Strictly semiprime ideals and nilpotency in near-rings with a defect of distributivity

By VUČIĆ DAŠIĆ (Titograd)

A. OSWALD, in chapter V of his *Dissertation* [6], considers strictly prime and strictly semiprime ideals and some of their characteristics in distributively generated (d. g.) near-rings. Also, A. OSWALD [6] considers the conditions for which every nil *R*-subgroup of a d.g. near-ring *R* is nilpotent.

The purpose of this paper is to extend certain results of Oswald [6], to near-rings with a defect of distributivity. In this paper by "near-ring" is meant a zero-symmetric (left) near-ring. A set of generators of the near-ring R is a multiplicative subsemigroup ((S, .)) of a semigroup (R, .), whose elements generate (R, +). For each $x, y \in R$ and $s \in S$ we can determine the element $d = d(x, y, s) \in R$ so that (x+y)s=xs+ys+d. A normal subgroup D of the group (R, +) generated by these elements $d \in R$ is called a defect of distributivity of the near-ring R (see [3]). The near-ring R will be denoted by (R, S) when we wish to stress the set of generators S.

1. Strictly semiprime ideals

An ideal A of a near-ring R is a strictly semiprime ideal, if whenever B is an R-subgroup of R with $B^2 \subseteq A$ then $B \subseteq A$. A strictly semiprime near-ring is a near-ring in which (0) is a strictly semiprime ideal. A. OSWALD [6] characterizes strictly semiprime ideals in terms of a strictly semiprime system denoted as an ssp-system. A subset M of a near-ring R is an ssp-system if $a \in M$ implies that there exists $x \in R$ such that $axa \in M$.

Definition. We recall that the defect D of a near-ring (R, S) has a strictly semiprime property (ssp-property), if whenever A is an ideal of R with $xRx \subseteq A$ $(x \in R)$, then for each $d \in D$ there exists $r \in R$ such that xr = d.

The following three theorems generalize the results of A. Oswald ([6], Thms 1.2, 1.5, 2.2, pp. 56—59).

Theorem 1.1. Let (R, S) be a near-ring whose defect has the ssp-property. The ideal A of R is strictly semiprime if and only if $x \in R$ and $xRx \subseteq A$ implies $x \in A$.

PROOF. Let A be a strictly semiprime ideal of R and $xRx \subseteq A$ for $x \in R$. It needs to be shown that $x \in A$. Let B an R-subgroup of R generated by x.

288 Vučić Dašić

We first need to show that B has consists of elements of the form

$$\sum_{i} (\pm x r_i + m_i x) \quad (r_i \in R, m_i \text{-integers}).$$

Evidently, these elements form an additive subgroup of (R, +). If $\sum_{i} (\pm xr_{i} + m_{i}x) = b \in B$ then for all $s \in S$ we have $bs = \sum_{i} (\pm xr_{i}s + m_{i}xs) + d$, $(d \in D)$. Since for each $d \in D$ there exists $r \in R$ such that xr = d, we obtain $bs = \sum_{i} (\pm xr_{i}s + m_{i}xs) + \pm xr + ox$. Thus $bs \in B$, i.e. B is an S-subgroup and hence an R-subgroup.

If $b, c \in B$, then $b = \sum_{i} (\pm xr_i + m_i x)$ and $c = \sum_{j} (\pm xr'_j + m'_j x)$, $(r_i, r'_j \in R, m_i, m'_j \text{ integers})$. On the other hand we have $m'_j x = \sum_{k} (\pm s_{jk})$ and $xr'_j = \sum_{k} (\pm s'_{jk})$, $(s_{jk}, s'_{jk} \in S)$. Thus,

$$bc = \sum_{i} (\pm xr_{i} + m_{i}x) \sum_{j} (\pm xr'_{j} + x'_{j}m)$$

$$bc = \sum_{j} \left[\left(\sum_{i} (\pm xr_{i} + m_{i}x) \right) (\pm xr'_{j}) + \left(\sum_{i} (\pm xr_{i} + m_{i}x) \right) (m'_{j}x) \right]$$

