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A. OswaALD, in chapter V of his Dissertation [6], considers strictly prime and
strictly semiprime ideals and some of their characteristics in distributively generated
(d. g.) near-rings. Also, A. OswaLD [6] considers the conditions for which every
nil R-subgroup of a d.g. near-ring R is nilpotent.

The purpose of this paper is to extend certain results of OswaLD [6], to near~
rings with a defect of distributivity. In this paper by “near-ring”’ is meant a zero-
symmetric (left) near-ring. A set of generators of the near-ring R is a multiplicative
subsemigroup ((S,.) of a semigroup (R,.), whose elements generate (R, +).
For each x, y¢R and s¢S we can determine the element d=d(x, y, 5)€ R so that
(x+y)s=xs+ys+d. A normal subgroup D of the group (R, +) generated by
these elements d<R is called a defect of distributivity of the near-ring R (see [3]).
The near-ring R will be denoted by (R, S) when we wish to stress the set of gen-
erators S.

1. Strictly semiprime ideals

An ideal A of a near-ring R is a strictly semiprime ideal, if whenever B is
an R-subgroup of R with B*S A then BC A. A strictly semiprime near-ring
is a near-ring in which (0) is a strictly semiprime ideal. A. OSwALD [6] characterizes
strictly semiprime ideals in terms of a strictly semiprime system denoted as an
ssp-system. A subset M of a near-ring R is an ssp-system if acM implies that
there exists x¢R such that axacM.

Definition. We recall that the defect D of a near-ring (R, S) has a strictly
semiprime property (ssp-property), if whenever A is an ideal of R with xRxC 4
(x€R), then for each d¢D there exists r¢ R such that xr=d.

The following three theorems generalize the results of A. Oswald ([6], Thms
1.2, 1.5, 2.2, pp. 56—59).

Theorem 1.1. Let (R, S) be a near-ring whose defect has the ssp-property. The
ideal A of R is strictly semiprime if and only if x¢R and xRx< A implies x¢A.

PrROOF. Let A be a strictly semiprime ideal of R and xRxS A for x¢R.
It needs to be shown that xcA4. Let B an R-subgroup of R generated by x.
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We first need to show that B has consists of elements of the form

2 (£xri+mx) (r,€R, myrintegers).

Evidently, these elements form an additive subgroup of (R, +). If 2 (Exri+mx)=
=beB then for all s¢S we have bs=2(ixris+mixs)+d, (de D). Since for
each deD there exists r¢ R such that xr=d, we obtain bs=$(ixr,-s+mixs)+

+xr+ox. Thus bscB, i.e. B is an S-subgroup and hence an R-subgroup.
If b, ccB, then b= 2 (+xr;+m;x) and c=2’(j:xrj+m_’,-x), (ri, r;€R, my, mj
i

]
integers). On the other hand we have m}xz%‘(isﬁ) and xrjzg'(j:s}*),
(5%, s%€S). Thus,

be = “Z' (£ xr;+m;x) Z (£ xrj+x;m)
be = 12' [(Z (4 xri+m;x)) (£ xr7)) +(.Z (4 xr;+m;x))(mjx)]
be = %' [g (& ’.Z (£ xri+m;x)sy) + kZ (- ;‘ (+xri+m;x)s;)]
be = %’ [g (j;%'(ixr‘s}*+m,xsj*))+g' (+ 12 (£ xrisp+mxsy))]+d  (dED).
By using the Proposition 2.2a of [3] we have
be = x [f (£ 2 &Erisitmisi))) + 2 (+ 2 Erispt misp))]+d’,  (d’€D).

By hypotheis, for any d’¢D there exists r’¢ R such that xr’=d’. Thus we obtain
bccxR, i.e. B*CxR. Since xRS A it follows that B*C A4, i.e. BS A. Finally,
we have thet xcA, because B is an R-subgroup generated by x.

The converse is immediate.

Corollary. Let (R, S) be a near-ring whose defect has the ssp-property. A near-
ring R is strictly semiprime if and only if xRx=(0) implies x=0.

