On comparison of mean values

By Z.DAROCZY and ZS. PALES (Debrecen)

1. Introduction

The concepts of deviation and deviation mean have been introduced by DAROCZY
[6], [7] in 1972. The class of deviation means contains as a special case the class of
quasiarithmetic means (HARDY—LITTLEWOOD—POLYA [9]) and the class of quasi-
arithmetic means with weightfunction (BAJRAKTAREVIC [2], AczEL—DAROCzY [1]).
Thus the investigation of deviation means enriches the theory of these two classes
of means too.

In this paper we solve the comparison problem of deviation means. Up till
now this problem has been solved only in case of differentiable deviations. (DAROCZY
[6]. [7].) The comparison problem of quasiarithmetic means with weightfunction
has been raised by BAJRAKTAREVIC [2] in 1958 and solved under differentiability
conditions by DAROCZY—L0SONCZI [8] (see also BAJRAKTAREVIC [3] where a nec-
essary condition was given for the comparison). As an application of our general
results we solve this special comparison problem without differentiability.

2. Deviation means

Let /SR be an open interval. The function E: /*—~R is said to be a devia-
tion on [ if it has the following properties:

(E1) The function y—E(x, y) is strictly decreasing and continuous on / for
all xel.

(E2) E(x, x)=0 for all x£1.
Let us denote by &(7) the set of all deviations on /. To define the deviation mean
we need the following lemma (DAROCZY [6]):

Lemma 2.1. If Ece(l), x=(x,. ..., x,)€I" (nEN), then the equation

M=

(2.1 E(x;, y) =

|
—

has exactly one solution y,c1 and this solution satisfies the inequality

(2.2) min (x) = min {x,, ..., X,} = y, = max {x;, ..., x,,} = max(x).
Definition. Let Ece(l). xéI" (n€N). The unique solution

(2.3) Yo =M, p(x)
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of (2.1) is said to be the deviation mean of x€I". Inequality (2.2) shows that (2.3)
is a mean value indeed.

Denote by Q(7) the set of real valued functions which are continuous and strictly
monoton on I. Let further P(/) be the class of positive real valued functions on 1.
If @eQ(I), fEP(I) then the function

(2.4) E(x,y) = E, ;(x,)) = &, f(x)[p(x)—@(¥)] (x,y€])
is a deviation on I where
I if ¢ is increasing
(2.5) €y = { : : ;
—1 if ¢ is decreasing.

For this deviation (2.4) we find that the unique solution y, of (2.4) has the form

QO o= Bn ) = My, = 07 30000 300

where ¢~! is the inverse function of ¢. The quantity M, ,(x), defined by (2.6)
will be called quasiarithmetic mean with weightfunction (BAJRAKTAREVIC [2], ACZEL—
DARrOCzY [1], DAROCZY [5]).

If f(x)=p=positive constant in (2.6) we obtain the well-known quasiarithmetic
means

I n
(2.7 M, (x) =™ [F,;; qo(X:)]-

The theory of these mean values can be found in the book of HARDY—LITTLEWOOD—
POLYA [9] (see also the books BECKENBACH—BELLMAN [4], MiTrINOVIC [10]).

3. Weighted deviation means

To define the weighted deviation means we need the following result.
Lemma 3.1. Let Ece(l), A€[0, 1] then for all x, yel the equation
(3.1) LE(x, 1) +(1 —2)E(y, 1) = 0
has a unique solution 1,61 and this solution satisfies the inequality
(3.2) min {x, y} = 1, = max {x, y}.

PrOOF. Let
e(t) = LE(x,N+(1—=AE(y, 1) (t€l).

With the notations m=min {x, y}, M=max {x, y} using (E1), (E2) we have
e(m) = AE(x,m)+(1=2)E(y.m) = iE(x, x)+(1 =) E(y,y) =0

and
e(M) = AE(x, M)+(1 =) E(y, M) = 2E(x, x)+(1 =) E(y, y) = 0.