$$bc = \sum_{j} \left[\sum_{k} (\pm \sum_{i} (\pm xr_{i} + m_{i}x)s'_{jk}) + \sum_{k} (\pm \sum_{i} (\pm xr_{i} + m_{i}x)s_{jk}) \right]$$

$$bc = \sum_{j} \left[\sum_{k} (\pm \sum_{i} (\pm xr_{i}s'_{jk} + m_{i}xs'_{jk})) + \sum_{k} (\pm \sum_{i} (\pm xr_{i}s_{jk} + m_{i}xs_{jk})) \right] + d \quad (d \in D).$$

By using the Proposition 2.2a of [3] we have

$$bc = x \left[\sum_{i} \left(\sum_{k} \left(\pm \sum_{i} \left(\pm r_i s'_{jk} + m_i s'_{jk} \right) \right) \right) + \sum_{k} \left(\pm \sum_{i} \left(\pm r_i s_{jk} + m_i s_{jk} \right) \right) \right] + d', \quad (d' \in D).$$

By hypothesis, for any $d' \in D$ there exists $r' \in R$ such that xr' = d'. Thus we obtain $bc \in xR$, i.e. $B^2 \subseteq xR$. Since $xR \subseteq A$ it follows that $B^2 \subseteq A$, i.e. $B \subseteq A$. Finally, we have that $x \in A$, because B is an R-subgroup generated by x.

The converse is immediate.

Corollary. Let (R, S) be a near-ring whose defect has the ssp-property. A near-ring R is strictly semiprime if and only if xRx=(0) implies x=0.

Theorem 1.2. Let (R, S) be a near-ring whose defect has the ssp-property. A near-ring R is strictly semiprime if and only if R contains no nonzero nilpotent R-subgroup.

PROOF. Let R be a strictly semiprime near-ring. Let us suppose that there exists a nilpotent R-subgroup P, i.e. $P^n = (0)$ for some integer n. If $x_1, ..., x_{n-1} \in P$ and $u = x_1 ... x_{n-1}$ then $uR \subseteq P$. Since $u \in P^{n-1}$ we have uRu = (0). By the Corollary of Theorem 1.1 it follows that u = 0. Thus R has no nilpotent R-subgroups.

The converse is immediate.

Theorem 1.3. Let (R, S) be a near-ring whose defect has the ssp-property. An ideal A of R is strictly semiprime if and only if $C(A) = \{x \in R : x \notin A\}$ is an ssp-system.

PROOF. Let A be a strictly semiprime ideal of R and let $a \in C(A)$, i.e. $a \notin A$. We will show that there exists $x \in R$ such that $axa \in C(A)$, i.e. $axa \notin A$. Let us suppose the opposite: for some $x \in R$, $axa \in A$. From Theorem 1.1, we obtain $a \in A$. This is contradicts the above supposition. Thus C(A) is an ssp-system.

Conversely, let C(A) be an ssp-system and $xRx \subseteq A$ ($x \in R$). We will show that $x \in A$. Let us suppose that $x \notin A$, i.e. $x \in C(A)$. Thus, by definition of the ssp-system, there exists $r \in R$ such that $xrx \in C(A)$, hence $xrx \notin A$. This contradicts $xRx \subseteq A$. Consequently, $xRx \subseteq A$ implies $x \in A$. By Theorem 1.1, it follows

that A is a strictly semiprime ideal of R.

J. C. BEIDLEMAN [1] defines a strictly prime near-ring as follows: R is strictly prime if, whenever C is an R-subgroup of R and B is a right ideal of R with CB=(0), then either C=(0) or B=(0). A. Oswald ([6], Prop. 2.4, p. 60) obtains a corresponding symmetry in the definition of this notion for the class of d.g. nearrings. Thus, a d.g. near-ring R is strictly prime if and only if whenever A, B are R-subgroups of R with AB=(0) then either A=(0) or B=(0). This characteristic of strictly prime d.g. near-rings becomes applicable to near-rings with a defect of distributivity in the light of the following proposition.

