On the position of roots of solutions of the differential equation
y”+qy=0 with [¢(x)]" (v<0) concave

By MIHALY PIROS (Zihony)

Let y=y(x) be a solution of the differential equation

(N Y'+qy=0 ('=d/dx)
where g=¢(x) is continuous on the interval (a, b), and g(x)=0 (a<x<b). Denote
bY Xgs X35 -oes Xu3 Xos X1, ...y Xa the roots of the equations y(x)=0, y’(x)=0 re-

spectively, where (X,<)xg<X;<...<X,(<X}) Xy, Xo=a, X,, X,<b.

Definition. A function g(x) belongs to the class C,[a, b] if it is positive on
the interval (@, b) and [g(x)]* is concave.

For example the function x'" belongs to this class if v#0 is real, a=0,
b =+ oo,

In [1] A. ELBERT estimated the functionals

*o

f ; Vqdx, j ; Vqdx, f ) Vaqdx, f "}’de

provided geC,, v=0. In the present paper we shall deal with the same functionals
for geC,la, b], v=0. It is easy to see that in this case the above integrals exist.

We shall assume that g(x) is twice continuously differentiable on (a, b).
This does not mean any restriction, since each g¢C,[a, b] can be approximated by

X+E wu+e 1fv

g.(x) = [éif (f q"(v)dv] du]

where gcC,[a, b—2¢], (¢=0), moreover it g(x) is increasing on (a, b), then also
q/x) isincreasing for (@<x-<b—2¢) and lslgtl' g.x)=q(x). The condition g¢C,[a, b]

a=x=b—2)(=0),

is equivalent to the simpler condition

(2) (v=1g*+qqg’" =0 (a<x<D»b)
We introduce

uzfﬁdx (a=x<D>b).
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Considering u as independent variable we have (with x=x(u))
dx/du = g(x)~2,
In the sequel we shall use the notation - =d/du. Introducing
(2a) @) =1/2+¢"-q"%* (0 < u < u(b))
we have
$(w) =1/2-(-3/2¢"+q-q9")-q7>
For g¢C\la, b] (v=0) (2) yields
(3) $() =—(1+2v)+s* (0= u <= u(b)).
Assuming g¢C,[a, b], v=—1/2 and integrating we get

) s =1=2-p)pu7" (0=u=u(b))
where
u=v/(1+2v).

In the sequel it will be more convenient to use the following simpler form of the
function s(u):

) s(u)=1/2-q-q7%
We shall need the following lemmas.

Lemma 1. 1. The differential equation (1) has a solution y(x) satisfying the
initial conditions y(x,)=0, y'(xo)=1, with domain of definition [x,, b) if and only if

(6) [ g@)@—x)dv <= (xy = x <b).

1. The differential equation (1) has a solution y(x) satisfying the initial conditians
Wxg)=1, W(xg)=0, with domain of definition [xg, b), if and only if

(7 f g)do == (xo = x < b).

o

Proor. 1. Assuming (6), we shall show that the differential equation (1) has
a solution y(x) satisfying y(x,)=0, y'(x,)=1.
We define
ly(x) = x—X,
and, for j=1,

1i(x) = — f f q);_y(w)dudv (x, = x < b).

X0 *o

For j=1 the definition is meaningful by (6).
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It is easy to prove by induction, that

(x—xo)°[ f tjr(u)(ur—.wr.,)a’u]JF (xp=x=<0b)
%o A O N )

(8) ()| = 7

The required solution y(x) of the differential equation (1) has the form

(9) y(x)= L(x) (xo=x<Db).

