are algebra minimally embeddable if and only if either T=I or T=I+k.
Moreover, if k=Z, for some prime p then for *‘algebra minimally embeddable’
may be substituted “minimally embeddable’.

ProOF. If T=1 then any K=/ contains a unit and so is minimally embeddable.
Thus suppose 7T=7/+k. Let K< A where A is a k-algebra and let B=Kera
where «: A—T is the map defined in the proof of Theorem 2. Clearly KN B=0
and Ima=A/B contains the image @(K)=1. Thus A/K® B=1Im a/l. Since Im «
is a k-algebra it follows that either A=K$® B or A/K&$ B=T[I=k.
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Note that when k=Z, then, via the mapping of Corollary 3, Im « is a k-algebra
even when A is an arbitrary ring. Thus in this case K is minimally embeddable.

Conversely, if 7 is algebra minimally embeddable (or minimally embeddable
if k=Z,) then I<T and /MNB=0 (where B<T) implies B=0. Thus either
T=1 so I contains a unit or else T//=k so T=I+k.

Remark that while the above construction is closed under isomorphisms, it
is open as to whether or not this is true of the class of all a.m.e. algebras.

Corollary 5. [1, Cor. 2.] If K is a simple m.e. algebra and A a ring such that
K<A and A/K=K, then A=K®K. The same result holds when K is a simple
a.m.e. k-algebra and A is a k-algebra.

Corollary 6. [1, Theorem 1 and 1°.] Let M be a class of simple rings such that
if ke M then either K has a unit or K is an m.e. Z,-algebra for some prime p. Let W
be the set of all such p, then the upper radical defined by M is hereditary if and only if
Z,EM for all peW.

Note that any such radical for non-empty W is a non-special supernilpotent
radical.

4. Examples and applications

Example 1. The simple algebra of [1, Section 2].

Note that [1, Lemmas 1—35] can be replaced by our Theorem 2 and Corollary 3.
Also [1, Lemma 6] establishes the sufficient condition of Theorem 4, and applies
(as was noted in [1, Remarks 1 and 2]) to R over any field Z,. It is clear, in fact, that
a similar proof can be carried out for R over an arbitrary field. Thus the addi-
tional result: There exists a primitive a.m.e. algebra without unit over any field k.

Example 2. The skew polynomial algebra of [2]. This is the ring (x—1)S
where S is the ring of non-commutative polynomials in x and x~' over a field F
subject to fx=xf" for all fc F, where F is the field of rational functions in indeter-
minates {7,n€Z} over a field k in which ¢ is the automorphism defined by #7=
:fn-fl'

It is easy to see that x—1 is regular in S so that Theorem 2 or Corollary 3
applies to the k-algebra (x—1)S. Now to show that Theorem 4 applies let g7
so that g(x—1)=(x—1)f for some f€S. It is easy to check that any g€ S can be
written

g=(x—Du+g’

for some u€S and g’'¢ F. But then g'(x—1)=(x—1)r for some réS where (by
a degree argument) réF. Then xg”—g'=xr—r so r=g"=g’. But clearly the
only elements of F fixed by ¢ are members of k. Thus ge(x—1)S+k so
T=(x—1)S+k. We can therefore say: Any k-algebra K=(x—1)S is an a.m.e.
algebra for an arbitrary field k, and is an m.e. algebra when k=Z, for some prime p.

Note that since (x—1)S contains no idempotents it is distinct from the rings
of Example 1. Also note (see [2]) that (x—1)S is a simple algebra (Noetherian
when k is a finite field) and hence could be used in Corollaries 4 and 5.

7D
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Example 3. [5, page 55.] Let k be any field of characteristic zero and let A4
be the ring of polynomials in x over F=k(y) where for all fc F we have xf=/fx+/f"
with f* the formal derivative. Thus xf=gx for f, g€ F implies f=g and g’=0,
that is g€k. Since A admits a division algorithm and x is regular in 4, an argument
similar to that of Example 2 shows that x4 is an a.m.e. algebra. Since A is simple,
xA is another example of a simple a.m.e. algebra without unit. It is clearly distinct
from the algebra of Example 1 and is also not isomorphic to the algebra of
Example 2 since there we have the relation wv=v—u where u=(x—1)x"! and
v=x—1. However, a degree argument shows that such a relation is impossible for
non-zero elements of xA.

Example 4. [5, page 113.] To show that there exist non-simple m.e. and a.m.e.
algebras over any field k let F be the same field as in Example 2 but now let S be
the skew polynomials in x over Fwith fx=xf° forall f¢ F. Since S admits a division
algorithm and as before f=/7 if and only if fck, the argument of Example 2 again
shows that (x—1)S is an a.m.e. algebra over k (or an m.e. algebra if k=Z).
An easy degree argument shows that (x—1)S has proper ideals, such as the ideal
generated by (x—1)x.

As an application of our minimally embeddable algebras we will answer certain
open questions.

In [3] a ring R is called almost nilpotent if every proper homomorphic image is
nilpotent, and we will call R almost nil if every such image is a nil ring. Note that
by this definition all simple rings are almost nilpotent.

Application 1. 1t is well-known that the ring of all linear transformations of
an infinite dimensional vector space can be embedded as the heart of a subdirectly
irreducible almost nilpotent ring. T. L. JENKINS has asked (see [4]) if this is true
for every simple ring without unit. Our minimally embeddable rings (Example 1
or 2) clearly give a negative answer, and also the same answer for a similar ques-
tion: can every simple ring without unit be the maximal ideal of an almost nilpotent
local ring?

Application 2. Let P be an arbitrary (Kuro§—Amitsur) radical class with semi-
simple class SP. In [3] were considered radicals with property:

(L) Every almost nilpotent ring is either in P or in SP, and we will also con-
sider the property:
(L") Every almost nil ring is either in P or in SP.

It is easy to see that if P contains all zero rings then P has property (L), and
Richard Wiegandt has asked [4] if the converse is true at least for P a hereditary
radical. That the answer is again negative follows from:

Proposition 7. Let L{K} be the lower radical defined by {K} where K is a non-
nil simple m.e. algebra over the field k. Then L{K} is a hereditary radical containing
no zero rings and having properties (L) and (L").

ProoF. Since K is simple it is well-known that L {K} is hereditary and con-
tains no zero rings. Thus suppose R is an almost nil ring with Ré SL{K}. Then
R has a non-zero radical and hence an accessible subring /=K. But then 7 is simple
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so I=a R. Now if I# R then we would either have a non-zero B<= R with /@ B=R
so R/B=1 would be a non-nil proper image, or else for some B<aR we would
have R/(I% B)=k which would also be a non-nil proper image. We conclude that
if R¢ SL{K} then R=IcL{K}.
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