Note on maximal asymptotic nonbases of order /:

By S. TURJANYI (Debrecen)

In [3] NATHANSON introduced the notion of a maximal nonbase sequence of
order /. In his paper a sequence o/ is called an asymptotic nonbase sequence of
order h if it has the following two properties:

(1) o/ is not an asymptotic base sequence of order /;
(2) if ““a” is a nonnegative integer and a¢ .o/, then .o/ {a} is an asymptotic
base sequence of order /A.

In [3] NATHANSON constructs maximal asymptotic nonbase sequences with can be
represented as a union of residue classes; moreover he poses the problem whether
there exist asymptotic maximal nonbase sequence of another type. An affirmative
answer to this problem was given by ERDGs and NATHANSON in [2]. In [6] one finds
A(x)

=0

X
(where A(x) denotes as usual the number of those elements of the sequence which
are not greater than x); in [4] and [7] one even finds a sequence for which the order
1

asymptotic maximal nonbase sequences &/ of 2nd order for which liminf

of A(x) is O(x?). In the case h=2, however, no maximal nonbase sequence of
order i and of density O is known.
In the present paper we show that there exist asymptotic nonbases of order
1

h such that the order of their density function is O(x*). More exactly, we give
a procedure by the aid of which we depart from nonbase sequences of order 4

1

whose density functions have the order O(x™); from these sequences we construct
sequences whose density functions have the same order but which will be maximal
nonbase sequences of order . The abovementioned procedure has the same main
features as the procedure applied in [6] and in [7].

The basic idea of the proof stems from the following analysis of the definition
of an asymptotic maximal nonbase sequence of order A.

What does the first condition mean for «/? This condition requires the existence
of infinitely many natural numbers M; such that M;¢ ho/ where

h
ho = {x)x = ‘Z‘ah and a,ied}.
=1

The second condition means that in case a¢ .o/ (“a” is a natural number) the suf-
ficiently large M,’s belong to h{dU{a}}, that is: those numbers which are not
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represented by hs/, are represented by h{«/U{a}} provided that they are sufficiently
large. This can be carried through in such a way that either

{M;—a}c(h—1)a/ or
{M;—2a}€(h—2)o or
3
{M;—(h—1)a}esZ or
My=Ila (I=12..,h).

Not that the latter relation can be satisfied by only finitely many M;s.
Assume now a¢ ./ and choose “a’ from the interval [0; 5] then there exists
a number m which depends on b and on &/ in such a way that in case M;=m we
have M€ ha/ U {a}) and then at least one of the relations (3) is satisfied. It is more
convenient for us to construct o/ in such a way that in case of given b=a=0
and M;=>m the relation
{M;—a}e(h—1)of
is satisfied.
We shall construct sequences o/*; {m;}; {b;}; {M;} for which the following
conditions hold:
(4) With the exception of the integers of {M,} the sequence s.2/* contains each
nonnegative integer.
(5) If “a” is a nonnegative integer with a¢ /", and if 0=a=band m=M,=M,,
then
{M;—a}c(h—1)a".

(6) by=m;=M; and {b}; {m;}; {M;} are strictly monotonically increasing
S U T
Condition (4) requires that &/* is not an asymptotic base of order h. From

(5) it follows that a4 o/* implies for sufficiently large M;’s the relation {M;—a}¢
c(h—1)a*, that is, {d‘ U{a}} is an asymptotic basis of order /. By (6) the rela-

tions of the orders of the sequences {b;}; {m;}; {M;} are restricted. This restriction
will be sharpened later on by other conditions.

Theorem. There exists a sequence <Z* which is an asymptotic maximal nonbase
1
sequence whose density function has an order of O(x") (h=3).

Remark. This result cannot be improved in the following sense: an essentially
less dense sequence cannot be an asymptotic maximal nonbase of order /.

