Hausdorff topologies for the multiplier extensions
of admissible vector modules

By A. SZAZ (Debrecen)

1. Notation and introduction

Let # be an admissible Hausdorff vector-topological (resp. locally convex)
o/ -vector module [14], and denote M =M (o7, #) its multiplier extension which is
an N=N(, #)-vector module [12].

Let .# be the family of all ideals 7 in &/ such that 7 is not a divisor of zero
in #, and for 7<#, define

M, = {FEM: IcDg} and N,={PEN: Icd~'(A))}.

Moreover, equip the subspaces M, and N, with the corresponding topologies of
pointwise convergences on / as in [14]). Then, 9, and N, become Hausdorfl
topological vector (resp. locally convex) spaces and moreover, we have

M= UM and NR= U NR,.
Ies IeF

In [14], we have considered the finest vector (resp. locally convex) topologies on
MM and N for which the identity mappings of the spaces M; and N, into M and
N, respectively, are continuous. These topologies make 9N into an admissible
vectortopological (resp. locally convex) M-vector module, and are, to some extent,
compatible with the Mikusinski-type convergences too [13]. However, in general,
they are not T,, and even their convergences can not be described explicitly.

In [13], we have considered the finest topologies on M and N for which the
identity mappings of the spaces 9, and M, into M and N, respectively, are
continuous. These topologies make 9 into an admissible 7; semitopological
MN-vector module, and are compatible with the Mikusinski-type convergences 100.
However, in general, they are not Hausdorff, and even their convergences can not be
described explicitly.

Now, we shall consider the coarsest topologies on 9 and N for which the
identity mappings of the spaces M, and N, into M and N, respectively, are
open. These topologies are finer than the former ones. Moreover, they are Haus-
dorff, and have easily describable convergences. However, they are not, in
general, compatible with the algebraic structures.

The present investigations were motivated by the paper [1] of J. M. ANTHONY,
and some of the results of [1] are extended here to a more general setting.
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2. Hausdorff topologies for 91 and N

Definition 2.1. Equip M and M with the coarsest topologies for which the
identity mappings of the spaces M, and N; into M and N, respectively, are
open for all 7¢.7 [16].

Notation 2.2. If X is a topological space, then its topology will be denoted
by Jy. Moreover, if YCX, then Zy|Y will denote the restriction of Fy to Y.

Theorem 2.3. (i) The topologies Ty and Fg are Hausdorff.
(i) We have
T, ST My, Tu,C TN,
for all I¢#, and
Fmd = T| My, f;u_d =T Ny

(ii1) The topologies Fg and Fg are finer than the finest topologies on M
and N, respectively, for which the identity mappings of the spaces I, and N, into
M and N, respectively, are continuous for all I¢ 5.

ProoF. This follows immediately from Theorems 2.9, 2.3—2.5 and 1.4 of [16],
and from (ii) in Remarks 4.3 and (iii) in Theorem 4.2 of [14].

Remark 2.4. Note that
M, = Hom, (L, B) and N, = Hom, (o, ).
Corollary 2.5. We have
Ta|BC Ty, ITu|KcTx and Tg|ACTy,, ITgKcIk.
ProOF. This can be derived easily from the last two assertions in (ii) of Theo-
rem 2.3 by using (i) in Theorem 4.2 of [14].

Remark 2.6. The topologies Jy and J, /M seem to be incomparable.

Corollary 2.7. If ¢ is a mapping of MM (resp. of M) into a topological space
such that @\, (resp. @ M;) is continuous for all 1<.#, then ¢ is continuous.

ProoF. This is an immediate consequence of (iii) in Theorem 2.3.

Theorem 2.8. (i) For a net (F,) in M and an F<I, we have liﬂm F=F

in M if and only if there exists x, such that Dgc () Dy, and lim F,(¢)= F(¢p)
in # forall ocDg. a=a, -
(ii) For a net (®,) in M and an PN, we have lium ®,=® in N if and
only if there exists o, such that ® N (| &7 () and lim @,(¢)=P(p)
in o for all @ec® (). -5 e
PrOOF. This follows immediately from Theorem 2.10 of [16] and (iii) in Theo-

rem 4.2 of [14], since the topologies of 9, and N, given in Definition 4.1 of [14]
have the pointwise convergences on [ as convergences.
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Remark 2.9. The above convergences are very unnatural since they are very
much stronger than the Mikusinski-type convergences [13]. However, for instance,
they still suit well to Proposition 2.2 and Remark 2.3 of [5].

Theorem 2.10. (i) If € is a compact subset of M, then I= (| Dy is not a
divisor of zero in B, and € is a compact subset of ;. Fes

(1) If € is a compact subset of N, then I= (| ®~Y<f) is not a divisor or zero
in #, and € is a compact subset of M. o 2 4

PrOOF. This follows at once from Theorem 2.11 of [16].

3. The question of compatibility in 9% and N

Remark 3.1. In general, the algebraic and topological structures on I and N
are not compatible. However, the question that at which points the algebraic opera-
tions are continuous or separately continuous may be investigated.

Theorem 3.2. (1) If F,GeM such that Dp,s=Dp\Dg, then the addition
+: MXM =M is continuous at the point (F, G).

(i) If 0=4icK and FeI, then the scalar multiplication «:KXIM—-M is
continuous at the point (4, F).