Proposition 1.4. Let (R, S) be a near-ring with a defect such that, for any R-subgroups A and B of R with AB=(0), a normal subgroup of (R, +) generated by B contains a relative defect of the subset B with respect to R. Then, R is strictly prime if and only if AB=(0) implies either A=(0) or B=(0).

PROOF. Let R be strictly prime in the sense of Beidleman's definition and let us suppose that AB=(0) for R-subgroups A and B. Denote by \overline{B} a right ideal of R which is generated by an R-subgroup B. By Lemma 1.1 of [4] the elements of \overline{B} are of the form

$$\overline{b} = \sum_{i} (r_i \pm b_i s_i + m_i b_i' - r_i) \quad (r_i \in R, \ s_i \in S, \ b_i, \ b_i' \in B, \ m_i \text{-integers}).$$

If $a \in A$ then $a\overline{b} = \sum_{i} (ar_i \pm ab_i s_i + m_i ab'_i - ar_i) = 0$, because $ab_i s_i$, $ab'_i \in AB = (0)$. Thus, $A\overline{B}=(0)$ implies either A=(0) or $\overline{B}=(0)$. But, if $\overline{B}=(0)$ then B=(0). Therefore, AB=(0) implies either A=(0) or B=(0).

The converse is immediate.

2. Nilpotent and nil R-subgroups

It is interesting to establish when a nil R-subgroup of a near-ring R is nilpotent. For the class of d.g. near-rings, A. Oswald ([6], Thms 3.1, 3.2, 3.3, 3.4, pp. 62-65) has considered this problem. Several following theorems refer to nearrings with a defect and generalize the results of Oswald.

Theorem 2.1. Let (R, S) be a near-ring whose defect has the ssp-property. If R is strictly semiprime and R has the maximum condition on right annihilators, then R contains no nonzero nil R-subgroups.

PROOF. Let B be a nil R-subgroup of R and $b \in B$, where $b \neq 0$. Because R is strictly semiprime, we have $Rb \neq (0)$. Let us denote by A(x) a right annihilator 290 Vučić Dašić

of $x \in R$. A set of right annihilators of nonzero elements from Rb has a maximal element, say A(tb) ($tb \ne 0$). For all $y \in R$ and $t \in R$ we obtain

$$(ytb)^m = ytb \cdot ytb \dots ytb = yt \cdot b_1 \dots b_1 \cdot b = yt \cdot b_1^{m-1} \cdot b,$$

where $byt=b_1 \in B$. Since the elements from B are nilpotent, there exists an integer k>0 such that $b_1^k=0$ and $b_1^{k-1}\neq 0$. Hence for m=k+1, $(ytb)^m=0$. If $x\in A(c)$ then $x\in A((yc)^{m-1})$, where c=tb. Therefore, $A(c)\subseteq A((yc)^{m-1})$. Since the right annihilator is maximal for c=tb, we have $A(c)=A((yc)^{m-1})$. On the other hand, $yc\in A((yc)^{m-1})$, i.e. $yc\in A(c)$. Thus, cyc=0 for each $y\in R$. Consequently cRc=(0). From the Corollary of Theorem 1.1 it follows that c=0, i.e. tb=0. This is contradictory to the supposition that $tb\neq 0$ which follows from the supposition that $b\neq 0$. Therefore b=0, i. e. B=(0).

Theorem 2.2. Let (R, S) be a near-ring whose defect has the ssp-property. If a maximal nilpotent right ideal contains all the nilpotent R-subgroups of R and R has the maximum condition on right ideals, then every nil R-subgroup of R is nilpotent.

