On the divergence of Fourier series

By V. TOTIK (Szeged)

1. Let f be a 2zn-periodic and integrable function and let s;,(x)=s,(f; x) and
a(x)=a,(f; x) be the k-th partial sum and the k-th (C, 1)-mean of its Fourier series,
respectively. m(.) denotes the Lebesgue-measure on the line. We say that the matrix
(tw)r k=0 1s regular if

lim Jt,s,=s
B9 Emp
whenever s —s.

Under “polynomial”” we always understand “trigonometric polynomial”.

A. N. KoLmoGORrovV [1] proved that Fourier series may be divergent everywhere.
On the other hand if f is fixed and {4} increases rapidly then s, (x)—~f(x) almost
everywhere (a.e.). Now we prove that here {y} cannot be choosen universally.

Theorem 1. If {u,} is an arbitrary subsequence of the natural numbers then there
is a function f for which

sup [s,, (/s X)| == (x€[—=; x)),

Turning to the strong summation we mention the following result of A. ZYGMUND
[2]: if p=0 then

nil SIS0 = 0x(D) (e

Naturally arises the question what can we say if we exchange here the sequence {s;}
for a subsequence of it. We have

Theorem 2. If p=0 and

l §Hk+1_‘uk§K (kzo, 1, ...)
then
1 n
| > P —

(l-l) "+1k=0|sﬂ|g(x) f(x)l 01’(]‘)
almost everywhere.

Furthermore if v,— <= arbitrarily and T=(t,,) is a non-negative regular matrix
then there exist a function f and a sequence {y} for which p  ,—p,=v, (k=1,0, ...

iD
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and
(1.2) sup kz’; ok Sy (S X)|P = o0
everywhere.

We mention the following consequence: Zygmund’s result implies that if

#izg =0 then (1.1) is true a.e., while Theorem 2 gives that if g,—~0 (g¢,=1) arbitra-
k

rily then there is an f and a sequence {y,} for which ﬂi*:‘gk and (1.2) is true every-

where, i.e. divergence may take place on relatively “lhikck" sequences.

The proofs of these theorems are based on a modification, which was used
formerly by K. TANDORI [2], of the original Kolmogorov construction and on the
next theorem.

Let &(x) (x=0) be a nondecreasing convex function satisfying 0=®(2x)=

=K®(x). Let Lo={f|llfllLy<<=} where |fll. = f(b(lf(.\')‘]dx (note that this is

not necessarily a norm). Remark that ¢,—f in “Lg-norm™ i.e. | f—a,(f)l|.,=0o(])
(n—<°) (this follows easily from the fact that by Jensen inequality ||, (f)] ., = | f] ,)-

Theorem 3. Let @ be as above, T=(t,) an arbitrary non-negative regular
matrix and p=0. There are only two possibilities: either for all fcLg we have

Z s (i 0—f @ = 0,()) (n =)
almost everywhera, or there is an feLg with
(1.3) sup té‘; LSy (f; X)|P =0 (x€[—m; 7).
We remark that similar statement holds for the ordinary means

2 a5 0=7()
provided that the (#,,) matrix is row-finite (the proof is almost the same as that of
Theorem 3).
2. To prove our theorems we require four lemmas.

Lemma 1. Let T=(t,) be a non-negative regular matrix and p=0. Let us
suppose that there is a 6=0 such that if M is an arbitrary number then there is a
trigonometric polynomial g(x) of L-norm at most 3n and a set ES(0;2n] of
measure at least & for which

2.1 sup 2 tulsi(g; x)|P > M
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everywhere on E. Then there is a function f for which

22 Sup 2 tusi(f; X" =
lamost everywhere.

An interesting consequence is the following. If the (7,) non-negative regular
matrix 1s such that (2.2) is true for an f on a set E of positive measure then (2.2)
is true almost everywhere for an other f.