Proor. Let A, be a basis sequence of order h. Moreover let 0cA4, and

1
A(x)=0(x"). A proof of the existence of such a sequence can be found in [1] and [5].
From A, we form A, by a suitable choice of by, m;, M,. In general, A4, is formed
from A,_, by a suitable choice of b,, my, M,. If b,,my, M, and A,_, are
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already determined, then define
Ay = AL UAL UAM UAY,
Ax_; = {x|x = m, and x€A4,_,}
Al = {x|x= M,+a;+1 and acA,_,}
AP = {(h(M+ 1)+ MU {sM,+ M+ s}U {(s+ 1M, +r}

where i=1,2, ....k—1; s=12,....5h and r=0,1, ..., 5—1. A", denotes a set
of natural numbers which satisfies the following conditions:

(7

%) if aéA4,_, and 0=a=b,, then {M,—a} is an element of
(h—1){4}_, U4}, UARL, U Ay},

p) if de ALY ,, then Tllek-c:d-:Mk.,

7) the number of elements of ALY, is |ALY, =hb,.
d) Ay_,NAY,=@ (for certain k’s it can also occur that A}Y, is the empty set).

Knowing the sequences A, the sequence /" can be defined in the following
manner:

(8) x€Ed* o x =M, and x€A,.
If the sequences A, satisfy the following conditions

(9) With the exception of M,, M,, ..., M, the set hA, contains all nonnegative
integers;
(10) there exists a constant ¢ such that Ay(x)=cA,(x) and ¢ does not depend on &,

then the existence of the sequence «/* mentioned in the theorem is proved.
1
Indeed, =/*(x)=0(x") holds because of (8) and (10), since in the case x=M,
1

we have |[o*(x)|=A(x) and A (x)=cAyx) but A (x)=0(x*). Because of (8)
and (9) the set As/™ contains all nonnegative integers with the exception of the
elements of {M,}. On the other hand, if x is a nonnegative integer with x=b,
and x¢.o/*, then we have {M,—x}e(h—1)of* for I=k because of (8) and the
property (x) of the sets A}Y,.

It is therefore sufficient to verify (9) and (10), which will be done by induction
on k. First we give the numbers b,, m,, M, and assume the existence of A}Y,.
After having seen in this way that (9) and (10) hold, we show that A}Y, can be
constructed for every k=1 according to the <)rcesponding conditions.

1

By ¢, we denote the least number for which Ay (x)=c,x* holds (provided
that x=1). Let b,=A**' and my=a; but a;=h"[c,b,i*]" where a; denotes
an arbitrarily large, but fixed element of 4,. By M, we denote that natural number
which is not representable as a sum of i members of elements of A4, which are
not greater than @;, but every natural number less than M, is representable as
a sum of & members of elements of A4, which are not greater than a;. In other
words: by M, we mean the least positive integer which does not belong to /hAj.
M, is clearly greater than m,, since A4, was a basis of order & with 0, 1¢4,.
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First we verify (9). The integers of the interval [0; M,—1] are contained in
hAy. The integers of the interval [AM,+1; =] are contained in hA]. Namely,
we have M+ 1A} since 0¢A4, and so h(M,+1)chAY. On the other hand, lat
y=h(M,+1) and O<y'=y—h(M,;+1). Then y'€hA,, that is,

Y =a,+ay,+...+a, and a,€4, (j=1,2,...,h)
but
M,+a;+1€A] and therefore ychAl since

y= Ml+ai1+] +M1+a,-!+l-|—...+Ml+a“+1.