(iil) If FeM and ®cN such that Dy,o=Dg* @), then the multiplication
*: MXNR—-IM is separately continuous at the point (F, ).

Proor. (i) and (ii) follow immediately from Theorem 3.2 of [16], namely if
F and G are as in (i), then we have

mtop ] t1-“]9.«_—, = w‘ﬂr Nbg = E,‘RDF +G"

To prove (iit), let F and @ be as in (iii), and let W be an open subset of M such
that F#* ®cW. By Theorem 1.2 of [16], we may suppose that W is an open subset
of M, for some 7/¢.#. Then, by (iii) in Theorem 4.2 of [14], WMy, is an
open subset of M, ... Thus, by (ii) in Theorem 4.2 of [14], there are open subsets
U and V of M, and Ne-i), respectively, such that FeU, ®eV, UxdCW
and FxVcW. Now, since U and V are also open in MM and N, respectively,
the proof of (iii) is complete.

Theorem 3.3. (1) If @, V<N such that (P+ V) Y(L)=P L)Y Y H), then
the addition +: MXN-N is continuous at the point (®, V).

(1) If 04K and PN, then the scalar multiplication +:KXR-N is
continuous at the point (2, @).

(iii) If @, WeN such that (®*¥) NL)=D L)% W), then the mul-
tiplication *: MXN—-N is separately continuous at the point (P, ¥).

ProOOF. The proof parallels that of Theorem 3.2.

Remark 3.4. The separability, restriction, convergence and compatibility prop-
erties of the topologies defined in [13], [14] and in the present paper suggest some
mixed procedures in topologizing MM and N. The following is an example of this

type.
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Let Jg (resp. 9g5) be the finest topology or vector topology on 9 (resp.
on N) for which the identity mapping of the space M, (resp. of N,) into M (resp.
into N) is continuous for all 7¢4. Moreover, let Tg=7Tgy U{M} and Tg=

=Ty ,U{9N}. Then, we may consider the topologies
Tt =sup{Tm, I} and Tg* = sup{Ty, Iy}

on M and N, respectively. These topologies also have some advantageous and
some disadvantageous properties.

4. An important particular case

Definition 4.1. Let % be the family of all elements of 2/ which are not di-
visors of zero in #, and suppose that &\ I= @ for all Ic.f.

Remark 4.2. In this case, we have

M= UM, and N= YN,
OEJ PE S
and the subspaces

M, =M, and N, =N,
where 7, denotes the ideal of ./ generated by ¢, are algebraically and topo-
logically isomorphic to # and .o/, respectively.

Definition 4.3. Denote Jg5 and Jg the coarsest topologies on M and N,
respectively, for which the identity mappings of the spaces 9, and N, into M
and N, respectively, are open for all pc%

Remark 4.4. 1t is clear that we have
I Im and T CTa,

where 7y and 5 denotes the topologies of MM and N given in Definition 2.1.
However, in some cases the above topologies may coincide.

Theorem 4.5. Suppose that each I¢¥ is generated by a finite subset of <%
Then, we have Tg=Ty and Ty =Ty.

Proor. If 7¢.#, then by the assumption, there exists {¢,}i-,C% such that
n
I= 3 (Koy+ o *¢,). Hence, it is clear that
k=1

2 kOI Wy,

and the topology of 9, is the coarsest topology on IR, for which the identity
mapping of M, into M, is continuous for all k=1,2,...,n. Thus, the family

{VNMm,: VE.?;,,% for some k=1,2,...,n)
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is a subbase of Zg,. Hence, by Theorem 1.2 of [16], it is clear that Ty, C T since
M, = (E) M, €Ty Thus, again by Theorem 1.2 of [16], we have Ty Tg.
k=1
The corresponding assertion for M can be proved quite similarly.

Remark 4.6. The condition that each /¢ is generated by a finite subset of
& surely fails to hold in most of the applications.

Remark 4.7. The topologies g and Jg seem to be more natural than Jy
and Jy, and they were first used by J. M. ANTHONY [1] in the Mikusinski opera-
tional calculus.

However, in the following assertions, it is no matter that which of the above
topologies is assigned to M and N, respectively.

Theorem 4.8. (i) For each @<¥. the mapping

P
S o (f2)

is an open mapping of # into IN.
(i1) For each @<, the mapping

Ly K~ 4

is an open mapping of < into N.

Proor. If @c% and V€7, then since the mapping f—f/p (fc#) is a topo-
logical isomorphism of # onto M,, we have V/p={flp: fcV}cTgy_ , and thus
VipeTg. This proves (i).

The assertion (ii) can be proved quite similarly.

Corollary 4.9. The quotient mappings (@,f)—~flo from S XA onto M,
and (o, )=/ from S X onto M are open.

Proor. If Uc¥ and V€T, then

v - {% (0. NeUXV} = U {g peUle T

by (1) in Theorem 4.8, and hence the first assertion is quite obvious.
Th: second assertion can be proved in the same way.

Remark 4.10. It is also worth mentioning that for a net (F,) in 9 and an
FeI, by Theorem 2.10 of [16], we have liam F,=F in (M, I if and only if
Dyclim Dg = |J () Df, and Ii;n F(p)=F(p) in # forall ¢pcDg.

a 2 fiza
To formulate the corresponding assertion for 9 is left to the reader.
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