Theorem 1.2. Let (R, S) be a near-ring whose defect has the ssp-property.
A near-ring R is strictly semiprime if and only if R contains no nonzero nilpotent
R-subgroup.

PrOOF. Let R be a strictly semiprime near-ring. Let us suppose that there
exists a nilpotent R-subgroup P, i.e. P"=(0) for some integer n. If xy, ..., x,_1€P
and u=x, ... x,_, then uRS P. Since ucP"' we have uRu=(0). By the Corol-
lary of Theorem 1.1 it follows that u=0. Thus R has no nilpotent R-subgroups.

The converse is immediate.

Theorem 1.3. Let (R, S) be a near-ring whose defect has the ssp-property.
An ideal A of R is strictly semiprime if and only if C(A)={xcR:x¢ A} is an
ssp-system.
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PrROOF. Let A be a strictly semiprime ideal of R and let acC(A), i.e. a¢ A.
We will show that there exists xR such that axacC(A4), ie. axad¢A. Let us
suppose the opposite: for some x¢R, axacA. From Theorem 1.1, we obtain ac A.
This is contradicts the above supposition. Thus C(A) is an ssp-system.

Conversely, let C(A) be an ssp-system and xRxS A4 (x€R). We will show
that xcA4. Let us suppose that x4 A, i.e. x¢C(A4). Thus, by definition of the
ssp-system, there exists r¢R such that xrxcC(A), hence xrxé¢ A. This contra-
dicts xRx<S A. Consequently, xRxS A4 implies xc¢A. By Theorem 1.1, it follows
that A is a strictly semiprime ideal of R.

J. C. BEIDLEMAN |[1] defines a strictly prime near-ring as follows: R is strictly
prime if, whenever C is an R-subgroup of R and B is a right ideal of R with
CB=(0), then either C=(0) or B=(0). A. Oswald ([6], Prop. 2.4, p. 60) obtains
a corresponding symmetry in the definition of this notion for the class of d.g. near-
rings. Thus, a d.g. near-ring R is strictly prime if and only if whenever A, B are
R-subgroups of R with AB=(0) then either 4=(0) or B=(0). This characteristic
of strictly prime d.g. near-rings becomes applicable to near-rings with a defect of
distributivity in the light of the following proposition.

Proposition 1.4. Let (R, S) be a near-ring with a defect such that, for any
R-subgroups A and B of R with AB=(0), a normal subgroup of (R, +) gen-
erated by B contains a relative defect of the subset B with respect to R. Then, R is
strictly prime if and only if AB=(0) implies either A=(0) or B=(0).

PrOOF. Let R be strictly prime in the sense of Beidleman’s definition and let
us suppose that AB=(0) for R-subgroups A and B. Denote by B a right ideal
of R which is generated by an R-subgroup B. By Lemma 1.1 of [4] the elements
of B are of the form

b= Z(r,ib;sﬁmib;—r,) (r€R, s,€S, b;, bj¢B, my-integers).

If acA then ab= 3 (ar;+ab;s;+mab;—ar)=0, because ab;s;, ab;cAB=(0).
T

Thus, AB=(0) implies either 4=(0) or B=(0). But, if B=(0) then B=(0).
Therefore, AB=(0) implies either 4=(0) or B=(0).
The converse is immediate.

2. Nilpotent and nil R-subgroups

It is interesting to establish when a nil R-subgroup of a near-ring R is nil-
potent. For the class of d.g. near-rings, A. OswALD (|6], Thms 3.1, 3.2, 3.3, 3.4,
pp. 62—65) has considered this problem. Several following theorems refer to near-
rings with a defect and generalize the results of Oswald.

Theorem 2.1. Let (R, S) be a near-ring whose defect has the ssp-property. If
R is strictly semiprime and R has the maximum condition on right annihilators,
then R contains no nonzero nil R-subgroups.