The integers of the interval [M,+1; AM,+h] can be written in the form sM,+r
where s and r are nonnegative integers with 0=s=h and 0=r<=M,. We dis-
tinguish now two cases according to whether r—s=0 or r—s<0. If r—s=0
then r—schA,, thatis, r—s=a, +a,+...+a,. In this case we have

sMy+r = M,+a, +1+M,+a,,+1+...+M,+a, +1+a, , +...+a,,.
If r—s<0, then r<s=h, thatis r=h—1, sM,cA)' and 1¢€A}; thus we have

sMy+r=sM,4+1+4+1+...+1,
1.2 r
that is,
sMy+reh{4,U 45U A7),

We ask now whether (10) is satisfied or not. If x E% M,, then A,(x)=Al(x)=
1

=Ayx). If s My<x<my, then Ay(x)=Ay(x)=Ay(x)+hb,, since for A¥ con
dition (y) is satisfied. If m;=x=M,, then A,(x)=Ay(m,)+ AN (x)=Ay(x)+hb,.
If 1+M,=x, then |A)(x)|=h* and

(1) A,(x) = Ag(my) + Ay (M) + Ao (x— (M, + 1)) = 34,(x)+h?* = 44,(x).

Taking into consideration that A})Y(M,)=hb,,b,=h and M,=h"(c,b ", it
follows that A,(x)=2A4,(x) provided that x=M,. On the other hand, (11) yields

o cARX) -
M ="

At this place we remark that because of (8) it is appropriate to assign also to
m, a value; by definition let this value be equal 0. By & we denote an arbitrarily
small but fixed positive number; moreover let ¢; be numbers satisfying

(12) _ﬁc,:lﬂ: and ¢; > 1.

i=1
Let now for 1 natural numbers which are smaller than k the values of
A, by, my, M, be given. Then b,=b,_;+1 and we choose the my’s in such a

manner that in case x=m, the relation A,_,(x)/A4;_J(x)<c,_, is satisfied.;
furthermore let m, be greater than A"(M,_,h*b,)" and let m, be equal to some
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a; which belongs to 4, _,. By M, we denote that least positive integer which is,
on the one hand, greater than M,_,, and which, on the other hand, does not
belong to hA}_,.

First we verify that (9) holds true. With exception of the numbers
M, M,, ..., M,_, the set hA}_, contains the integers of the interval |0; M, _,].
This follows from the definition of A4}_,, from the fact that (9) is satisfied for A4,_,
and from the choice of M,. The integers of the intervallum [A(M,+1);«] are
contained in A{A}_,UAM,}. In fact, let y=h(M+1) and O<)’'=y—h(M,+1);
if y’ is equal to some of the numbers M,, M,, ..., M,_,, then ycA, and if
y" is distinct from each of these numbers, then we have by assumption that
y'€hAy_,, that is, y'=a,+a,+...+a;, where a €4, (j=1,2,..,k).
It follows that M,+a;+1¢A}_, and so ychA}', since

¥y = M;“+‘ﬂil+1+Mk+ai.+l -|—...+M,,+a;,.+l.

The integers of the interval |[M,+1; (h+1)M,] can be written in the form
sM,+r where s and r are nonnegative integers with O<=s=/ and O0=r<M,.
We distinguish now two cases according to whether r—s=0 or r—s<0.

If r—s=0 and r—schA,_,, thatis,

r—s=a,+a,+...+4, +a,.,,+...+a,,
then
sMy+r = My+a, +1+...+ My+a, +s+a, ,  +...+a,,

that is, sM,+ reh{A}_,UA4}_,}. If r—s¢hAd,_,, then r—s=M,; and 1=i=k—1
but sM,+M;+scAl,.

If r—s<0, then r<s=h, that is, r=h—1, sM,cA™,, 0;1¢c4}_, and
M +1¢A}_, therefore

sMy+r=sM+14+1+4...4+1,
1 2 r

that is,
sM+reh {4, _,UA}_UAL,).

