A strong topology for the union of topological spaces

By A. SZAZ (Debrecen)

0. Introduction

If (X);cis a family of topological spaces then X= U, X; is usually considered
to be equipped with the finest topology for which the identity mappings of all the
spaces X, into X are continuous.

In this paper, we shall study a finer topology on X, namely we are considering
X to be equipped with the coarsest topology for which the identity mappings of all
the spaces X; into X are open.

In connection with this topology, we prove here a few immediate results which
are needed as a basis for some topological considerations in the multiplier extensions
of admissible vector modules [8].

We are grateful to Z. BALOGH for many helpful discussions concerning this
material. In particular, for Remark 2.2 and Example 3.5, and for pointing out a
substantial simplification of the proof of Theorem 2.11.

1. Final topologies

Notation 1.1. Let (X;);c; be a family of topological spaces and Y be a set.
Moreover, for each i€/, let f; be a mapping from X; into Y, and suppose that
YzUi—(ff;(Xi)'

Theorem 1.2. There exists a coarsest topology on Y for which all the mappings
/, are open. Moreover, this topology has the family U, ,f.(7;), where F; denotes
the topology of X;, as a subbase.

PrROOF. Obvious.
Remark 1.3. This theorem does not requires that Y =U,., f;(X)).

Theorem 1.4. The coarsest topology on Y for which all the mappings f; are open
is finer than the finest topology on Y for which all the mappings f; are continuous.

PrROOF. Denote 7 (resp. 7 *) the coarsest (resp. finest) topology on Y for
which all the mappings f; are open (resp. continuous). If V€7 *, then we have

V = Ui /VOAXD) = Uit Si(S72 (7)),

whence it is clear that V€7, Consequently, 7 *C 7.
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Corollary 1.5. Equip Y with the coarsest topology for which all the mappings f,
are open. If ¢ is a mapping from Y into a topological space Z such that @of; is
continuous for all i€l, then ¢ is continuous.

Proor. This follows immediately from Theorem 1.4.

2. Union spaces

Notation 2.1. Let (X));c; be a family of topological spaces, X=U,.,X;, and
equip X with the coarsest topology for which the identity mappings of all the spaces
X; into X are open.

Remark 2.2. By Theorem 1.2, the topology of X may also be described as
the supremum of the topologies 7;U{X}, where 7; denotes the topology of X;.

Theorem 2.3. For each i€l, X, is an open subset of X, and the restriction to
X, of the topology of X is finer than the original topology of X;.

ProoF. This is an immediate consequence of the definition of the topology
of X.

Theorem 2.4. For some i€l, X, is a subspace of X if and only if the identity
mapping of X; into X is continuous.

Proor. This follows at once from Theorem 2.3.

Theorem 2.5. Suppose that there exists i,€1 such that X, CX; for all i€l
Then the identity mapping of X, into X is continuous if and only if the identity mapping
of X,, into X is continuous for all icl.

Proor. This is quite obvious from Theorem 1.2.

Theorem 2.6. Suppose that 1 is directed, and X,C X; if i=j. Then the following
conditions are equivalent:

(i) the identity mappings of all the spaces X; into X are continuous;

(i1) the identity mapping of X, into X is continuous and open if i=j.

PrOOF. Suppose that (i) holds. If i, je/ such that i=j, and U is an open
subset of X;, then U is also open in X, and thus U=UMX; is also open in X;.
On the other hand, if V is open in X;, then V is also open in X, and thus V(X
is open in X;. This proves (ii).

Suppose now that (ii) holds. If i, j€/ and V is open in X;, then choosing
kel such that i=k and j=k, we can infer that V is open in X, and hence that
VX, is open in X;. Hence, by Theorem 1.2, (i) follows.

Remark 2.7. The condition that the identity mapping of X; into X; is open
if i=j fails to hold in most of the applications.

Remark 2.8. 1f the identity mappings of all the spaces X; into X are continuous,
then by Theorem 1.4, the topology of X coincides with the finest topology on X
for which the identity mappings of all the spaces X, into X are continuous.
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Theorem 2.9. Suppose [ is directed and X;CX; if i=j. Moreover, suppose
that there exists a cofinal subset K of I such that X, is Hausdorff for all k€ K. Then
X is also Hausdorff.

Proor. If Xx;, x,€X, then by the assumptions there exists k€K such that
X1, € X,. Thus, if x,#Xx,, there are disjoint open subsets ¥; and ¥, of X, such
that x,€); and x,€V,. Now, since ¥ and ¥, are also open in X, the proof is
complete.