Since e: /R isstrictly monotonic and continuous there exists a unique #,€[m, M|/
satisfying e(7,)=0.
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Definition. The unique solution
to = My p(x,¥: 4, 1=7)
of (3.1) is called the deviation mean of x and y weighted by /. and 1—/.
Lemma 3.2. Let Ece(l), Te¢l. The inequality

(3.3) M s(x,y: 4, 1-2)=T

is valid if and only if the inequality

(3.4) JE(x,T)+(1=2)E(»,T)=0
is true.

Proor. (i) From (3.3) using the property (E1) we get that
E(x,T)= E(x,e) and E(,T)= E(y,e)
where e=9M, p(x, y: 4, 1—74). Hence we obtain
AE(x, T)+(1—=2)E(y,T) = JE(x,e)+(1—=2)E(y,e) =0

i.e. (3.4) is satisfied.
(i1) Suppose that (3.4) is valid but (3.3) is not true, that is

e>T.
(E1) implies that
E(x,T)> E(x,e) and E(y,T)> E(y,e)
thus
LE(x, TY+(1-)E(y,T)=0

which contradicts to (3.4).
A result analogous to Lemma 3.2 has been proved by DArROCzY [6] for symmetric
deviation means.

Lemma 3.3. Let Ece(l), T€I then the inequality

WM, (X)=T (x€I"
is satisfied if and only if

ZE(X;. T) = 0
i=1
is true.

Lemma 3.4. Suppose that E€e(l) and x<=y (or x=y) x,ve€l. Then the
Sfunction
e(2) = My g(x,y: 2, 1=4) (Z€]0, 1))

is strictly decreasing (increasing) and continuous.

PrOOF. We prove in the case when x-<=y (the other case is similar). Suppose
that e is not strictly decreasing. Then there exist values /4, p such that 0=/<pu=1
but e(4)=e(u). By Lemma 3.2

LE(x, e(@)+(1 =2 E(y, e(n)) = 0 = pE(x, e(u)+(1 —p) E(y, e(u)),
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therefore
E(x, e(p)) = E(y, e(n)).

Since E(x, e(n)=0, E(y,e(u))=0 we get that E(x,e(u))=E(y, e(n)=0 ie.
x=y. This is a contradiction which proves that e is strictly decreasing.

To prove the continuity of ¢ we show that the function e: [0, 1]—/ assumes
every intermediate value s€le(1)=x, e(0)=y[. From the equation e(i)=s i.e.
from

AE(x, s)+(1=2A)E(y,s) =0
we obtain
o E»s)
 E(.9)—E(x,5)’

Since E(y,s)=0, E(x, s)<0 we have that Zi€[0, 1] ie. e(i)=s.

4. Comparison of deviation means

The comparison problem of deviation means is the following. Find necessary
and sufficient conditions for the inequalities

4.1) :DIN.F(:S) = EIH,,.E('J) (x€1", n€EN)

to hold where F, Ece(l). This problem has been solved by DAROCZY [6] in case of
differentiabie deviations.

Lemma 4.1. Suppose that F, Ece(I) and (4.1) is satisfied for all x€l", neN.
Then the inequality

(4.2) My p(x, yi A, 1=2) = My g(x, y: 4, 1=4)
holds for all x,yel and €0, 1].

PROOF. (a) Let first ;.=%e[o, 1] be a rational number. Since for ;=0 or

+=1 (4.2) is valid we may assume that 0-:%-: 1. Let x, y be arbitrary elements

of I and
T vl Pociond WIELY

m n—m

With the notations
f= Wy, (x), e =M, (x)
we get
mF(x,)+(n—m)F(y,f) =0
and
mE(x, e)+(n—m)E(y, e) = 0.
This shows that

=W p(x,y: 4, 1=4), e=W p(x,y;4,1-4)
and from (4.1) f=e i.e. (4.2) holds for every rational 7€[0, 1].
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(b) Suppose now that A€[0, 1] is irrational. Let 4,€[0,1] be a sequence of
rational numbers which tends to 4 and is decreasing or increasing. We have then

M, p(x, y; 4,y 1 —4,) = My o (x, y; 4,, 1 —4,)
thus by n—-< using Lemma 3.4 we obtain the inequality (4.2).

Lemma 4.2. Suppose that F, Ece(l). If the inequality (4.2) holds for all x, y€l,
/€0, 1] then

(4.3) F(x,y)E(z, ) = F(z, y)E(x, y)
is true for all x,y,z€Il satisfying the condition x=y=:.

