On minimax principles and sets with convex sections

By E. TARAFDAR (St. Lucia Brisbane)

Abstract. Inthis note a lemma similar to Knaster—Kuratowski—Mazurkiewiez—Fan lemma
on Hausdorff topological vector space is obtained. This is used to obtain a Fan’s minimax principle
wich yields a Von Neumann—Sion minimax principle. It has also been applied to obtain two fixed
point theorems. Finally these fixed point theorems are applied to problems relating to sets with
convex sections.*)

1. Introduction. To begin with let us consider the following lemma due to FaAN [3].

Lemma 1.1. Let X be a nonempty subset of a Hausdorff topological vector
space E. For each xcX, let a nonempty closed subset F(x) be given such that
(1) F(x,) is compact for some x,cX and (ii) for each finite subset {x,, Xq, ..., X}
of X the convex hull of {x,,x,, ..., x,} is contained in the corresponding union

UJ) F(x). Then (\ F(x)=0.
i=1 xeX

The above is a generalization of the well known finite dimensional result of
KNASTER—KURATOWSKI—MAZURKIEWICZ [6]. In [4] Fan has used his lemma to pro-
ve a minimax principle and also applied it to a variety of problems. In [1] BREZIS—
NIRENBERG—STAMPACCHIA has extended the above lemma to some extent and obtained
a generalized Fan’s minimax principle which yields a voN NEUMANN—SION mini-
max principle slightly stronger than the one indicated by Fan in [4].

In the present note we proved a lemma similar to Lemma 1.1 which admits
most of the applications considered in [1].

In particular, we have applied our lemma to obtain a Fan’s minimax principle
which yields a von Neumann-Sion minimax principle which includes the correspond-
ing result given in [1]. We have also used our lemma to obtain two fixed point
theorems, each being dual to the other in the sense of [7]. Finally we have applied
these two fixed point theorems on the problems relating to sets with convex sections.
Our results in this direction are more general than the corresponding results in [3]
(also see [2]). Our approach relies on a fixed point theorem of BROWDER [2]. Very
recently in [8] a lemma stronger than ours and distinct from the lemma proved in [1]
has been proved.

*) AMS (MOS) Subject classifications. Primary 47THOS5, Secondary 47H10.
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2. For the rest of the paper E will denote a Hausdorff topological vector space.
We first consider the following fixed point theorem of Browder ([2], theorem 1).

Theorem 2.1. Let K be a nonempty compact convex subset of E. Let T:K—2%
be a multi-valued mapping such that
(i) for each x¢K, T(x) is a nonempty convex subset of K;
(ii) for each xecK, T Yx)={y:xeT(y)] is open in K. Then there is a point
Xo€ K such that xg¢T(x,).

A theorem equivalent to the above theorem has been given by FAN ([4], theo-
rem 2) with different proof.

Lemma 2.1. Let X be a nonempty convex subset of E. To each xcX, let
a nonempty subset F(x) in E be given such that

(a) xe F(x) for each xeX;

(b) F(x,) is compact for some x,cX;

(c) for each xcX, the set A(x)={yeX:x¢ F(y)} is convex;

(d) for each xcX, the intersection of F(x) with any finite dimensional subspace

of E is closed;

(e) for each xcX, F(x,)( F(x) is closed.

Then ﬂx F(x)#.
x€

Remark. The above lemma motivates from a lemma of FAN ([4], lemma 4).
The conditions (a) and (c) together imply the condition (i) of lemma 1.1. Thus if
(d) and (e) are replaced by (ii) of lemma 1.1, the above lemma would be a special
case of lemma 1.1.

