On some properties of group rings

By G. KARPILOVSKY (Bundoora, Australia)

1. Introduction

The purpose of this paper is twofold. Firstly we show that there are only finitely
many conjugacy classes of group bases in the integral group ring ZG of a finite
group G. Secondly, as a generalization of the WHiTcoms’s result [9] we prove
that a finite metabelian group G is determined by the group ring RG where

a
R={3
a group G of order 2", n=7, is determined by its integral group ring. For certain
integral domains K we prove that any finite group which is the group of all units
of some K-algebra is determined by the group ring KG.

In what follows KG denotes a group ring of a group G over an associative
ring K with 1, /(K, G) stands for the augmentation ideal of KG. The equality
KG=KH means that H is a normalised group bases of KG. We shall often write
1(G) instead of /(K, G) when a precise situation will be clear from the context.
If A is an ideal of KG and S is a subset of KG then put G114 A={gcGlg—1€ 1},
S+A={s+Als¢S}. The group of all automorphisms of ZG and the group of
inner automorphisms of ZG will be denoted by Aut (ZG) and In (ZG) respectively.
Finally, O, (respectively Z,) stands for the ring of p-adic integers (respectively
p-integral rationals) and U(K) for the group of units in K.

a, beZ, (b, 'G|)=l}. We also apply the proof of this result to show that

2. Conjugacy classes of group bases in ZG

Let ZG=ZH and let G=H. It is natural to ask whether there is a unit u
in ZG such that H=u"'Gu. That this is not always the case was first proved in
1966 by S. D. BERMAN and A. R. RossA ([2] Theorem 4). Therefore we are led to
ask whether for an arbitrary finite group G the number of conjugacy classes of
group bases in ZG is finite or infinite. The following theorem gives a positive answer
to this question.

Theorem 1. There are only finitely many conjugacy classes of group bases in ZG.

Proor. It follows from Theorems | and 11 of [4] that the group Aut (ZG)/In (ZG)
is finite. Let Aut (ZG)=In (ZG)+In(ZG)@,+...+In (ZG)p, be the coset decom-
position of Aut (ZG) with respect to In(ZG). Suppose that H is an arbitrary
group basis of ZG. Since |H| = |G| there exists only a finite number of nonisomorphic
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group bases in ZG, say, G,,G.,...,G,. Hence H=G; for some ic{l,2,...,n)
and therefore there exists f¢ Aut (ZG) such that f(G,)=H. Since f=0¢, for
some @¢cIn(ZG) and some jc{1,2,....t} tken f(G)=u"'¢;(G)u for some
uc U(ZG), i.e. H is conjugate to ¢,;(G;), proving the theorem.

3. The isomorphism preblem for the group rings cver some integral domairs

The isomorphism problem for the group rings asks whether KG=KH implies
G=H. When this is so for a group G, G is said to be determined by the group ring
KG. Call the ring K a (»)-ring if for every finite group G the coefficient of 1 in any
periodic element x of U(KG) is equal to 0 unless x is of the form «-1 for some
a€ K.

Lemma 1. Let N be a normal subgroup of a finite group G and let n: KG—K(G/N)
be a canonical homomorphism where K is a (#)-ring. If KG=KH then the following
properties hold:

(1) K(G/N)=Kn(H), KG-I(N)=KH-I(N*) and |N|=|N"| where N*=H(1+
+KG - I(N). Moreover, every normal subgroup of H is of the form N* for some
N=aG.

(2) Periodic elements of the centre of U(KG) are trivial.

By applying the same arguments as in the proof of Lemma 3.1 of [3] we see
that n(H) is a linearly independent set of the group ring K(G/N). Hence K(G/N)=
=Kn(H) and therefore = can be regarded as the extension of the epimorphism
H-+n(H) by K-linearity This shows that Ker n=KH-I(N*)=KG-I(N). The
equality |N|=|N"| is a consequence of the isomorphism n(H)=H/N*.