Proor oF LEMMA 1. We call a set EC(0; 2n] a T-set if there is an f satisfying
(2.2) almost everywhere on E, and E is called an M-set if for every M there is
a polynomial g of L-norm at most 3z for which

sup > tulsi(g; )" > M

1
everywhere on E, but a set of measure at most W Let

o N
I.(f;x)= k;; tlsi(f; X)[P and TN(fix) = *g; L[S (S )P
One can see easily that there is a constant C,(=1) for which

T,(f+g: x) = C,(T,(f; x)+T,(g; x)).

We prove the statement of Lemma | in some steps.

I. If E;(j=1,2,...) are M-sets then Cl E; is a T-set.
J=1
Form a new sequence E; from the Ejs in which each E; occurs infinitely
many times.
We shall define five sequences — {M;}, {&;}, {g:(x)}, {E{}, {N;} — as follows.
Let M,=1, ¢ =1 and g,(x) a polynomial for which

f |g1(x)|dx =3 and sup T,,[% 2 x] =1

1]

1 :
everywhere on E[ but a set of measure at most 5 Thus there is an N, and a set
E;C Ef with m(E)>m(E{)—1 and

sup T (S0 x) =1 (xeED.

lenzl

Let us suppose that {M;}, {¢;}, {g:(x)}, {E{} and {N;} are already known for
i=j and
sup T,‘,"J[-i_; gjs x] =M; (x€E).

Nigugl 2

3*
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This implies that if ¢;,,<¢; is small enough and if
2n

J

0,00 —h(0)|dx < g0,

then
(2.3) sup T,(h; x) = 1M,— (x€E)).

N =nz=1

]

L& - j &
As Z-;—". g: 1s a polynomial, the sequence {sk [ Z%}-gi; x]} , and together
i=1 “~

j
with it the sequence {T,, [ Z%g,; x]} is uniformly bounded.
=1 0

Let now
&; 3
(2.4) M;,,>2C, [supT,.Ljyg;;x]ﬂwLi].
x.n =1

By the assumption there is a g;,, for which
on 2 BJH.‘ . .
6’- |&j+1(x)|dx = 3m, sup I, [E;ﬁgjﬂ,o x] =M,

for all x€E},, but a set of measure

N;1 which satisfy

Ml . Thus there is an Ej_,SE[,, and an
J+1
1

m(Ej.1) = m(Ef, )__+I

and

1 1 ’

Now the definitions of the above sequences are complet.
Let

S0 = 358,
As

iz
w~8—j = ”_j =
25 BWldx=3n 3 =

S is integrable. Furthermore for x¢E} we have

I

= B
sup T,(f; x) = sup T, [}2;5} g x]

1 e al 5 J 18 i

2.5) - F 3;.%1}- [2-’ gj+i 2-;-1_2_' ]—SHPT [1-21 2£g, ]=
1 [j‘l & ... ].:_ 2
=5 Mi—supT,| 2 58 %) =]

P



On the divergence of Fourier series 255

where we have used (2.3), (2.4) and the fact that

-

g = g :
p %’Llf,gi(x)ldx = .'*]:rI %—1 52""1 =g, (Jz=4).

Now asevery E; occurs infinitely many times in {E}} and as m(E})=m(E} —%,
(2.5) implies that G E; is really a T-set.
j=1

II., There is a T-set of measure at least /2.
Follow the same line as in I, only do not take into consideration the sets E;.

We obtain a function f and sets Ej such that m(Ej)*-—" 2 and (2.5) is true for them.
Let now

=11l

Clearly m(E)=—= and supT( f:x)=9e everywhere on E, and this was to be
proved.

||CE

II1. Every T-set is an M-set.
If sup T,(f:x)=< a.e. on E and if M is arbitrary then there is an E'CE
< M
and an N such that m(E')::-m(E}—T and

N 2r
i\ril}qgl kgl; fuls (s )" > 2M(f |f(D) df]’ (x€E").