PrROOF OF LEMMA 2.1. In view of (b) and (e) it would suffice to prove that
(!] F(x;))#0 for each finite subset {x,, x,, ..., x,} of X. If possible, let us assume
i=1

that ]’n\ F(x)=0. Then for each x¢S, the convex hull of {x;, x,, ..., x,} the set
i=1

B(x)={y¢S:x¢ F(»)} is nonempty. Indeed, at least one of the x;, i=1,2,...,n
belongs to B(x). Since S is convex, it follows from (c) that B(x) is convex. Let
us define a mapping T': S—-25 by

T(x) = B(x) for each x€S.

Now T Yx)={yeS:xeT(»)}={reS:xeB()}={yeS:y¢ F(x)} is open in §
by (d). Hence by theorem 2.1 there is a point x,€.S such that x,¢7T(x,)=B(x,).
But this means that x,4 F(x,) which contradicts (a). This proves the lemma.

We now prove our fixed point theorems.

Theorem 2.2. Let K be a nonempty convex subset of E. Let T:K-2X be
a multi-valued mapping such that

(a)” for each xcK, T(x) is @ nonempty convex subset of K;

(b)" for some x,cK, the complement of T Yx,) in K, denoted by [T '(x,)*
is compact;
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(c)’ for each xcK, the intersection of [T Y x)]° with any finite dimensional
subspace of E is closed;
(d)’ for each xcK; [T X x)°N[T~Yxy)]¢ is closed.
Then there is a point x,€K such that xy€T(x,).

Proor. If possible, let us assume that T has no fixed point, i.e. there is no point
x€eK such that xe7(x). This implies that there is no x¢K such that xe¢77(x).
Thus we have (a) x¢[T}x)]° for each xcK; and (b) [T }(x)]° is nonempty
for each xcK.

We set F(x)=[T~%x)]° for each x¢K.

Now A(x)={yeK:x¢ F()}={yeK: x¢[T(»))}={yeK: xeT(»)}=T(x)
which is convex by (a)’. Thus we have condition (¢) of Lemma 2.1. Conditions
(b), (d) and (e) of lemma 2.1 follow from assumptions (b)’, (¢)” and (d)’ respectively.

Hence there is a point u<K such that uc (| F(x), i.e. uc[TYx)]° for each x€¢K
xeK

i.e. u¢ T~ (x) for any xcK. However, ucK= | ] T~*(x) which is a contradiction.
This proves the theorem. i
The following theorem is dual to the above theorem in the sense of [7].

Theorem 2.3. Let K be a nonempty convex subset of E. Let T:K-2X be
a multi-valued mapping such that

(1) for each xcK, T(x) is a nonempty subset of K;

(2) for some x4€K,[T(x,)]¢ is compact in K;

(3) for each xcK, T '(x) is convex (may be empty);

(4) for each xcK, the intersection of [T(x)]° with any finite dimensional sub-

space of E is closed;
(5) for each xeK,[T(x)1°N[T(xx)]° is closed;
(6) xlg"x T(x)=K.

Then there is a point x,€ K such that x,¢T(x,).

PROOF. As before, let us assume that there is no point x€K such that xe7(x).
This implies (a) x€[T(x)]¢ for each x¢K and (b) [T(x)]¢ is nonempty for each xeK.

We set F(x)=[T(x)]° for each x¢K.

Them A(x)={yeK:x¢F(»)}={yeK:xeT(y)}=T""(x) which is convex
by (3). Thus we have the condition (c) of lemma 2.1. Conditions (2), (4) and (5)
imply respectively conditions (b), (d) and (c) of lemma 2.1. Hence there is a pomt
ucK such that we ﬁ F(x)= ﬂ [T(x)]°. This implies that w¢ [J T'(x) which is

x€eK

impossible by (6). Thus the theorem 1s proved.

Corollary 2.1. Let K be a nonempty convex subset of E and T:K-—2X be
a multi-valued mapping such that
(1) for each x<K, T(x) is a nonempty convex subset of K;
(i1) for each x¢K, T—Y(x) is openin K;
(iii) for some x,€K, [T ~Yxy)° is compact in K.
Then there is a point x,€ K such that x,€T(x,).