PROOF. Let M be a maximal nilpotent right ideal of R. By Theorem 2.6 of [3], $\overline{R} = R/M$ is a near-rings with the defect $\overline{D} = \{d+M: d \in D\}$. Because of the natural homomorphism $h: R \to \overline{R}$, the defect \overline{D} of \overline{R} has an ssp-property. By Theorem 1.2 \overline{R} is a strictly semiprime near-ring, because \overline{R} has no nonzero nilpotent \overline{R} -subgroups. From Theorem 2.1 it follows that \overline{R} has no nil \overline{R} -subgroups. Therefore, if A is a nil R-subgroup of R then $A \subseteq M$. Thus A is a nilpotent R-subgroup.

Theorem 2.3. Let R be a near-ring whose defect D is contained in the commutator subgroup of (R, +) and has the ssp-property. If (R, +) is a solvable group and R has maximum condition on right ideals, then every nil R-subgroup of R is nilpotent.

PROOF. Let R' be a commutator subgroup of (R, +). By Theorem 3.7 of [3], R' is a nilpotent ideal of R. Thus, if M is a maximal nilpotent right ideal of R, then $R' \subseteq M$. Also, we have $D \subseteq R'$. On the other hand, by the Corollary of Theorem 2.6 of [3] and by Theorem 4.4.3 of [5], it follows that $\overline{R} = R/M$ is a ring. Thus, every \overline{R} -subgroup of \overline{R} is a right ideal of \overline{R} . Let A be a nilpotent R-subgroup of R. Since the ring \overline{R} has no nonzero nilpotent right ideals, it follows that $A \subseteq M$. Therefore, every nilpotent R-subgroup is contained in a maximal nilpotent right ideal of R. Because of Theorem 2.2, every nil R-subgroup of R is nilpotent.

Definition. Let (R, S) be a near-ring with the defect D. A subset $B \subseteq R$ is D-nilpotent in case there is an integer k>0 such that $x_1 \dots x_k \in D$ for every sequence x_1, \dots, x_k in B.

Clearly, if a subset is nilpotent then it is *D*-nilpotent. By using the notion of *D*-nilpotency, the last two theorems obtain the following form.

Theorem. 2.2'. Let (R, S) be a near-ring with the defect D. If a maximal D-nilpotent right ideal of R contains all D-nilpotent R-subgroups of R and R has the maximum condition on right ideals of R, then every nil R-subgroup of R is D-nilpotent.

PROOF. If M is a maximal D-nilpotent right ideal of R, then $D \subseteq M$. By Corollary of Theorem 2.6 of [3] it follows that $\overline{R} = R/M$ is a d.g. near-ring, whereby \overline{R} has no nonzero nilpotent \overline{R} -subgroups. From Theorem 1.5 of [6], \overline{R} is a strictly semiprime d.g. near-ring. Also, \bar{R} has the maximum condition on right annihilators. Thus by Theorem 3.1 of [6], (p. 62) \overline{R} has no nonzero nil \overline{R} -subgroups. Consequently, if A is a nil R-subgroup of R then $A \subseteq M$, i.e. A is a D-nilpotent R-subgroup of R.

Corollary. Let (R, S) be a near-ring with the nilpotent defect D. If a maximal nilpotent right ideal of R contains all nilpotent R-subgroups of R and R has the maximum condition on right ideals, then every nil R-subgroup of R is nilpotent.

Theorem 2.3'. Let (R, S) be a near-ring with the defect D. If (R, +) is a solvable group and R has the maximum condition on right ideals of R, then every nil R-subgroup of R is D-nilpotent.

PROOF. If M is a maximal D-nilpotent ideal of R, then $D \subseteq M$. By Corollary of Theorem 2.6 of [3], $\overline{R} = R/M$ is a d.g. near-ring. Therefore, by Theorem 3.4 of ([6], p. 64) it follows that every nil \overline{R} -subgroup of \overline{R} is nilpotent. Thus, every nil R-subgroup of R is D-nilpotent.

The previous theorem and the following corollary generalize the result of Oswald ([6], Theorem 3.4, p. 64).

Corollary. Let (R, S) be a near-ring with a nilpotent defect. If (R, +) is a solvable group and R has the maximum condition on right ideals of R, then every nil R-subgroup of R is nilpotent.