Now if S<1 H then there exists N A G suchthat KG-I(N)=KH-I(S). Hence
KH-1(S)=KH-I(N*) and therefore S=HN1+KH-I(S)=HMN14+KH-I(N*)=
=N?*, proving (1). The proof of (2) is evident.

Let K be a commutative ring. We call a group G a unit group over K if G 1s
isomorphic to the group of all units of some K-algebra. By taking the case K=Z
in the following theorem we obtain another proof of the characterization theorem
for the unit groups due to R. SANDLING [7].

Theorem 2. Let G be a finite group and let A be a K-algebra, where K is an integral
domain of characteristic 0 in which no prime dividing the order of G is invertible.
If KG=KH andif p: G—-U(A) is a monomorphism then the mapping p': H—U(A),
given by (Za g)= Z:xgp(g) for any h—ZaggEH is also a monomorphism.

In particular, a finite group G which is a unit group over K is determined by the group
ring KG.

PROOF. Let u*: KG—~A be the homomorphism of K-algebras obtained from
1 by extension by K-linearity. Then u” is the restriction of p* to H and therefore
u” is a homomorphism. It follows from [6] that K'is a (* )-ring. Therefore by Lemma
1 we have Kerpu'=N; and KG-I(N,)=KH-I(Ny") for some N,<aG. Since
I(N{)=Ker p* then I(N,)=Ker u* and therefore N,=Keru=1. Thus N/=1,
proving the theorem.
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Corollary. Let B be a subgroup of a finite abelian group B and let G be isomorphic
to the group L of all automorphisms of B which leave B invariant (as a set). Then G
is determined by its integral group ring.

ProOF. Let A=Hom (B, B). Then the isomorphism Gz=L induces mono-
morphism G-—-U(A). By Theorem 2 (with K=2Z), the equality ZG=ZH implies
u(G)=pu’(H) and therefore G=H.

For the proof of our next theorem we need the following lemmas.

Lemma 2. Let G be an arbitrary group, K an arbitrary ring with 1, N arbitrary
subgroup of G. Then in the group ring KG the following equalities hold:

(3) I(G)« I(N)(VI(N) = I(N)?
(4) GN1+4+1(G)-I(N) = NN 1+ I(N)=

PrOOF. Since G 1+KG-I(N)=N it follows that G 1+/(G)-I(N)=NN1+
+1(G)+ I(N)=NN1+(I(G)-I(N)NI(N)) and therefore (3)=(4). Let 7 be a full
set of cosets representatives of G with respect to N.

If g=tm where néN, t€T then for n'éN we have (g—1)(n'—1)=
=(t—Dn-D)E —-1)+—1)(n"—1)+(n—1)(n"—1). Since the first and the second
summands belong to (z—1)-/(N) and since (n—1)(n"—1)€I(N)* then

(g—=D(' =DEINP+(—1)I(N)
from which follows that
I(G)-I(N) = I(N*+ 2 (t+—1)I(N).
1#tcT
Let
x=y+(t,=Dloy (ny =D +... +ay (n,—D]+... +(t, = D[ (my—1)+ ... + o (n,—1)]

where ycI(N), t,€T,nEN, 1=i=s, 1=j=k. If x€I(N) then z=o;,t,(n,—1)+
+.oFat(ng—1)+... +agt (ng—1)EI(N) and since all elements of N have coeffi-
cient 0 in z, then z=0. But {t,(n,—1),...,7,(n;—1)} is a linearly independent
set and therefore a,;,=...=a,,=...=a,=0. Hence x=yecI(N)?, proving the
lemma.

Lemma 3. Let G be a group containing an abelian subgroup A of a finite exponen:
n and let K=Z/mZ where m=0 (mod n). Then the following properties holdt

(5) GO+ 1(G)-I(A) = 1.