Proor. Corollary follows from theorem 2.2.

Remark. This corollary generalizes the theorem 1.1 of BROWDER ([2], theorem 1).

1*
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Corollary 2.2. Let K be a nonempty convex subset of E and T: K—+2X be a
multi-valued mapping such that
(i)’ for each x€K, T(x) is a nonempty open subset of K;
(i1)" for each xcK, T~Xx) is convex (may be empty);
(iii)” for some x €K, [T(xy)]° is compact;

(iv)’ Ux T(x)=K.
XE
Then there is a point x,cK such that x,cT(x,).

ProOF. This follows from theorem 2.3.
3. Applications on Minimax Principles

3.1. (Fan’s minimax principle). Let K be a nonempty convex subset of E. Let
f(x, y) be a real valued function defined on Kx K such that
(1) f(x, x)=0 for xcK;
(ii) for every x€K, the set A(x)={yeK:f(x,y)=0} is convex;
(111) there is a compact subset L of E and x,cL(\K such that f(x, x,)=0
Jorall xeK, x¢ L;
(iv) for every y<K, we have
(1) f{x, ¥) is a lower semicontinuous function of x on the intersection of K
with any finite dimensional subspace of E;
(2) f(x, y) is also a lower semicontinuous function of x on L.
Then there exists a point yy L such that f(y,, y)=0 for all ycK.

Proor. For each yeK, we set F(y)={x:f(x, y)=0}. It is easy to see that
conditions (a), (¢) and (d) of lemma 2.1 follow from assumption (i), (if) and (iv)
respectively. F(x,) being a subset of L is compact by (iv) (2). Thus condition (b)
of Lemma 2.1 holds. (e) follows also from (iv) (2). Hence there exist a point

Vo€ ﬂ F(X), i.e.
xEK
(3o, X) =0 for all x€K.

Remark. This includes Fan’s minimax principle [4] and is different from the
one given in [1].

Although the following form of von Neumann—Sion minimax principle is
a minor generalization of the one given by Brezis—Nirenberg—Stampacchia ([1],
proposition 1) we would like to include it as a direct application of the minimax
principle 3.1.

3.2. (Von Neumann—Sion minimax principle). Let F be a Hausdorff topological
vector space and G be a vector space; let ACF and BE G be convex sets. Let
H(u, v) be a real valued function defined on AXB satisfying

(a)’ for some ©cB and some Ai=sup inf H(u,v), the set P={ucA: H(u, t)=1}
is compact; vEN NEA

(b)” for each veB, H(u, v) is a quasi-convex function of u on A

(c) for each veB, H(u, v) is a lower semicontinuous function vf u on P and also

a lower semicontanuous funcsion of u on the intersection of A with any finite
dimensional subspace of F;
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(d)’ for each ucA, —H(u,v) is a qasi-convex function of v on B and a lower
semicontinuous function of v oo the intersection of B with any finite dimen-
sional subspace of G.

Then a=sup inf H(u, v)= inf sup H(u, v)=p.

vEB uc A uc A veEB
PrROOF. The same proof given in [1] with slight modification will do. For the
sake of completeness we give the proof. We maintain the notations of [1]. Obviously
inf H(u, vy) = H(uy, vy) = sup H(uy,v) for all uyceA and vyeB. Thus a=p.

ug A

If possible, let us assume ac f. We can choose a real number y satisfying a<y<

<B,y=A
Let A(v)={ucA: H(u,v)=y} and B(u)={veB: H(u, v)=y}. By choice of

7 we have (1) () A(v)=0 and (2) ) B(u)=0. We set A(v)=A(v)NP for each

vEB ue A

veB. Then by (¢) A(v) is a closed subset of the compact subset P for each veB

and by (1) ) A(v)=0. Hence we can find v, vs, ..., v,€B such that (3) (n] Av)=

veB i=1

=(. We note that A(?)=A(7) as y=/. Consequently as y=w«, we can assume

A=y and ¥ asoneof v;,i=1,2,...,n. Let B’ bethe convex hull of {v;, v,, ..., v,}.