Proor. Let x, y, z be elements of / such that x=y=2z. We may suppose that
x=z since for x=z (4.3) is obviously true. Then E(z, y)=0, E(x,y)=0 and
E(z, y)—E(x, y)=0 hence

5= E(z, y) .
(4.9) * = E@ y)-E(x, )___)\[0, 2

and

LE(x, y)+(1—=2)E(z,y) = 0.
By (4.2) we get

Y=y pg(x,2; 4, 1 =) =M, p(x,2; 4, 1-2)

thus by Lemma 3.2

LF(x, )+ (1= F(z,y) = 0.
This shows that

F(z, ») il E(z, y)
F(z,y)—F(x,y) — =  E(z,y)—E(x,y)

which implies (4.3).
The main result of our paper is

Theorem 1. Assume that F, Ece(I). The inequality

@.1) M, ,(x) = M, £(x)
holds for all 1"¢1 , n€N if and only if the inequality
(4.3) F(x, y)E(z,y) = F(z, y)E(x, )

is satisfied for all x=y=z (x, y, z€I).

PROOF. (i) If (4.1) holds then by lemmas 4.1 and 4.2, (4.3) is valid.

(ii) To prove the converse let x=(x,, ..., x,)€/" and e =N, (x). We may sup-
pose without loss of generality that x,=x,=...=x,. Let jé{l,2,....n—1} the
subscript for which

X; =2 e=Xjyy.

If 1€{1,2,....,j} and k€{j+1,...,n} then x;=e=x, and from (4.3)

F(x,, e)E(x,, e) = F(x,, e)E(x,, e).
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Adding these inequalities we get

i n ) "
b ;’ F(x;, e)E(xy, e) = D F(x,, e)E(x,, e)
I=1k=J+1 I=1k=j+1
hence
A Z"' F(xs,e)] =0
s=1
where
i J
A= 2 E(x,e)=— 2 E(x;,e)=0.
k=j+1 =1
If A=0 then x,=x,=...=x,=e and (4.1) is obviously true. If 4=0 then

dividing by 4 we get
2 F(x,,e)=0
s=1

therefore by Lemma 3.3
M, £ (x) = e = W, 4(x)
i.e. (4.1) holds.

Remarks. (a) The importance of theorem 1 is that it reduces the system of
inequalities (4.1) to the much simpler inequality (4.3). We emphasize that no regularity
assumptions were made concerning the deviations F, E. For differentiable devia-
tions DAROCzY [6], [7] proved the following result. Let £*(/) be the class of all
deviations for which the partial derivative

E(t, 5) & "E,‘)" )

s

exists and is negative for all ¢, sel. If Ece*(I) we set

E(1,s)

E*t,8) = — EGs)

(1, s€1).

Let F, Ece*(I). The inequality (4.1) holds for all x¢1", neN if and only if
(4.4) F*(,5) = E*(1, 5)
is valid for all t, s€l.

Using theorem | we give a new proof for this result.

Theorem 2. Suppose that F, E€e*(I). The inequality (4.3) is true for all x=y=:z
(x, v, z€I) if and only if (4.4) holds for all t, scl.

PRrROOF. (i) Assume that (4.3) is satisfied and r, s€/. We may suppose that
s=t (if s=r (4.4) is obvious, if s>t the proof is similar).
By (4.3) for p€ls, t[ we get

F(s, v)E(t,y) = F(t, »)E(s, »)
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or

l[l'.

— F(5,) Et, y)—Et,1) _ EGs. y) F(t, y)—F(t, 1)
=i y=t
provided that —(y—17)=0. Taking the limit y—7 (y<7) we have

F(s, 1)[— Ex(1, )] = E(s, 1) [— Fa(1, 1)]

which means that (4.4) holds.
(ii) Suppose now that (4.4) holds and x=y=z (x,),z€/). (4.4) gives that

F*(x,y)= E*(x,y) and F*(z,y)= E*(z,)).

Taking into consideration the inequalities F*(x, y)=0, E*(x, y)=0 and F*(z, y)=0,
E*(z, v)=0 we have

F*(z, y)E*(x,y) = F*(x, ) E*(z, ).