PROOF. Let B be a nil R-subgroup of R and beB, where b=0. Because R is
strictly semiprime, we have Rb#(0). Let us denote by A(x) a right annihilator
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of xeR. A set of right annihilators of nonzero elements from Rb has a maximal
element, say A(tb) (tb+0). For all y¢R and 7r¢R we obtain

(ytb)™ = ytb-ytb ... ytb = yt+b,...byb = }‘I'b'{'-' ol

where byt=b,€B. Since the elements from B are nilpotent, there exists an integer
k=0 such that bf=0 and b5-'#0. Hence for m=k+1, (ytb)"=0. If xcA(c)
then xcA((yc)™-!), where c=tb. Therefore, A(c)S A((yc)"~"). Since the right
annihilator is maximal for c¢=th, we have A(c)=A((yc)"-'). On the other hand,
vee A((yey=1), i.e. yecA(c). Thus, cye=0 foreach ycR. Consequently cRc=(0).
From the Corollary of Theorem 1.1 it follows that ¢=0, i.e. t6=0. This is contra-
dictory to the supposition that tb 0 which follows from the supposition that b 0.
Therefore b=0, i.e. B=(0).

Theorem 2.2. Let (R, S) be a near-ring whose defect has the ssp-property. If
a maximal nilpotent right ideal contains all the nilpotent R-subgroups of R and R
has the maximum condition on right ideals, then every nil R-subgroup of R is nilpotent.

PrOOF. Let M be a maximal nilpotent right ideal of R. By Theorem 2.6 of [3],
R=R/M is a near-rings with the defect D={d+ M :dcD}. Because of the natural
homomorphism /&: R—~R, the defect D of R has an ssp-property. By Theorem 1.2
R is a strictly semiprime near-ring, because R has no nonzero nilpotent R-sub-
groups. From Theorem 2.1 it follows that R has no nil R-subgroups. Therefore,
if A4 is a nil R-subgroup of R then AS M. Thus A is a nilpotent R-subgroup.

Theorem 2.3. Let R be a near-ring whose defect D is contained in the commuta-
tor subgroup of (R, +) and has the ssp-property. If (R, +) is a solvable group
and R has maximum condition on right ideals, then every nil R-subgroup of R is
nilpotent.

PROOF. Let R* be a commutator subgroup of (R, +). By Theorem 3.7 of [3],
R’ is a nilpotent ideal of R. Thus, if M is a maximal nilpotent right ideal of R,
then R"C M. Also, we have DC R’. On the other hand, by the Corollary of Theo-
rem 2.6 of [3] and by Theorem 4.4.3 of [5], it follows that R=R/M is a ring. Thus,
every R-subgroup of R is a right ideal of R. Let A4 be a nilpotent R-subgroup
of R. Since the ring R has no nonzero nilpotent right ideals, it follows that 4 S M.
Therefore, every nilpotent R-subgroup is contained in a maximal nilpotent right
ideal of R. Because of Theorem 2.2, every nil R-subgroup of R is nilpotent.

~ Definition. Let (R, S) be a near-ring with the defect D. A subset BC R
is D-nilpotent in case there is an integer k=0 such that x,...x.eD for every
sequence X, ..., Xy in B.

Clearly, if a subset is nilpotent then it is D-nilpotent. By using the notion of
D-nilpotency, the last two theorems obtain the following form.

Theorem. 2.2°. Let (R, S) be a near-ring with the defect D. If a maximal
D-nilpotent right ideal of R contains all D-nilpotent R-subgroups of R and R has
the maximum condition on right ideals of R, then every nil R-subgroup of R is
D-nilpotent.
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Proor. If M is a maximal D-nilpotent right ideal of R, then DC M. By
Corollary of Theorem 2.6 of |3] it follows that R=R/M is a d.g. near-ring, whereby
R has no nonzero nilpotent R-subgroups. From Theorem 1.5 of [6], R is a strictly
semiprime d.g. near-ring. Also, R has the maximum condition on right annihilators.
Thus by Theorem 3.1 of [6], (p. 62) R has no nonzero nil R-subgroups. Conse-
quently, if A4 is a nil R-subgroup of R then AS M, ie. A isa D-nilpotent R-sub-
group of R.