We recall that a near-ring R with the defect D is D-distributive, if for all $x, y, z \in R$ there exists $d \in D$ such that (x+y)z = xz + yz + d, (see [3]).

Theorem 2.4. Let R be a D-distributive near-ring, where D is a defect of R. If R has the maximum condition on right ideals of R, then every nil R-subgroup of R is D-nilpotent.

PROOF. If M is a maximal D-nilpotent ideal of R then $D \subseteq M$. By the Corollary of Theorem 2.6 of [3] it follows that $\overline{R} = R/M$ is a distributive near-ring. Because of Proposition 3.3 of [6], (p. 64) every nil \overline{R} -subgroup of \overline{R} is nilpotent. Thus, every nil R-subgroup of R is D-nilpotent.

Corollary. Let R be a D-distributive near-ring, where D is a nilpotent defect of R. If R has the maximum condition on right ideals of R, then every nil R-subgroup of R is nilpotent.

An R-subgroup B of a near-ring R is called minimal nonnilpotent if B is nonnilpotent and every proper R-subgroup is nilpotent. The following theorem gives a necessary and sufficient condition that a nonnilpotent R-subgroup be a minimal nonnilpotent R-subgroup and generalizes Theorem 2.8 of BEIDLEMAN [2].

Theorem 2.5. Let A be a nonnilpotent R-subgroup of the near-ring (R, S) with a defect, whereby a normal subgroup of (A, +) generated by any minimal nonnilpotent R-subgroup $B \subset A$, contains a relative defect of subset B with respect to A.

292 Vučić Dašić

Let every minimal nonnilpotent R-subgroup of R be a term of a normal series for (R, +) and let R satisfy the descending chain condition on R-subgroups. A non-nilpotent R-subgroup A is minimal nonnilpotent if and only if every proper right ideal of A is a nilpotent R-subgroup of R.

PROOF. Let A be a nonnilpotent R-subgroup of R and every proper right ideal of A be a nilpotent R-subgroup. It needs to be proved that A is a minimal nonnilpotent R-subgroup.

Let us assume that B is a minimal nonnilpotent R-subgroup such that B is a proper R-subgroup of A. By Theorem 3.51a of [7], B contains a left identity e with eR = B. Since B is a term of a normal series for (R, +), it follows that there exists a proper normal subgroup \overline{B} of group (A, +) which is generated by B. Thus, the elements of \overline{B} have the form

$$\overline{b} = \sum_{i} (a_i \pm es_i + m_i e - a_i), \quad (a_i \in A, e \in B, s_i \in S, m_i \text{-integers}).$$

From Lemma 1.1 of [4], it follows that \overline{B} is a right ideal of A. By hypothesis, \overline{B} is a nilpotent R-subgroup of R. But \overline{B} contains the R-subgroup B and this is contradictory to the supposition that B is a minimal nonnilpotent R-subgroup. Therefore B=A, i.e. A is a minimal nonnilpotent R-subgroup.

The converse is immediate.

References

- J. C. Beidleman, Strictly prime distributively generated nearrings, Math. Z. 100 (1967), 97—105.
 J. C. Beidleman, Nonsemi-simple distributively generated nearrings with minimum condition, Math. Ann. 170 (1967), 206—213.
- [3] V. Dašić, A defect of distributivity of the near-rings (submitted).
- [4] V. Dašić, On the radicals of near-rings with a defect of distributivity *Publ. Inst. Math (Beograd)* **28** (1980), 51—59.
- [5] A. Fröhlich, Distributively generated near-rings. (I. Ideal theory), Proc. London Math. Soc. (3) 8 (1958), 76—94.
- [6] A. OSWALD, Some topics in the structure theory of near-rings, Doctoral Dissertation, University of York, 1973.
- [7] G. Pilz, Near-rings. The theory and its applications, Amsterdam—New York—Oxford, 1977.

MATHEMATICAL INSTITUTE UNIVERSITY OF TITOGRAD, YUGOSLAVIA

(Received January 20, 1980)