We now set E=FXR" and K=AXB’ where R" is the usual n-dimensional

Euclidean space. We define f/ on KX K by

f(x,») =min {H(u, v)—y, —H@W',v)+y}, x=@uv), y=@,v).

Obviously f satisfies (i) of 3.1. f satisfies (ii) of 3.1 by virtue of the quasiconvexity
of H and —H assumed in (b)" and (d)". We take L=A(0)XB’. The lower semi-
continuity of H on P assumed in (¢)” and the lower semicontinuity of —H as-
sumed in (d)” imply the lower semicontinuity of f on L with respect to y for
each fixed xeK, ie. (iv)(2) of 3.1 holds. For each fixed xcK the lower semi-
continuity of f with respect to y on the intersection of K with any finite dimen-
sional subspace of E follows from the corresponding lower semicontinuities of
H and —H assumed in (¢)” and (d)” (we recollect that minimum of two lower semi-
continuous functions is lower semicontinuous), i.e. (iv)(1) of 3.1 holds. Finally
we take x,=(u,, D)€L K for any wu,cA.

We can easily see that (iii) of 3.1 holds with this x,.

Hence by 3.1 there is a point y,=(u’ t°)€KML such that f(y,, »)=0 for
all yeK, ie. forall ucA, veB’, either H’ v)=y or y=H(u,t°). Let v be one

P i . _ L
of v;. We can choosee v=v; such that u,¢ A(v;). This is possible as () A(v;)=0.
i=1

Thus H(u° v;)=y as u’¢P. Thus it follows H(u, v°)=y for all uc A4, i.e. v°¢ (| B(u)
which contradicts (2). ue A

4. Applications on Sets with Convex Sextions

4.1. Let Ky, K,, ..., K, be n=2 nonempty convex sets, each in a Hausdorff
topological vector space, and let K= 1]:71 K;. Let S,, S, ..., S, be n subsets of
K having the following properties:
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(a) Let K;= H K; and let us denote the points of K, by %;. For j=1,2,.

and for eac‘1 £;€K;, the set S;(£)={x;€K;: [x;, £,]€¢S;} is a nonempty
convex subs:t of K;;

(b) For each j=1,2,...,n and for each point x;eK;, the set S,(x;)={%;¢K;:
[x;, £,]€S,} is an open subset of K;.

(c) For some point x*=(x{, x?, ..., xY) €K, the complement of the set ﬁ {S;(xHx
XK,} is compact in K. j=1

Then ﬂ S;#0.

J=1
PrOOF. For each x¢K, let A(x)= ﬁS (¥;) where %; is the natural projection

of x on K By (a) A(x) is a nonempty convex subset of K for each x¢K. We
define a mu1t1 valued mapping T of K into 2% by T(x)=A(x), xcK. Now

xeTgy if yeT(x), 1.e. yed(x)= ]"]S_,-(fj), ie.if y;€S,(%,) foreach j=1,2,...,n,
j=1

e., X;€S(y;) for j=1,2,...,n. Hence T7Y())= ﬁ {S;(y;) X K;} which is an open
j=1

set by (b). Finally by (c¢) [T '(x%)]° is compact in K. Hence by Corollary 2.1,

there is a point z¢K such that zeT(z), ie. z= ﬁSj(z‘J-) ie. z;€Si(Z;) for

j=1h2,...,n. Hence z=[z;, £;]J€8S; for j=1,2,...,n. Thus z¢ ﬁ S;.

j=1
4.2: Let K, K,, ..., K,, K, S;, S,, ..., S, be as in 4.1 satisfying the following
properties:
(i) For each j=1,2,...,n and each point x;cK;, the set S;(x;)={%;¢K;:
[x;, x,]ESj} is a convex subset of K;.
(i) For each j=1,2,..,n and each £;cK;, the set §;(%)={x;cK;:
[x;, £;]€S;} isa nonempty open subset of K;.

