Some remarks on D. Borwein’s note on Norlund methods
of summability associated with polynomials

By Ralf Schaper (Kassel)

1. Introduction

It is the aim of this paper to generalize several results of the note of BORWEIN [2]
just mentioned. BORWEIN remarked that Noérlund methods associated with poly-
nomials are not of most general type. The properties used in his proofs are often
only those of Taylor series being absolutly convergent on the closed unit circle and
perhaps having some zeros in it. The reader will recognize easily the connections
of our theorems with those of [2].

2. Definitions and notations

Let S:={s|s: Ny—~C} be the set of complex sequences. If s,71cSs*1cS is
defined by

n
(sel), = 25,1, nEN,.

v=0
We define %es if s,1¢S by

':—" if 1, %0,
n.= n

0 if =0

-]

We often use the following abbreviations
SR 4 P 5 P

e={1,0,0..}
for sequences and

I = {sESjvé; Is,] <=},

o(t) := {s€S|s, = o(t,)} if €S.
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Let o, peS be such that p,0, 2,0 for neN, and (p=a),=0 for almost
p*as
all n. If s€S

lized Norlund summable ((N, p, x)-summable) to zero if p=asco(p#*a). [1], [3].
We write

is the generalized Norlund mean of s. s is said to be genera-

o(N, p, 2) := {s€S|p*asco(p*a)}.

The method (N, p, ) reduces to the method (N, p) if x=1 and to the Cesaro

method (C, 8), 5=0, if p,,=[”+ﬂ_1], a1,

If peS we write P(z):= S’ p,z* and denote the radius of convergence of the

v=0
power series by o(p). We use similar notations with other letters in place of p.
Let peS be such that g(p)=0 and P(x)#0 for y<=x=p(p). If PS(z2)=
=252 olp-s)=e(p) and
i PS(x) &
x~e(p)~ P(X)

we write sco(J, p). [5, p. 79], [8, p. 186].

We define o(J, p)(N, g, a)::{sES ‘ q‘;

*

os
e co(J, p)}.

3. Theorems

If pel with P(0)=0#=P(l) and =0 o(C, d) ¢ o(N, p, 1) remains true. The
proof is analogous to the proof of theorem 1 [2] since for z with |z|=1 we have

and

Zu'p‘,z""‘ = Z*P(z"Y)—- E' 5% b

ve=0 v=n+1

The general conditions for o(C, 8) ¢ o(N, p, 2) are given by a lemma of [4, p. 422].
We prove a theorem in the other direction and consider a summability method
related to (C, é).

Let 6 =—1 and let the sequence &°¢S be defined by aﬁ::[n:—b]. Then
(C,0)=(N, -1, 1).

Theorem 1. Let (N, p,a) be defined with p such that P(iy)=0 for some
Ao with 0<|lgl=A<1 and o(x)=A. If =0 then o(N, p,a)dt o(N, &1, a).

PROOF. Since p,#0 there exists a k€S with pxk=e. Hence if h:=¢*-!
then g(h=k)=p(k)=A. Since g(x)>A we have o(h*a)=A and hx*kdo(h=a).
Now o(N, p, x) Co(N, e2-', «) follows by 4.2 of the lemma 1 of [4, p. 422].

We require the following known lemma [7] for the proof of our other theorems.
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Lemma 1. Let a, pcS. Consider the conditions

: . (D)
2 MR Gra),
There exists a M such that for all n, ue Ny with n=pu
o (p* )y
% e, |

Let rel and R(1)#0. Then
o(p*x) = o(r«p*ua)

if and only if (i) and (ii) hold. If (ii) holds then
o(p*a) D {x€S|x = g*r, gco(p*a), rel}.

The conditions (i) and (ii) are independent of those for the regularity of (N, p, ).
If we write A(p*a)={p*a),—(p»x),_,} (i) and (ii) are generally weaker than the
regularity of (N, A(p*),1). Thus in the case of (ordinary) Nérlund methods
(N, p, 1) (i) and (ii) are generally weaker than the regularity of (N, p, 1).

Theorem 2. Let (N, p,a) be defined and (i), (ii) hold. For pu=1,2 let rel
and ,R(0)=05 ,R(1). Then

o(N, p,a) C o(N, ,r#p,a) C o(N, r*qr#p,a).

Proor. It is sufficient to prove o(N, r#*p, x)Co(N, r#.r*p, 2). Let
sco(N, r*p, ). Thenby lemmal ;r+p*asco(p*a) and ,r*(;r*p=as)co(p*a)=
=0(;r #or ¥*p ). That means sco(N, yr*.r%p, a).