Now if for the g(x)#0 polynomial f [f(x)—g(x)|dx is small enough, then
g(x)

Ef |g(x)| dx

IV. Now everything has settled to prove the statement of Lemma 1. This is
the same as to say that (0; 2n] is a T-set.
Let

and E’ satisfy the reqmrements imposed in the definition of M-sets.

p = sup {m(E)|E S (0; 2n], E is a T-set}.
We have to show u=2r, namely let E; be a T-set for which ﬂl’(Ej)}ﬂ"%. By

I and Il E*= J E; is again a T-set, moreover m(E *)-*:*s?p m(E;)=p and thus
Jj=1
m(E*)=p.

By II there is an E T-set with m(E)‘* , and clearly the sets

z
E" = {x€(0; 2n)|x—h€ E (mod 27)}
are also T-sets,
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Now were pu<2n then there would be two points, say x and y, at which
the sets (0; 2z]\E* and E were of density 1, respectively. But then we would have

m(E*UE*"Y) > m(E*) = p,

and this would contradict to the definition of u, since by I and III the set E*JE*~Y
is a T-set again.

We have proved Lemma 1.

Before stating Lemma 2 we introduce some notations. Let n and 0=k<2n+1
be natural numbers and

WUPS | ki [r_H-l] }
I(k,n;r) _{:[l =i=n, in_-f-_le 16° 16 (mod )¢,

v . X n—j+1 1 1
Pk,n;r)=1jll=j<n, é‘ ?E4-16 logny (0 =r < 16).

=1
s+ j=1€I1(k,n;r)

The next lemma tells us that one of the 7*(k,n; r) has many elements.
Denote by |/| the number of the elements of the set /.

Lemma 2. If n=100 then for each 0=k<2n+1 there exists an r(0=r<16)
for which

1
* . -
[1*(k,n;7)| = 35 M

PrOOF. If 1=j=n—})n then

n-jt1 ] =1 . 1 1
e = og(n—j) = 7 o
and so for some r=r(j)

n—j+1 1

7.16

1
—= log n.
s=1 5
s+ j=1¢ Ik, n;r)

Thus
15 e
2t k,n; ) =n—-VYn—1> %
r=0

from which the statement immediately follows.

Lemma 3. If for the (t,,) non-negative, regular matrix

FIL T Ty
and if {p,} is any orthonormal system on [0; 2n), then there is a sequence p,, for
which
lim q;:, lpna®Pq(x) =0

- oo

almost everywhere on [0; 2r].
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PROOF. As

2x - 2 - ex .
J [Z rm(pq(x)] dx = 2 I3, f (gaq(x))zdx =(max ) Jt,,=
0 q=0 a=0 g q q=0
= Kmétx Fogs

the hypothesis gives a sequence {p,} such that

,.2; j‘ [qg‘: Tpma <Pq(x)]sdx <oo,

Thus we have also

5 (Z i) <-

almost everywhere on [0; 2n] and this is stronger than the statement of our lemma.

Lemma 4. Let e<2n, n and M be positive numbers and T be a non-negative
regular matrix. If for a g trigonometric polynomial and N natural number we have

m({x€(0; 2]/ supNT,;"(g; x)=M})<e

then there are a g’ trigonometric polynomial of L-norm at most 4Me and of Lg-norm
at most 2®(2M)e and a natural number N’ for which

e ; A1 MY
sup T (g+ng'; x) = min|=|n—| -2: M
1sn= N’ 206
Sfor all x.

Proor. First of all we may suppose N=grad g and, by the regularity of 7,
f t,,,“—;—%-(n= 1,2, ...), furtherrnore there is also a number N, for which
k=0

TMg;x) <1 (n=N,).
Thus for large Ny=N
. 1( M\’

(2.6) Tiik(g; %) = 5 |n5) —2

provided that [g(x)|=n %
As g<2n, for some a

@7
{xet@; a+ 201 g =5 N € @i a+ 20| sup T 0 = M} = U 4,

I
where {/;}] is a disjoint family of closed intervals. By the assumption > m(/;)<e.
=

For a fixed natural number m let f; , be the — 2n-periodic — function shown
in the figure (the interval /; is thought to be devided into m parts).
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7
s

Y I

:
=

Let

k
fm(x) = jg'l. )'},..(x).
Clearly || f,lL.<2Me and
I fulley, = ®(2M)e.