Corollary. Let (R, S) be a near-ring with the nilpotent defect D. If a maximal
nilpotent right ideal of R contains all nilpotent R-subgroups of R and R has the
maximum condition on right ideals, then every nil R-subgroup of R is nilpotent.

Theorem 2.3". Let (R, S) be a near-ring with the defect D. If (R, +) is a
solvable group and R has the maximum condition on right ideals of R, then every
nil R-subgroup of R is D-nilpotent.

Proor. If M is a maximal D-nilpotent ideal of R, then DS M. By Corollary
of Theorem 2.6 of [3], R=R/M is a d.g. near-ring. Therefore, by Theorem 3.4
of ([6], p. 64) it follows that every nil R-subgroup of R is nilpotent. Thus, every
nil R-subgroup of R is D-nilpotent.

The previous theorem and the following corollary generalize the result of
Oswald ([6], Theorem 3.4, p. 64).

Corollary. Let (R, S) be a near-ring with a nilpotent defect. If (R, +) is
a solvable group and R has the maximum condition on right ideals of R, then every
nil R-subgroup of R is nilpotent.

We recall that a near-ring R with the defect D is D-distributive, if for all
X, ¥, z€R there exists de¢D such that (x+y)z=xz+yz+d, (see [3]).

Theorem 2.4. Let R be a D-distributive near-ring, where D is a defect of R.
If R has the maximum condition on right ideals of R, then every nil R-subgroup of
R is D-nilpotent.

PrOOF. If M is a maximal D-nilpotent ideal of R then D M. By the Corol-
lary of Theorem 2.6 of [3] it follows that R=R/M is a distributive near-ring.
Because of Proposition 3.3 of [6], (p. 64) every nil R-subgroup of R is nilpotent.
Thus, every nil R-subgroup of R is D-nilpotent.

Corollary. Let R be a D-distributive near-ring, where D is a nilpotent defect
of R. If R has the maximum condition on right ideals of R, then every nil R-subgroup
of R is nilpotent.

An R-subgroup B of a near-ring R is called minimal nonnilpotent if B is
nonnilpotent and every proper R-subgroup is nilpotent. The following theorem
gives a necessary and sufficient condition that a nonnilpotent R-subgroup be a mini-
mal nonnilpotent R-subgroup and generalizes Theorem 2.8 of BEIDLEMAN [2].

Theorem 2.5. Let A be a nonnilpotent R-subgroup of the near-ring (R, S)
with a defect, whereby a normal subgroup of (A, +) generated by any minimal non-
nilpotent R-subgroup BC A, contains a relative defect of subset B with respect to A.
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Let every minimal nonnilpotent R-subgroup of R be a term of a normal series for
(R, +) and let R satisfy the descending chain condition on R-subgroups. A non-
nilpotent R-subgroup A is minimal nonnilpotent if and only if every proper right ideal
of A is anilpotent R-subgroup of R.

PrROOF. Let A be a nonnilpotent R-subgroup of R and every proper right
ideal of A4 be a nilpotent R-subgroup. It needs to be proved that 4 is a minimal
nonnilpotent R-subgroup.

Let us assume that B is a minimal nonnilpotent R-subgroup such that B is
a proper R-subgroup of A. By Theorem 3.51a of [7], B contains a left identity
e with eR=B. Since B is a term of a normal series for (R, +), it follows that
there exists a proper normal subgroup B of group (4, +) which is generated by B.
Thus, the elements of B have the form

b= 3 (ates;+me—a), (a€A, e€B, s,€S, myintegers).
i

From Lemma 1.1 of [4], it follows that B is a right ideal of 4. By hypothesis,
B is a nilpotent R-subgroup of R. But B contains the R-subgroup B and this
is contradictory to the supposition that B is a minimal nonnilpotent R-subgroup.
Therefore B=A, i.e. A is a minimal nonnilpotent R-subgroup.

The converse is immediate.
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