On some classification of the linear connection in the small-dimensional space L_n

By LEON BIESZK (Szczecin)

§ 1. Introduction

Let be given at point ξ^0 of differentiable manifold X_n an abstract geometric object, special, purely differential in with the space of coordinates (fibre) $\mathfrak M$ and transformation rule

(1.1)
$$\omega' = F(\omega, L), \quad \omega \in \mathfrak{M}, \quad L \in L_n^s,$$

where L_n^s is *n*-dimensional differential group of rank s, [1]. The set of all elements of space $\mathfrak M$ obtaining for fixed $\omega_0 \in \mathfrak M$ by action of all elements $L \in L_n^s$:

(1.2)
$$\omega = F(\omega_0, L), \quad L \in L_n^s, \quad \omega_0 \in \mathfrak{M}$$

is called an orbit of space \mathfrak{M} and is denoted by symbol \mathfrak{M}_{ω_0} , [1].

$$\mathfrak{M} = \bigcup_{\omega_0 \in \mathfrak{M}} \mathfrak{M}_{\omega_0}.$$

The subset $\mathfrak{M} \subset \mathfrak{M}$ is called an invariant set of an abstract object ω if there is satisfied implication:

(1.4) if
$$\omega_1 \in \overline{\mathbb{M}}$$
, then $\omega_2 = F(\omega_1, L) \in \overline{\mathbb{M}}$ for every $L \in L_n^s$.

The invariant set $\overline{\mathfrak{M}}$ is also the sum of some number of orbits.

The space with linear connection L_n is the differential manifold X_n provided with a field of linear connection L_{ij}^k satisfying the following transformation rule:

(1.5)
$$L_{i'j'}{}^{k'} = A_{i'}{}^{l}A_{j'}{}^{j}A_{k}{}^{k'}L_{ij}{}^{k} + A_{l}{}^{k'}\partial_{i'}A_{j'} \qquad i, j, k, l = 1, ..., n \\ i', j', k' = 1', ..., n',$$

where

(1.6)
$$A_k^{k'} = \frac{\partial \varphi^{k'}(\xi^k)}{\partial \xi^k}, \quad A_{i'}^{i} = \frac{\partial \psi^{i}(\xi^{i'})}{\partial \xi^{i'}}$$

are partial derivatives of transformation of coordinate system $(\varkappa) \rightarrow (\varkappa')$ determined in some neighbourhood of every point $\xi \in X_n$ [3].

Moreover the formula is true

(1.7)
$$A_{i'}^{i} = \frac{\text{minor } A_{i'}^{i'}}{J}, \quad J = \det(A_{i'}^{i'}) \neq 0,$$

where minor is understood in algebraical sense.

We take denotations

$$(1.8) L_{ij}^{k} = \Gamma_{ij}^{k} + S_{ij}^{k},$$

where

(1.9)
$$\Gamma_{ij}^{\ k} = L_{(ij)}^{\ k}, \quad S_{ij}^{\ k} = L_{[ij]}^{\ k}.$$

On base of [3] it is known that Γ_{ij}^{k} is linear symmetric connection and torsion S_{ij}^{k} is antisymmetric tensor field.

In view of papers [4], [5] at every fixed point $\xi \in X_n$ are known the canonical forms and the orbits (the families of orbits) of the coordinate space \mathfrak{M} of antisymmetric tensor S_{ij}^k for n=2 and n=3. Basing on this we shall carry out the classification of linear connection L_{ij}^k in next sections of the paper.

Definition 1. Linear connection L_{ij}^k of space L_n is said to be of type $M_{\tilde{S}_0}$ corresponding with canonical form \tilde{S}_0 of the torsion tensor S_{ij}^k , where $\mathfrak{M}_{\tilde{S}_0}$ is an orbit (a family of orbit) of the coordinates space of torsion S_{ij}^k generated by \tilde{S}_0 , if at every point $\tilde{\zeta} \in L_n$, $[S_{ij}^k] \in \mathfrak{M}_{\tilde{S}}$.

Basing on definition 1 we can say that space L_n is of type $\mathfrak{M}_{\underline{s}}$.