We investigate whether (10) is satisfied for A,. If x=§% M,, then A, (9=
=A,(x). If (3h) M, =x=m,, then
Ap1(x) = A (x) = A, _,(x) +hb, since [A}Y,| = hb,.
If my=x=M,, then
Ay (X) = Ag (M) + AN 1 (%) = Aoy () +hby = Ay, () +h(h+k—1).
If 1+M,=x, then
(13) A(X) = Ap (M) +AM () + A, (M) + Ay 1 (x— (M +1)) =
= Ay (m)+k—1+h(k—1)+h2+hb+ Ay, (x— (M, +1)) =
=44, _,(»).
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Here wo used that the number of the elements of the set A", is not greater than
(k—1+h(k—1)+h?) and that ALY (M)=hb,=h(h*+k—1)=h'+h(k—1); besides

we took into consideration that A, ,(M,)=A,_,(x) provided that x=M,+1,
1 1

and then MféAl_,(Mk). Moreover we used that M,‘T is essentially greater than
1

h:+h(k—1) and (h—1Dk—1+h® since M,=h"(M,_,h%,)* which implies M, >
=h(M,_,h%*h,) and M,_,=h"(M,_,h*h,_;)". On the other hand (13) immediately
yields that
Ay —4(x)
m = 1.
x> Ay(x)

We show now that there exists a constant ¢ which does not depend on k£ and
for which A,(x)=cAyx). We have seen above that A,(x)=44,_,(x) follows from

2 A, _(x i
x=M,+1; because of the choice of m; we have then A—"—‘-E-x—;{c,‘_,, that is,
k—2
Ay _1(X)>=cy_1Ax_ofx). Using x=my=m;_,=...=m, we obtain that A,(x)=

=44, _(xX)<=4c, 1A, _o(X)<...<4Cp_o¢x 5 ... ;A(X); because of the choice of the

numbers ¢, ¢, ..., ¢4y Wwe have here c¢;...¢,_o= [[c;=1+¢ and therefore
i=1

A (x)=4(1 +¢e)A,(x) where the constant 1+& does not depend on k. If x<m,
and if m=x<M,., for some nonnegative integer, then

Ax(x) = A;41(x) = 44,(x) < 4ci0i-y...01 Ag(X) =

= 4(1+48) Ay(x),
where, of course, i<k.

It remains now only to show the existence of the sets ALY,. First we deal
with the case A=3. Let a be an integer such that 0=a=5, and ad A,_, (if such
an a does not exist, then A4,_, is the empty set). We show now that there exist
integers D, and D, such that the following conditions are satisfied:

1 2
(14) ?Mk‘(-Dﬁ D!{“i'Mk
and
(15) M, ¢ 345U {D,}U{D,}
(16) Mk“a = D1+D2.

It is obvious that D, and D, have to be determined only if M,—a¢2A4}_,.
In particular (15) requires that neither M,—D; nor M,—2D; belong to 24}_,
or Ak_,. We look now which numbers of the interval [-%- M,: %Mk] are at our

" | 2 1 ;

disposal. In [—j-M,‘; th] there are at least [3M,L]—|2A}¢_,|—l integers y for
which M,—y4§2A4}_,. We denote the set of these integers y by {»}. We cancel
now those elements of {y} for which M,—2yc24, ,. The remaining elements
will be denoted by {z}. For the number of the elements of {z} we obviously have
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the relation
31

1 1
{2} = 5 Me—24)_y—1— Al = = My—de*M,—1 = 55

3 Mkv

1
Here we took into consideration that [4}_,/=cM;’ and therefore [24}_,/=
1 2

=(cM})?*=c*M;}. Among the elements of {z} one can choose z; and z, such
that M —a= zl+z2 Namely, if the elements of {z} are taken away from M;—a,
a; - 3 Mk-‘a]
Observing now that “a” is essentially smaller than M,, thatis, a=b, and M, =
=3%(M,_,3%,)® and therefore a*’b,(-c; i ;
such that z,=M;—a—z,¢{z}. By definition of {z}, z;, and z, correspond D,
and D,, since the conditions (14), (15) and (16) are satisfied. If D;cA}_,, then
it will not be considered as an element of ALY ,; D, will be considered as an element
of A, only if D;§A_, (i=1,2). The described procedure can be repeated
with an dl'b!ll'al'}' a which satisfies 0=a=b, and a¢ A}_,; note that then in (15)
the set A}_, has to be replaced by the set {4} 2 U{D}U{D)U.. U{D,}} where
the numbers D,, D,, ..., D, have been constructed in the preceding step: the
corresponding mequallt:es then preserve their validity. Looking at the conditions
for ALY, we can see that () is satisfied because of (15) and (16), () is satisfied
because of (14) and that instead of (y) even |A4}Y,|<2b, is satisfied. Concerning
(0) it suffices to rzmark that in case D;cA}_, this element is not taken to the ele-
ments of A}Y,.
If h=3, then the existence of A}Y, will be proved in the following manner.
For drbltrary integers 0=a=b, wnh a¢ A,_, we determine in the first step an
integer F which has the following properties:

then we get [ Mk] integers which belong to the interval [ 3 M, —

M,, it follows that there exists a z,

(17) % S=F= ‘fﬁs (i=1,2 .., h—=3).
A-1.1

For reasons of convenience we choose S to be M, "

(18) Mth{Ai_lu{F}}

This means at the same time that M, —a—(h—3)F=KcA}_, and a<2A4}_, cannot
be satisfied simultaneously; therefore we shall require that

(19) M,—a—(h—3)F = K¢ A} _,.
During the second step we determine to the already existing K numbers D,
and D, such that the following relations are satisfied:

1 2 ;
= TM* and i=1,2

Q1) K= Dy 4D,
e meh{a UiF) U (0.

(20) Mk = DI' -
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Simply spoken it is here our aim to represent M;—a as a sum of i2—1 inte-
gers, which fulfil the preceding conditions; the conditions on the order ensure that
the density of A, will not essentially change. For a given “a” the abovementioned
procedure has clearly to be applied only if M,—aéd (h— l)Ak_l, from the numbers
F;, D,, of course, only those are taken to be elements of the set A4}Y, which are
not elements of A}_,. Our procedure for the determination of the numbers F and
D; will have the fo]lowmg property: if the numbers {F;} and {D;} have already
been determined for some a, then the procedure can automatlcal]y be applied for
an arbitrary new a satisfying the conditions; to this end we have in (18), (19) and
(22) to write A;_,U{F;}U{D;} mstead of A' , where {F;} and {D;} denotes
all until now constructed and in A}Y, collected numbers. Note that if A}, is
constructed in the above described manner, then it satisfies the conditions (a), (f), ()
and (6). Indeed, () is satisfied since

—ac(h—D{Ai VAL J(h—D{4, U4/, U4, UAL,)

holds because of (19) and (21): moreover we have M, ¢ hA, because of (7), (18)
and (22). (p) holds because of (17) and (20). In detail, we have to show that
1 A
F}W Mk if
h—-1
%—-S-: F and S=MF% "'

1
u-

It is obviously sufficient to show that

M,  Al1 M,
SR M R
i A 1
that is,
2 E_'_l_l _l
3 ERME E =

1
But /*x % is for positive values of x a monotonically decreasing function and
therefore it is sufficient to prove the inequality for M,. Observing that

M, = h*[c,b,h*]* and b, = h*+1, h=3
we get

3 1 % O | 2
WM 5 = h*(hcyby h?) T = h(hdcyh®) T = =

Veoh
since ¢,=1 and A*"=
From the fact that AY , can have maximally 3b, elements, it follows that even
more 1s true than (y). Cond:tlon () is satisfied since the numbers F; and D; with
F;, D;cA}_, are not taken to be elements of A",
We concentrate now on the question which integers of the interval [A—*M,—S;
h™*M,+ S] play the role of F. By {y} we denote the set of those integers for which

h—2M—S=y=hM+S and M,—sy¢(h—1)A,_, (s=12,...,h)
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is satisfied. The number of the )’s having the preceding property is clearly greater
or equal than

2AS]—1—hl(h—1) A o] = 2S]— (A1 (M) -1~ 1 =

h-1
= 2[S]—h|Ag(M)" -+ 5= 2[S]—1 —hM* (5c,)" =

h=1 1 h-1 h-1

=2M, % h—hMF (5-c)'—2 = M,*

1
o

From {y} we choose now an y such that
(23) M,—a—(h—=3)y = K§ A} _,.
We denote this element by y,; this will be our F. This ), exists since among the

1
elements of the set {y} there is at most a number of |4}_,|=5c,M;" which does
not satisfy (23), whereas the number of the element of y is considerably greater,
S-1.,1

namely greater than M, " *. Knowing F and K the numbers D, and D, can be
constructed similarly as in the case h=3.