Theorem 2.10. Let (x,) be a net in X and xcX. Then the following conditions
are equivalent:

(i) xEli;nx, in X,

(ii) for each i€l such that xcX,, there exists uy such that {X,},=,,<X; and
x€limx, in X;.

a=ag
PrOOF. Suppose first that we have (i). Let i€/ such that x€X,, and let V

be an open subset of X; such that x€V. Then, since V is also open in X, there exists
ao such that x,€V forall a=«,. Hence, it is clear that {x,},.,,CX; and x€ ILm X
amag

in X;.
Suppose now that (i) holds. Let ¥ be an open subset of X such that xeV.
Then, by Theorem 1.2, there is a finite subset [r‘,‘}:=l of I, and for each k=1,2,...,n

an open subset ¥, of X; such that fo‘] VicV. Hence, by (ii), for each

ik
k=1,2,...n, there exists o, such that xGK for all a=a,. Choosing «, such
that o, = o:., for all k=1,2,...,n, we have x,€V for all a=a,. This proves (i).

Theorem 2.11. Suppose that 1 is directed, and X, X; if i=j. If C is a compact
subset of X, then there exists i€l such that CcX,, and moreover, if CCX;, then
C is also compact in X;.

Proor. Let C be a compact subset of X. Since {X-}m is an open cover of C,
there exists a finite subset {i}i., of / such that CCUX‘ Choosing i€/ such

that iy =i for all k=1,2,...,n, we have CcJX. Fmally. if CcX;, then by
Theorem 1.2, it is clear that C is also compact in X;.

Corollary 2.12. Suppose that I is directed, and moreover, suppose that X, X;
and the identity mapping of X; into X; is continuous and open if i=j. Then C is a
compact subset of X if and only if C is a compact subset of some X,.

Proor. This follows immediately from Theorems 2.6 and 2.11.

Remark 2.13. Some of the results of this section can slightly be generalized
according to the first section.
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3. The case of topological vector spaces

Notation 3.1. Let X be a vector space over K (=R or C), and (X)), be a
family of subspaces of X such that X=U,.,X;. Suppose that each X; is equipped
with a vector topology, and consider X to be equipped with the coarsest topology
for which the identity mappings of all the spaces X; into X are open.

Theorem 3.2. (i) If x, y€X such that x+ycX; implies x, yc X;, then the addi-
tion in X is continuous at the point (x, y).

(ii) If 0#A€K and xcX, then the scalar multiplication in X is continuous at
the point (4, x).

Proor. Let x, y€X as in (i), and suppose that W is an open subset of X such
that x+y€W. By Theorem 1.2, we may suppose that W is an open subset of some
X;. Then, by the assumption, we also have x, y¢X;. Hence, since the addition in
X; is continuous, we can infer that there are open subsets U and V of X; such that
xeU, yeV and U+VcCW. Now, since U and V are also open in X, the proof of
(i) is complete.

The assertion (ii) can be proved quite similarly, namely Ax€X; implies x€X;
if 2#0, and the scalar multiplication in X; is continuous.

Theorem 3.3. Suppose that I is a directed set, and moreover, suppose that X,C X
and the identity mapping of X; into X; is open if i=j. Then X is also a topological
vector space.

PrROOF. The proof is similar to that of Theorem 3.2.

Example 3.4. The Euclidean space R?® with its usual topology is a topological
vector space over R and R {0} is a closed subspace of R% Let .7 be the coarsest
topology on R? for which the identity mappings of the spaces R> {0} and R? into
R? are open. Then (R?% Z) is not a topological vector space.

To prove this, we show that the translation
(x,y) = (x,»)+(0, 1)
is not continuous at the point (1, 1) for Z. For this, let (),) be a sequence in
R\({1} such that li”my,,=l. Then, by Theorem 2.10, it is clear that li:n(l,y,,):
=(1,1) in (R .7), but the sequence ((1,y,)+(0, —1))=((1, y,—1)) fails to
converge in (R% 7).

Example 3.5. The space [*=I[2({1, 2, ...}) [5] with its usual topology is a
topological vector space over C, and

2 = {(x,)€?:x, # 0 only for finitely many n)

is a subspace of /2 such that /7 and /*\/? are also dense in /. Let 7 be the coarsest
topology on /2 for which the identity mappings of the spaces /? and /* into /* are
open. Then (/3, 7) is not uniformizable.

To prove this, we show that (/%,.9) is not completely regular. For this, sup-
pose indirectly that (/2%,7) is completely regular. Then, in particular, for
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0€/3c 7, there exists a continuous function ¢: (/*, 7)—[0, 1] such that ¢@(0)=1

and @(x)=0 for all xe/*\ /. Since OE@—‘[]%,I]]E‘?’ and /! is considered as

a topological subspace of /2, by Theorem 1.2, there exists an open subset U of /*
such that 0¢ Uﬁ!}cqa“(]%, l]] Since />\/? is dense in /2, we can choose

an x,€ U\/Z. Since .\'UE(p‘l[[O, %[]69' and x,4 /2, again by Theorem 1.2, there

exists an open subset V' of /* such that x,£Vce~! ([0, %[] Since UNV is a
nonvoid open subset of /2 and /2 is also dense in /2, (UNV)NIZ#0. Thus, we
have ¢-! [[0 %[)ﬂ(p“[]%, 1]]#9, and this is a contradiction. Consequently,
(I3, 7) can not be completely regular.
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