(6) If xcKG and if x=g(mod KG-1(A4)) for some g€G then there exists an
element g,=ga(acA) such that x=g.(mod /(G)-I(A)).
PrROOF. As in the case K=Z, the formula
f[ > (a, +1)(a— l)] = [J] a*«(2,£Z) defines a homomorphism of 7(A4)

]
ac A

a€A

onto A with kernel /(A4)®. From this follows that 4N 1+47(A4)*=1 and the applica-
tion of (3) yields (5).
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Since f( > (x,+1)(@a=1))=f( J] a*—1) then
acA

acA

(7 S (#a-)a—1)= [] a*a—1 (mod I(A)*)(x,EZ).
acA acA

Note also that KG=K+1(G) whence KG-I(A)=I1(A)+1(G)-I(A) and x=g+

+t(mod 1(G) - 1(A)) for some t= 3 (a,+1)(s—1)€I(A). Applying (7) we obtain
SEA

x=g+@—1)=(1-g)(a—1)+ga = g, (mod I(G) - I(4))

where a= [[ s*. This completes the proof of the lemma.
scA
Let K be a commutative ring and let ¢: K—K be the ring epimorphism. If
x= > u,g€ KG then put X= > a,g where a,=¢(a,).
q q

It is clear that the mapping i: KG—~KG, defined by Ai(x)=x for any xéKG
is a ring epimorphism. We cal 4 the projection of KG onto KG. Suppose that A
is an ideal of the group algebra KG. Then the ring KG/A can be regarded as a
K-algebra in the obvious way. Moreover, the mapping ¢*: KG—~KG/A defined by
@*(x)=X+A is a K-algebra homomorphism. We are now ready to prove the fol-
lowing result.

Theorem 3. A finite metabelian group G is determined by the group ring RG
where R:{% a, be Z, (b, ib|):1}A

Proor. Let RG=RH. The mapping ¢: R—+~R=2Z//G|Z defined by (p[%]:

=a(b)~' where a=a+|G|Z is a ring epimorphism. Consider the mapping ¢*
defined as above by taking A=I(R, G)-I(R, G’). It follows from (5) and the Theo-
rem 2 that the restrictions of ¢* to G and H induce group isomorphisms G—¢*(G)
and H—~¢*(H), where ¢*(G)=G+A, o*(H)=H+ A, H={hlh¢ H}. Since R is
a (*)-ring [6] the application of (2) to R(G/G") yields G+RG-I(R,G)=H+
+RG-I(R, G").

Therefore projecting RG onto RG we obtain G+RG-I(R, G)=H+RGI(R, G").
It follows from (6) that in this case H+ AS G+ A, ie. ¢*(H)S ¢*(G). But |G|=
=|H| and therefore Gz H, proving the theorem.

In [8] W. R. WELLER proved that there are only two nonconjugate classes of
normalised group bases of ZD,, where D, is a dihedral group of order 8. By com-
bining this result with the Theorem 4 of [2] we obtain the following property:

(8) Every two normalised group bases of ZD, are conjugate in U(Z 4, D,).
Theorem 4. Let |G|=2", n=7. Then the group G is determined by its integral
group ring.

Proor. Every group of order 2", n=6 is metabelian and a group G of order
2" has a normal abelian subgroup A of index 8 ([5], p. 120). Hence we can restrict
ourselves to the case when |G|=27 and the factor group G/A is nonabelian of
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order 8. Let ZG=ZH. It follows from the proof of Theorem 3 that
(9) G = H whenever G+ RG-I(R, A) = H+ RG-I(R, A).

If G/A is the quaternion group then by [1] G+ZG-I(Z, A)=H+ZG-1(Z, A).
Thus we have only to consider the case when G/A=D,. Let n: ZG—~Z(G/A) be
the canonical homomorphism. It follows from (1) that Zn(G)=Zn(H) and there-
fore Z,)n(G)=2Zyn(H).

By (8) there exists a unit w€Z,,,n(G) such that w 'n(H)u=n(G) and since
Zy) D, is a local ring then u=n(r) for some 1€Z, G. Therefore n(r ' Ht)=n(G)
and + "Ht+RG-I(R, A)=G+RG - (IR, A) for R=Z,,. It follows from (9) that
in this case G=r~'Ht, proving the theorem.
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