At this place we also pose the question, how many integers V' exist which
satisfy (20) and for which

(24) M, ¢ hA_,U{F}U{¥}.

This latter condition is necessary because we want to see directly from the determina-
tion of D,, D, that (22) holds true. (24) can be written also as

(25) M,—i-VE(h—1){4,_,U{F}} and M, =2V (i=1,2).

Here it 1s obviously sufficient to investigate the case i=1, 2 since % M, < V-:§ M,

and 3V=>=M,. Atmost 2|(h—1)A}_,(M,)+1 numbers of the interval [% Mk;éM,‘]

does not satisfy condition (25); on the other hand, we have A, ,(x)=4(1+28)A4,(x)=
i

=4(1 +€)cyx*, and so
1

AL_,(M,) = 5coMF,
that is,
h-1

[(h—1) A _1(M)| = (Sco)* M F .

But in the interval [".l'i" M,‘;—z-M*] there are at least [% M,,]—2 integers. Hence

we have 3

1 3

[% M,]—z—z[(h— DAL, (M) -1 = [-;- Mk]—3-2(500)"-‘M,‘T >S5 M
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possibilities for the choice of the numbers V' ; subtracting now each of these numbers
from K, we obtain at least one among the numbers K—V, which likewise satisfies
the conditions for the V’s; we denote this by ¥, and by ¥V, we denote the number
subtracted from K, that is, V,=K—V,. The existence of ¥, is seen from the
following fact: if we subtract numbers of type “V” from K, then we get numbers
belonging to the interval

[—;— M,—a—(h—=3)F; %—Mk—a—(h—?a)F);

now the pigeon hole principle can be applied since a+(h—3) F is essentially smaller

3 ; 3
than 73 M, which ensures the existence of V,. It suffices now to remark that

V, and ¥, satisfy the conditions for D;y and D, because of (25) and %Mt-c %

P;-a%Mk. If we write now instead of A}_, always the set {4;_,U{F}U{D;}}

(where {F;} and {D;} denotesthe numbers F and D,, D, which have been construc-
ted in the preceding steps), then it was already mentioned that the construction of
D,, D, and F is always possible, provided that 0=a=5,. This completes the proof.

Remarks

1. Actually we have proved more than the assertion of the theorem, namely:
1

from an arbitrary basis with order 4 whose density function has an order of O(x*)
we formed a maximal nonbase sequence of order /i whose density function has
1

likewise the order O(x*). Given A, and B, in case of distinct basis sequences
and choosing a suitably large m,, one sees that the corresponding maximal nonbases
o/*; B* will also be distinct from each other.

2. If we would choose to A, a basis sequence of order /& whose density func-
- 1 1 . ; ;
tion has an order of O(x¥) [where FﬁK':-‘-h—_T], then a slight modification of the
construction would yield that there exists a maximal nonbase sequence of order
h whose density function has an order of O(x¥X).

Open problem: Does there exist for an arbitrary K with A '<=K-=1 an
asymptotic maximal nonbase sequence of order 4 whose density function has an
order of O(x*)?

Finally I express my gratitude to Dr. K. Gy6ry for his valuable aid.

After having written our paper, we read in MR 57 # 12444 the following:
*J. M. DesHOUILLIERS and G. GREKOS (““Non-bases additives maximales™, to appear)
have constructed a class of maximal asymptotic nonbases of order /& which satisfy

1

the best possible growth condition A(x)=0(x").
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