If n—oo then s,(f,; x)—-%(f,,,(x—ﬂ) +/(x+0)) and, as % I(foulx —0) 4 £,,(x+0)| E—:%

1
everywhere in | J /;, for some Ny=Ny(m)
j=1

1( MY
(2.8) sup T.i“‘(gﬂf.;x)}-i—[ng]

1=n=N,

at the points of discontinuity of f,, (as there are only finite many such points).
It follows that (2.8) is also true on an U open set containing these points. On the
other hand on the set [a; a+ 27\ U s,(f,,) converges uniformly to f,,, thus for some
N’=N’(m)>max (N, Ny, Ny, N5(m))
: ; - ) (e
(2.9) sup é‘ﬂfnla(gwf..,x)i e 7 xe U ).

1sns N k= ji=1

Now if m tends to the infinity then for fixed k

[ fu@sinkxdx -0 and [ £,(x)cos kxdx — 0,

from which we get that for large enough m sy,(f,) is arbitrary small in absolute
value. The Fourier coefficients of ¢,(f,) tend to those of f,, if n—o, thus
for large enough m and n=n(m) the polynomial g’=a,(f,)—sx.(0.(f,)) satisfies
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all the requirements (take into account (2.6), (2.7), (2.9) and that
loa(fDle = 11z, loa(fDllze = I fallLes

f g’ (x)sinkxdx = 0, f g(x)coskxdx =0 (0 =k = Ny)).

3. ProoF ofF THEOREM |. By Theorem 3 it is enough to show the almost every-
where divergence.

We shall show that the conditions of Lemma 1 are fulfilled [with 6=ﬁ§]
for the matrix (r,) where :
{ 0O f k#nu,
rni -

1 f k=pa,

and thus Theorem 1 will follow from Lemma 1.

Let #=100 be an arbitrary natural number. By cutting-out we can achieve
that each (2u;+1) gives the same, say k, remainder if we divide it by (2n+1),
i.e. we may suppose that each (2y;+1) is of the form (2n+1)r+k.

Let r be the number given by Lemma 2 to the pair n, k: let

4ri Ve
a; = Bl (=001 08)
and
1
Eix) = n icf(z:l :r) k{(x—a;),
where

= F i‘cosrr+ 22,{ [l - I_!]coqrx
2" =t v, s g I+1)
is the de la Vallée Poussin-kernel, and the numbers g, satisfy the conditions

pkl}".‘, lulh.'.l}.zﬂkf' . . -
Since ¥V, is expressible by the Fejér kernels in the form

21 1 I
hx) = = + Ky (x)— l'hl 1(x)

and since K,(x) is non-negative, we get

33 +ar=3mn

2n 1
ni=1 4

1 & 2n
f lg(x)dx = — Z f Vi (x—ap)|dx =
0 noi=1 4 ¢
iclk,n;r)

Let 4,=(a;_y,a), 4;=(a,—n~2, a;+n"3 (i=1, 2, ..., n). The estimation K,(t)=
=0(I~'t* together with y =n"' imply that #a(* a;) are uniformly bounded
outside A;, i.e. there is an A=1 absolute constant for which [V,.t(\' a)l=A4
if x¢ A;].
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From this, taking into account that