§ 2. Classification of space L_2

In space L_2 tensor S_{ij}^k of type (1.9) has only two essential coordinates S_{12}^1 , S_{12}^2 and the matrix of its coordinates is of the form

(2.1)
$$S = \begin{bmatrix} 0 & 0 \\ S_{12}{}^{1} & S_{12}{}^{2} \\ -S_{12}{}^{1} & -S_{12}{}^{2} \\ 0 & 0 \end{bmatrix}.$$

Taking denotations

(2.2)
$$S^{k} = \frac{1}{2} S_{ij}^{k} \varepsilon^{ij} \quad k, i, j = 1, 2$$

we obtain the relation

$$(2.3) S_{ij}^{\ k} = S^k \varepsilon_{ij},$$

where in formulas (2.2) and (2.3) ε^{ij} and ε_{ij} are Ricci symbols of space X_2 . On base of [2], [3] the abstract object (2.2) has the following transformation rule

(2.4)
$$S^{k'} = J^{-1}A_k^{k'}S^k, \quad k = 1, 2; \quad k' = 1', 2'.$$

Object (1.9) is vector – G-density of weight (1). In virtue of (2.2) and (2.3) we can see that abstract objects S_{ij}^{k} and S^{k} are strictly equivalent, therefore they have the same number of homeomorfic in pairs orbits, [1].

Object S^i has two orbits:

$$\mathfrak{N}_1 = (0,0), \quad \mathfrak{N}_2 = R^2 - \{(0,0)\}.$$

The represant of orbit \mathfrak{N}_2 is element (0,1) determining the second canonical form of object S'.

Really, for $(S^1, S^2) \neq (0, 0)$ the following nonsingular matrix [5]

$$[A_i^{i'}] = \begin{bmatrix} S_{12}^2 - S_{12}^1 \\ S_{12}^1 & S_{12}^2 \end{bmatrix}$$

transformates with the help of rule (2.4) an arbitrary point S_1 , $S_2 \neq (0, 0)$ into point (0, 1).

In view of the above tensor S_{ij}^{k} has the following canonical forms:

(2.7)
$$S = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}.$$

In view (2.1) and (2.6) tensor S_{ij}^{k} has two orbits determined below by conditions:

$$\mathfrak{M}_{S_1}: (S^1)^2 + (S^2)^2 = 0;$$

$$\mathfrak{M}_{S_2}: (S^1)^2 + (S^2)^2 > 0.$$

Directly from definition 1 (§ 1) and from formulas (2.8) and (2.9) results the following

Theorem 1. Space L_2 is of the type \mathfrak{M}_S or \mathfrak{M}_S when at every point $\xi \in L_2$ matrix S of the form (2.1) satisfies the condition: $S \in \mathfrak{M}_S$ or $S \in \mathfrak{M}_S$.

§ 3. Orbits of tensor S_{ij}^{k} in space X_{3} .

In space X_3 tensor $S_{ij}^{\ k}$ of the type (1.9) has nine essential coordinates. Introducing denotations

$$S^{ij} = \frac{1}{2} S_{pq}{}^i \varepsilon^{pqj}$$

we get the relations

(3.2)
$$S_{ij}^{k} = S^{kl} \varepsilon_{ijl}, \quad i, j, k, l, p, q = 1, 2, 3$$

where ε^{ijk} , ε_{ijk} are Ricci symbols of space X_3 [2]. Objects $S_{ij}^{\ k}$ and S_{ij} are strictly equivalent. On base of [1] the abstract object (1.3) has the transformation rule

(3.3)
$$S^{i'j'} = J^{-1}A_i^{i'}A_j^{j'}S^{ij}.$$

236 Leon Bieszk

In paper [4] is proved the following

Theorem 2. In space X_3 tensor -G-density (3.3) has eighteen following canonical forms (congruent) which we will write in an integrate form:

Theorem 3. At every point $\xi \in X_3$ the orbits \mathfrak{M}_{S_i} , i=1,...,5 of the tensor-density (3.1) can be characterizated in the following way:

$$\begin{cases} \mathfrak{M}_{S_{1}} \colon p_{1} = p_{2} = p_{3} = 0; \\ \mathfrak{M}_{S_{2}} \colon p_{1} \neq 0, \quad p_{2} = p_{3} = 0; \\ \mathfrak{M}_{S_{3}}^{a} \colon p_{1} \neq 0, \quad p_{2} > 0, \quad p_{3} = 0; \\ \mathfrak{M}_{S_{3}}^{b} \colon p_{1} - arbitrary, \quad p_{2} < 0, \quad p_{3} = 0; \\ \mathfrak{M}_{S_{4}}^{b} \colon p_{1} \neq 0, \quad p_{2} < 0, \quad p_{3} \neq 0; \\ \mathfrak{M}_{S_{4}}^{b} \colon \begin{cases} p_{1} \neq 0, \quad p_{2} \geq 0, \quad p_{3} \neq 0; \\ or \\ p_{1} - arbitrary, \quad p_{2} < 0, \quad p_{3} \neq 0; \\ \mathfrak{M}_{S_{5}} \colon S^{(ij)} = 0, \quad S^{[ij]} \neq 0, \end{cases}$$

where $-p_1, p_2, -p_3$ are the coefficientes of the characteristic polynom of matrix $S = [S^{ij}]$:

(3.6)
$$\varphi(\lambda) = \det(\lambda E - S) = \lambda^3 - p_1 \lambda^2 + p_2 \lambda - p_3.$$

To characterize the other orbits (families of orbits) of tensor -G-density (3.1) we will define at first some auxiliary geometric objects. Let

(3.7)
$$h^{ij} = S^{(ij)}, \quad k^{ij} = S^{[ij]}, \quad i, j = 1, 2, 3.$$

On base of (3.1) and (3.3) we observe that objects h^{ij} and k^{ij} are also tensor -G-densities of wight (1).

Let us the tensor bundle $\lambda h^{ij} + k^{ij}$ or corresponding with it the matrix bundle $\lambda H + K$, where

(3.8)
$$H = [h^{ij}], K = [k^{ij}].$$

For matrix bundle $\lambda H + K$ let us form a compound matrix of degree 2, ..., where $\sum_{ij}(\lambda)$ is minor of degree 2 of matrix $\lambda H + K$ arised by drawing out of *i*-th now and *j*-th column; i, j = 1, 2, 3.

On base of immediately calculations we obtain the following distribution:

(3.9)
$$S_{2ij}(\lambda) = \lambda^2 H_{2ij} + \lambda M_{2ij} + K_{2ij}, \quad i, j = 1, 2, 3$$

or in matrix form

$$(3.10) S_2(\lambda) = \lambda^2 H + \lambda M + K_2,$$

where

$$(3.11) H_2 = \begin{bmatrix} H_{ij} \end{bmatrix}, \quad K_2 = \begin{bmatrix} K_{ij} \end{bmatrix}, \quad M_2 = \begin{bmatrix} M_{ij} \end{bmatrix},$$

while in view of (3.7) and (3.10) for $\lambda = 1$

$$(3.12) M = S - H - K.$$

238 Leon Bieszk

Matrices $\frac{H}{2}$, $\frac{K}{2}$ and $\frac{M}{2}$ satisfy the following conditions of symmetry or antisymmetry:

(3.13)
$$H^{t} = H, \quad K^{t} = K, \quad M^{t} = -M.$$

In paper [4] is proved that geometric objects $S_{ij}(\lambda)$, S_{ij} , S_{ij} , S_{ij} defined by distribution (3.9) have the transformation rules of following type:

(3.14)
$$M_{i'j'} = B^i_{i'} B^j_{j'} M_{ij}, \quad i,j=1,2,3; \quad i',j'=1',2',3'$$
 where

(3.15)
$$B_{i'}^{i} = (-1)^{i+i'} A_{i'}^{i}, [A_{i'}^{i}] \in GL(3, R).$$

They are the geometric linear homogeneous objects therefore their vanishing or non-vanishing has invariant character.

Now we can formulate the following

Theorem 4. At every point $\xi \in X_3$ the orbits (families of orbits) \mathfrak{M}_{S_1} , l = 6, ..., 14 of tensor-G-density (3.1) can be characterizated by the following systems of conditions:

of tensor-G-density (3.1) can be characterizated by the following systems:
$$\begin{aligned}
&\mathfrak{M}_{S_6}: H \in \mathfrak{M}_{S_3}^b, \quad K \neq 0, \quad M \neq 0, \quad \det S = 0; \\
&\mathfrak{M}_{S_7}: H \in \mathfrak{M}_{S_2}^b, \quad K \neq 0, \quad M = 0; \\
&\mathfrak{M}_{S_8}: H \in \mathfrak{M}_{S_3}^b, \quad K \neq 0, \quad M = 0, \quad K = -\alpha^2 H, \quad \alpha \neq 0; \\
&\mathfrak{M}_{S_8}: H \in \mathfrak{M}_{S_3}^a, \quad K \neq 0, \quad M = 0, \quad K = \beta^2 H, \quad \beta \neq 0; \\
&\mathfrak{M}_{S_{10}}: H \in \mathfrak{M}_{S_3}^a, \quad K \neq 0, \quad \det S \neq 0; \\
&\mathfrak{M}_{S_{11}}^a: H \in \mathfrak{M}_{S_3}^a, \quad K \neq 0, \quad \det S \neq 0; \\
&\mathfrak{M}_{S_{11}}^b: H \in \mathfrak{M}_{S_4}^b, \quad \det S \neq \det H, \quad \alpha^2 = \frac{\det H - \det S}{\det H}; \\
&\mathfrak{M}_{S_{13}}^a: H \in \mathfrak{M}_{S_4}^a, \quad \det S \neq \det H, \quad \beta^2 = \frac{\det S - \det H}{\det H}; \\
&\mathfrak{M}_{S_{13}}^b: H \in \mathfrak{M}_{S_4}^a, \quad \det S \neq \det H, \quad \beta^2 = \frac{\det S - \det H}{\det H}; \\
&\mathfrak{M}_{S_{13}}^b: H \in \mathfrak{M}_{S_4}^a, \quad \det S \neq \det H, \quad \beta^2 = \frac{\det S - \det H}{\det H}; \\
&\mathfrak{M}_{S_{13}}^a: H \in \mathfrak{M}_{S_4}^a, \quad \det S \neq \det H, \quad \beta^2 = \frac{\det S - \det H}{\det H}; \\
&\mathfrak{M}_{S_{14}}^b: H \in \mathfrak{M}_{S_4}^a, \quad \det S \neq \det H, \quad \beta^2 = \frac{\det S - \det H}{\det H}; \\
&\mathfrak{M}_{S_{14}}^a: H \in \mathfrak{M}_{S_4}^b, \quad K \neq 0, \quad \det S = \det H.
\end{aligned}$$

§ 4. Classification of space L_3

In view of the results of section 3 we can make the classification of the linear connection L_{ij}^{k} of space L_{3} .

In virtue of formulas (3.1) or (3.2) we can see that tensor S_{ij}^{k} and G-density S^{ij} are the abstract geometric objects strictly equivalent [1]. In that case both

geometric objects S_{ij}^{k} and S^{ij} have the same homeomorphic in pairs orbits (families of orbits) what permits to do the mentioned below classification.

According to formula (3.2) matrix \hat{S} of coordinates of tensor S_{ij}^k can be expressed with the help of coordinates of tensor-G-density S^{ij} in the following way:

$$(4.1) \qquad \hat{S} = \begin{bmatrix} 0 & 0 & 0 & -S^{13} - S^{23} - S^{33} & S^{12} & S^{22} & S^{32} \\ S^{13} & S^{23} & S^{33} & 0 & 0 & 0 & -S^{11} - S^{21} - S^{31} \\ -S^{12} - S^{22} - S^{32} & S^{11} & S^{21} & S^{31} & 0 & 0 \end{bmatrix}.$$

Definition 2. The canonical form of tensor S_{ij}^k we call the form \hat{S} of matrix (4.1) corresponding with canonical form of coordinate matrix $[S_0^{ij}]$ [of types (3.5)] of tensor-G-density S^{ij} determined by formulas (3.1) and (3.3).

On base of formulas (3.4) and (4.1) we have the following

Corollary. Antisymmetric tensor S_{ij}^k has at every point $\xi \in X_3$ eighteen canonical forms S of type [(4.1), (3.4)].

In accordance with definition 1 from section 1 and with theorems 3 and 4 from section 3 is true the following

Theorem 5. In space L_3 we can distinguish eighteen types of linear connection $L_{ij}^k(\xi^l)$ in dependity of the fact that matrix \hat{S} of the tensor of torsion S_{ij}^k belongs at each point $\overset{0}{\xi} \in L_3$ to the some orbit (family of orbits) $\mathfrak{M}_{S_1}, \ldots, \mathfrak{M}_{S_{14}}$ defined by formulas (3.5) or (3.16) respectively.

Bibliography

- M. Kucharzewski Elements of the theory of geometric objects (in Polish), Katowice (1969), 1—170.
- [2] J. L. SYNGE, A. SCHILD, Tensor Calculus University of Toronto Press, Toronto (1959), 1-360.
- [3] J. A. Schouten, Ricci—Calculus, Springer Verlag, Berlin—Göttingen—Heidelberg (1954), 1—516.
- [4] D. Stygar The transitive fibers of the antisymmetric tensor T_{ij}^{k} in the three-dimensional space X^{3} . Demonstratio Mathematica 13 (1980), 1—10.
- [5] S. WEGRZYNOWSKI—Komitanty skalarne tensora o walencji (1, 2) w przestrzeni dwuwymiarowej, Zeszyty Naukowe Politechniki Szczecińskiej, Prace Monograficzne Nr. 61 (1970), 1—49.

(Received July 18, 1979)