Multiplying by [— F.(y, »)][—E:(y, »)]=0 we get (4.3).
(b) Theorem 1 solves the equality problem of deviation means. Suppose that
F, Ece(l). The equality
!Utn, }(5) = wtll.E(E)

is valid for all x€/", néN if and only if

F(x,y) _ E(x,»)
F(z,y)  E(z,)

holds for all x=y=z (x, y, z€1).

5. Comparison of quasiarithmetic means with weightfunction
As an application of theorem 1 we solve here the comparison problem of quasi-
arithmetic means with weightfunction.
Theorem 3. Suppose that @,y € Q(I) and f, g€ P(I). The inequality
(51] Mll.q)('—")f = Mn.iv(J)g

holds for all xe1",neN if and only if the functions F=yo@~"' and h=goe[/fop™!
satisfv the inequality

F(ty) = F(1,) ~, Flts)—F(ty)
G e vane h(t) = ¢, G =

(5.2) &y i(1y)

for all ny<t,<ty (t;€@(l), i=1, 2, 3).
PrOOF. Applying theorem 1 for the deviations

F(x, y) = &, f(x)[e(x)—¢(»)]
E(x, p) = e,8(xX)[Y(x)—y(p)]

and
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we get that (5.1) holds if and only if the inequality
(5.3) e S(X) [ (x) =@ (»)]e, g ()W (2) =Y ()] =
= &, [(2)e(2)—@(M]egg ()Y (x) =¥ (»)]

is true for all x<y<z (x, y, z€I). Let

(5.4) h = @(x), ta = @(p), 13 = ¢(2)
then from (5.3) we have
(5.5) 5¢£¢h(fa)(’2“f|)IF(fs)—‘F(fe)] =

= 8,8, h(1) (13— 15)[F(2:) — F(1,)).

If &,=1 then (5.4) shows that r,<t,<t; and (5.5) implies (5.2). If g,=—1 then
from (5.4) t,=1,>1, and interchanging 7, and 7, we get (5.2) from (5.5).

Conversely, it is easy to see that (5.2) implies (5.5) and (5.3) which was nec-
essary and sufficient for (5.1).

With f(r)=p, g(t)=q (p, q are positive constants) we get the well-known
result for quasiarithmetic means (see HARDY—LITTLEWOOD—POLYA [9], theorems
92 and 122) since now (5.2) means the convexity (if &,=1) or concavity (if g,=—1)
of F.

The equality problem of quasiarithmetic means with weightfunction has been
solved by AczéL—DAROCzY [1]. Our investigations give a possibility to find a new
proof of their theorem.

Theorem 4. Let @, yeQ(I) and f, gc P(I). The equality
(56) Mﬂ,rp(r‘_t.)f e Mn.ﬁ(g)g

holds for all x€I", nEN if and only if there are constants a, b, ¢, d, k with k(ad—bc)=0
such that

_ap(x)+b
(1) Pix) = co(x)+d
and
(5.8) g(x) = kf (x)[co(x)+d]
for all x€l.
ProOOF. By theorem | the necessary and sufficient condition for (5.6) is
(5.9) J®[ex)—eMg@)WY(2)—y(»)] =

= f(2)e(2)—(]g ()Y (x)— ¥ (»))

We know from [1] that it is enough to prove the theorem for every closed subinterval
[A, B] of I. Let A<t<B. Substituting x=A4, y=¢t and z=B in (5.9) we get

S Do) -] g(B)Y(B) -y ()] =
=f(B)o(B) -] g (AW (4) -y (1]
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thus
(5.7) W(t) = ap()+b

co(n)+d

where ad—bc#0 since YcQ(7). By the continuity of ¢ and ¢ (5.7) is true for
t=A and t=B too.

Let now x,z€I, x#z and C be a fixed value between x and z. Substituting
y=C in (5.9) we obtain that

gV —-y@] ...
f()[e(x)—0(c) — T(z)=K

where K is a constant. Taking into consideration (5.7) we get (after some calcu-
lations)

(5.8) g(x) = Kf(x) %’3%}3 = kf () [eo(x) +d]

T(x) =

where k=0 is a constant.
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