$u(Vis X) = %-}-cos x+...+cosmx=D,(x) (m=1)

we get that outside 4'= U A; we have

in [+ ) -0

1 L 1 n
|5 (85 %) = |— 2 Dy, (x—a.—)‘—A ==| >
J n i=j 4 n i=j .
i€ Ik,n;r) icrkn;e) 2Sin 5 (x—ay)

Now

| 2,u,‘1+14m' 25 ki
[Aul;+_2_] o 2n+1 2 2n+ 1 MO ax,

thus for icl(k,n;r) we obtain

1
(;1,”+-5] a;e [r ;'1'—:; (r+1) '}—2] (mod 2n).
If
% it x % (r+l)2n

- A,

’ l n .
E = {xeA,\A | [p,‘j+~5-]x€[-§-—§+—ﬁ—, E'_'S'“L_ﬁ_] (mod 2ﬂ)}

then m(Ej):a-al; and in the case xcE;, icl(k,n;r) we have

[m,—i--;—] (x—aye [—E; -;-] (mod 2n),

by which, if even jeI*(k,n;r),

V2 1 n 1
S#kj(gy x) = T; i% _af_aj_l —A =
icIk,n;r)
’/_ 1.2 n—j+1 1 1 1 -3
_—2—; 4’: ~ ?—Azl—omlogﬂ—/‘!ﬁ'lo logn

s+ j—1€Itk,n;r)
provided n=n,.
We have got that
sup sy, (g:x)| =10"3logn
nzjz1 i

on the set ) E;. Here — by Lemma2 — m( | Ej)gﬁn

JEI*(k,n;r) JEIHRk,n;7)

1 ? o

. 71 and thus (r,,) really satisfies the conditions of Lemma 1.
We have proved our theorem.

-
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PrOOF OF THEOREM 2. The first statement of Theorem 2 is an immediate con-
sequence of the mentioned Zygmund’s result since

1 1 Hy +Kn

T 2 TP = 4 K4 1) ot 3 (5~ IP = 0,(1) - @),

Concerning the second part first of all we notice that it is enough to prove
the statement for the case “almost everywhere” (see Theorem 3), and that this is
surely true if

lim sup 7,, > 0.
p= 4q
This follows at once from Theorem 1.
Thus we may suppose
lim sup 1, =0.

pro

We may also suppose {v} to be increasing and — by Hoélder-inequality —
p=2. From the regularity of T there is a K with

f =K (p=12..).
=

We define two sequences {u,} and {g,}. Let us suppose that g,, ..., ¢, and
Hos -2 Hg, are already known. Let n,>p, be so large that v, :>2n+l be true,
let py ,;=p, +i for i=n,—p, and if M, is the smallest natural number not less
than p, +n,—0, for which 2M,+1) is divisible by (2n+1) then let

Hyosi = M,+Q2n+1)1(i—1) (1 =i<o).

Consider the function

gn, (x—a)

::]—

g(x) =

where we use the notations of the previous proof, and where m, be so large that
my=n*, uy =M, be valid. Similar computation as in the proof of Theorem 1 gives

that in the case 2m;<k=m;.,, 2n+1)|(2k+1), xed A’ [l*::j{—;—], we have

[£+3)+

N e i 2 Y *
t [[2n+l l](2n+l)+n ), then

logn—A, and thus if r_[[

Isi(g; X)| = —= sm 2n+l

P

—KAP>.

v 1 » " .
2' Tpa a2 (85 X)°| = (ocg‘n) rmlsm [u;ﬁ-%]x
t

=1, [ =t

*) [»] denotes the integral part of y.
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As p=2 we have

Z Ipq

P ,; 1 2
= D 1, ]sin [,u;+—]x] =
a=t, 9=t 2

v 3
sin ,u,,+3 x

1 4 5 4
:a—q;l“tm Z f,q €OS (2p5 + 1) x.

‘I'fj

Now fix m;. Then 1, is fixed, too. By Lemma 3 there is a sequence {p,}
for which

lim 2’ lpq €08 Qug+1x =

m=-=oo

almost everywhere. By the regularity of T if p,, is large enough then Z A ‘11

1
Thus there is an E; S 4; of measure at least = and a t; for whlch

an i)

Now after choosing m,, let m, be so large that (3.1) be true for j=1, then
. Let 9, 1=n,+1rnq+1
] Ons171, [T]

P

1
- "5— (X'EEJ).