Theorem 3. Let rel with R(0)=0#R(1). Suppose that R has an infinity
of roots at Z,, ueNy, |4, <1, with the multiplicities ¢,,0,>0. Let Q be the
set of all gel such that >q,z" is a polynomial having the roots 1, with the multipli-
cities Ty = 0u(q)- Let o, p be such that (i), (i1) hold. Then

) o(N, g*p,2) & o(N, r*p, a).
qen

PrROOF. Let gcQ. Because of lemma 4 of [6] there exists a f¢/ such that
q *f=r. By theorem 2 we have o(N, q*p, x)Co(N, r*p, o).

Now consider g¢€Q. Then thereisa ,g¢Q such that ;Q has exactly one more
root than Q. Let A, k¢S be such that k*p=e and h+,g=e. Since g(oq*h)<1
(oq*p)*(kxh)=,g*hdo(,g*p+*a)=o(p+*x). Hence by 4.2 of lemma 1 of [4]
o(N, oq #p, 2) #o(N, g *p, ) | ) o(N, g #p, 2). By a known theorem of [8, p. 51]

qEN

the result of theorem 3 follows.

Theorem 4. Let for p=1,2,3, rcl such that ,R(0)=0#,R(1). Let ,r be
the “‘highest common factor™ of ,r and gr in the following sense: There are acl,
v=1,2,3,4 such that sr=ya%r, r=sa%r,r=@%r+a%qr. Let a,p be such
that (1), (i1) hold. Then

o(N,r*p,a) = o(N, or* p, x)(10(N, gr* p, a).
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PrOOF. Let  s€o(N, yr#p, a)(10(N, sr#p, ).  F#*p*aS=,a% 5 %P %05+
+aangrepxasco(pxa) by lemma 1, hence s€o(N, ,r#*p, ). The other direction
follows by theorem 2.

Theorem 5. Let ,rel, u=1,2,3, be such that ,R(0)=0>,R(1), 3R(2)#0 for
lz|=1 and

R(2) = 1R(2)4R(2) - ]] (1— /2™,

2R(2) - e
R ~ €€ ’*.Zif_z(l—zw

where x,m=1, |4|=1, A;#1, cel, ¢;€C. Let m:=max(m,,....,m,) and
o(yrxpra)=o(l). Then

(ii1) o(N, r#p,a) C {s€S|yr#prasco(C, m)}
but if n=0
(iv) o(N, r#p,a) & {s€S|or*prasco(C, m—n)}.

PrOOF OF (iii). Let sco(N,,r#p,2), then f:=r*psasco(l). With weS
such that w*,r=e and w:=,rxp=as=,r*wxt we have for |z|<1

m; ¢
U(z) =T(2) [C(Z)+ Z 2 (]—ZJ})LI}J)

i=1j=1
Since 4;#1 by lemma 5 of [2] and t#%cco(l) we get uco(C, m). Hence (iii) holds.
PROOF OF (iv). Without loss of generality we assume m,=max(n,,...,m,)=m.
x=1
With [z|<1,0<n<]1, and R(z):= [] (1—z/i)™ we write B(z):=43R(z)+R(2)-
iml

-1

"1 — . — =i "Tru---_—.-..n J | =
(1-2) and V(2):=B(z)-(1-z/2,)""'. By ¢, a=m and |1,|=1

{e;"<A;"}co(1). Since bel we have veo(l). Because of ao,#0, ,ry+p,#0 there is
a s€S such that ,rxpsas=v. That means sco(N,r*p, x). Writing G(z):=
i=(1—z/A,)"m+1-n_ we get for z in a neighbourhood of zero

. . V() _ G@-(—2r-
PALG et~ b - e

Since {g,}={er-"A;"}¢o({er-"}) it follows that ,rxpx*asg o(C, m—n). Hence (iv)
holds.

By an example we wish to show that o(,r #p #a)=o0(1) is a necessary condition
of theorem 5. Take p=y=4r=¢ and R(2)=1+z. If a={n+1} and s={(—1"}
then o(yr*p*a)#o(l) and sco(N,,r#p,a) but as=,rxpx*aséo(C, 1).
of %P *US

The assumption = €o(C, m) i1s wrong even in the case o(,r #p*a)=o(1).
2

Take the same ,r, v and p as just mentioned but o and s such that o,,=2,

L5
sence.
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Theorem 6. Let (N, p, =), (N, q,o), (J,m) be defined and heS such that
b} mob]
pxh=q. If Q(M =o(m), fhfﬂ
o(N,p, ) ¢ o(J,m)(N, g, o).
PrOOF. Thereisa k€S with pxk=e. Define s by as=k. Then sco(N, p, o).

m-h
qxa]‘ig{m) s¢o(J, m)(N, g, x).

Since g+xs=h and g[
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