(111) For some xX°=(xy, x2, ..., x9) €K, the complement of the set ﬁ S(%))
in K is compact. I3

(iv) | A(x)=K, where A(x)= [J S,(%), %, being the natural projection of
xeK j=1
x on K;.

Then ﬁ S;#0.

J=1
ProoF. By (ii) A(x) is a nonempty open subset of K for each xcK. As before
we define 7': K—+2X by T(x)=A(x), xcK. By the same argument as before, for

each yeKk, T-Yy)= |’n] {S;(»;) XK;} which is convex by (i). By (iii) the complement
of T(x,) 1s compact and by (iv) U T (x)=K. Hence by Corollary 2.2, there is
a point z¢K such that zeT(z)= A(z), Le. z=[z;, 2j)eS; for all j=1,2,.
Hence zej(i S;.
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Remark. 4.1 generalizes a result of Fan [(3), theorem 1]. 4.2 generalizes theo-
rem 2.1 of [7]. We should point out that instead of using corollaries 2.1 and 2.2
we could have used theorems 2.2 and 2.3 to obtain more general statements of
4.1 and 4.2

The following result is a generalization of a result of Fan ([3], theorem 3).

43. Let K, K,,...,K, and K beasind4.l. Let £, f;, ..., f, be n real valued
functions defined on K satisfying the following properties:

(a) For each j=1,2,...,n, and for each point x;€K;, fi(x;, X;) is a lower semi-
continuous function of 2; of K,.

(b) For each j=1,2,...,n and for dach point £,€K;, fi(x;, £;) is a quasi-concave
function of x; on K, (i.e. for each real number ¢, "the set {x,EKJ Six;, %)=t}
is a convex subset of K.

(c) Let 8;,2,....7, be n re.il numbers such that for each j and each point X;

of K;, there ‘exists a point y;€K; such that fj( y j,xj):--rigf
(d) Let us assume that for some point x"=(x}, x2, ..., x3) €K, the complement of

the set () [{£;€K,: f(x3, £)>1,}xK;] in K is compact.
j=1
Then there is a point u€K such that fi(u)=t; forall j=1,2,...,n

PrOOF. For each j=1,2,...,n. We define the subsets S; of K by §;=
={xeK: fi(x)=1t;} which is nonempty by condition (c). The condmon (d) says

that the complement of ﬂ {S)(x})<K;} in K is compact. The rest of the proof
Ji=1

follows from 4.1.
44. Let K, K,,..,K, and K be as in 4.1. Let f,,fs, ....[, be n real
valued functions defined on K satisfying the followmg properties:
(i) For each j=1,2,..,n and each x;eK;, f;(x;, %)) is a quasi-concave
function of ¥; on
(i) For each j=1,2,....n and each £;€K;, f(x;, £, is a lower semiconti-
nuous functlon of x; on Kj.
() Let %, f; ...y &y be n real numbers such that for each j=1,2,...,n and
for each %; of }3 there exists a point y;€K; such that

j}(}'}, ‘f'f) = !j‘

(iv) For some x,=(x!, x3, ..., x9)¢K, the complement of the set
H{x €K;: flx;, #)=>1;} in K is compact.
(v) U A(x)=K where

x€K

A(x) = ,1.2 (x,€K;: f(xp, %) = 1),

%; being the projection of x on K.
Then () S,=0.

j=1
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PROOF. As in the proof of 4.3 for each j=1,2,...,n we define the subsets
S; of K by S;={xeK:f;(x)=t;} which is nonempty by (iii). Now condition (iv)

reduces to the condition that the complement of ﬁ S;(£9)=A(x,) in K is compact.
j=1
Now it is easy to see that 4.4 follows from 4.2.
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