(3.1) sup z'

9=t

mjy be so large that (3.1) be true for j=2, etc. up to j= [%
and #J=#? for Qn"‘-" _“anl
Clearly u;.,—p;=v;, and what we have proved above is that

Cniy l
(3.2) sup ;' Lpgls,, (8; X)P = T(log n) —KA?
[-%] |
on the set (] E; of measure not less than [——] n=>-.
j-
On this way we can define the sequence {x,}.
Let
Y { 0 if kq{w}
A ;
. teg f k=p, (¢=0,1,2,..).
By (3.2)

ea 1
’ ' P = . r
sup k=§nl toklsk(g: X)|P = _SC, (logn) — KA

(5]
on |J E;, ie. Lemma 1 is applicable to (t,,) by which we have for some f
=1

sup 3 15, (/2 017 = sup 3 ralsn(f: )| ===

almost everywhere, and we only have to remark that g, ., —u=v, is satisfied, too.
We have completed our proof.
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PROOF OF THEOREM 3. Let us suppose that for some f;¢ L,

{ 3 tulsiChi 0~ A0}

does not converge to 0 on a set of positive measure. From this one can see easily
that suitably choosen polynomials of the form Mo,(f,—0,(f;) satisfy the as-
sumptions of Lemma 1 as well as the further assumption |[g| . =1 (use the remark
on the space L, made in point 1). Similarly as in Lemma 1 we get that for some
f3€Lg (1.3) is valid a.e. (the proof is the same as there).

Let M(e) (e=0) be such that

D(M(e))e =0(1), M(e)e=0(1) and M(e) - (¢-~0)

be satisfied.

Now we define three sequences {N;}, {g.} and {e&} where the gis are poly-
nomials. Let us suppose that the members of these are already known for k=m
and that

3.3) sup | T" [22,( i X ]>m

lﬂcnﬁﬁ

everywhere. If ¢,.,<¢, is small enough and if Ilh— 2“'%“-3,‘ <¢,,+1 then
k=1 L

(3.9 sup | T” m(h; x)>=m—1

lsnﬂh

will be satisfied, too. Now

“ﬁT[Zz.g* 2’:.:11f2- ]—°°

n—-oea

a.e., thus to every &¢=0 thereisan N, =N, (¢) for which

sup Tin( 32k g+ 2t £ x) = 2M (0

1=n= Nm

everywhere in (0; 2n] but a set of measure at most &, and so for large enough /

sup T Nm [Z o 8t 2..“0;(/5) x]} M(e)

1=r=N_
on the same set.
After that we can apply Lemma 4 with the cast

Z_i &t Amei ma o(fs, N=N,, M=M(), n= Em+1

2M+I 2ﬂl+l

and obtain a g, ,, polynomial and an N, ., natural number with |g, ... /=
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=4M(e)e=0(1), | &'l L, =2P(2M (e))e=0(1) and

sup T""'"*‘ [Z % 8k 2':.:11(9'1(.&)‘?'8-»“) ]
1§"S~m+!
m+1 M(&)
2\ 2=+

by which, if ¢ is small enough and g,,.,=0,(f5)+g.+1, (3.3) is satisfied for m+1.
Thus we have defined the above sequences.

= min [M (2): - 2] (x€[—m; w])

Now for the function f= 2’"—% g we have
k=1

3 4 - = 1 :
Jor@hix= [ (3 5o(anc))a=o( 35 =om
(we have used the convexity of @), i.e. feL, (and similarly f€L), and as

k ‘»5'-"+1 2k &
(3.3) and (3.4) show that f satisfies the statement of Theorem 3. We have completed
our proof.

=0 3 H<an (k=k),

k=m+1
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