E[v; 8

Indeed, the series together with its derivative converges absolutely on the interval
[xo, b] by (8). It is easy to see, that y(x) satisfies (1) and the initial conditions
¥(x9)=0, y'(xg)=1.
Suppose conversely that the differential equation (1) has a solution y(x) satisfy-
ing the initial conditions y(x,)=0, »'(x,)=1. We shall show, that condition (6) holds.
Integrating (1), we get

(%) [ 4@ -y@)-do = YO —y(x) (<& <x<b)
s

»(x) is nonincreasing and concave on the interval [x,, x;], hence
(9b) y(x) = a(x—xp) (xp=x = xp)
where o= y(xg)/(xq—x,). By (9a) and (9b)

{lim f g)(v—xx)dv=1-y(x)=1 (x=x=Xxp)
whence the integral on the left hand side of (6) is bounded.
I1. Assume, that condition (7) holds. Define
Li{(x)=1
and for j=1
Lij(x) =— f f gL,y (w)dudv (xg =x < b).
xo x:,

Using (7) it can be shown by induction that

((x—xd) f qwd)  (x = x < b)

(10) IL;(x)| = ‘;! (G=0,1,2..).

Defining y(x)= ZmL ;x, (10) yield the absolute convergence of the series of )(x)
j=0

and »’(x) on |xg, b]. It can be shown easily that the function )(x) satisfies (1) as
well as the initial conditions y(xg)=1, »"(x5)=0.

On the same way as in the proof of case I, it can be proved, that condition (7)
is also necessary.

6‘
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Lemma 2. For g<C,[a, b] (v=—1/2)

r
o

f ﬁdx = j;.l—l

*o

holds, where j,_, denotes the first positive root of the Bessel function J,_, of first
kind and of order pu—1, p=v/(1+2v).

PrOOF. Define
u(x)= [ Vgdx (xo=x=Db).
Denote by y(x) the solution of the differential equation (1) satisfying (x,)=0,
Y (xg)=1 and let
Y (u) = y(x(w)).

With the independent variable u, differential equation (1) has the form

(11) Y+s¥Y+Y =0.
Let ¢&=min (j,_,, u(xg)). We shall show that
(12) € = u(xp).

We introduce the function W(u) by
W) = ut=*(J,_,Y—J,Y).

It is easy to see that W(0)=0. Differentiating and using the known recursion
formulas

for Bessel-functions (see for example [4]) we get

W) = —J i~ *(Y+(1=2u"Y+Y) (0 <=u=23).
Using (11) and (4)

W)=Y -Ju*(s—(1-20u")=0 O0O<u=¢

whence it follows, that :
(13) Wu)=0 (0<u=:%).

Assume, that (12) would not hold, i.e. u(xj)=¢. By definition 4‘,=J,,_1, and since
Ju—1=Ju» W(&)=—=E1"1J,()Y(£)<0, what contradicts (13). Hence (12) holds.
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Lemma 3. According to ¢"=0 we have

[ Vgadx = =j2.

PROOF. The proof is similar to that of Lemma 2. Introduce ¢&=min (7/2, u(x)).
The function W(u) should be defined by

W(u) =sinu-Y—cosu-Y.
Differentiating and using (10) we get W(u)=—s. YsinuZ0(0<=w=¢), whence
W(u)=0. Now, it can be shown easily that w(xg) =¢.
Lemma 4. If q<C,[a,b], then
! =j_, for v<-—1
f VE‘“{ O, R T e, |
In the latter case the inequality cannot be improved.

ProoF. Consider first the case v<= —1. The proof is similar to that of Lemma 2.
Let

U= f ]/;dx,

and denote by y(x) the solution of the differential equation (1) satisfying the initial
conditions y(xg)=1, y'(xg)=0. Moreover, let Z(u)=)"(x(x)) (u=0). It follows
from (1) that

(14) Z—sZ+Z=0.

Let &=min (j,, -y, #(x;)). Define the function W(u) by

W) = ut~*(J,,_yZ—J,,+2).
Where p,=1—u. From (14) and (4) it follows, that W(u)=0 (0<=u=¢), whence
¢=Jjuy-1=J_,. Consider the case —1=v<=—1/2. Denote by k, the infimum of the

x

functional f Vgdx for qcC,a, b), (a=x}, x,<b). For v,<v, we have C.cCL;

whence
(15) k,, = k,,.
Since for v<—1 we already proved k,=j_, and j_, depends continuously on

u for u=—1, we have
‘rljrp]l =] =0

It follows by (15) that k,=0 for all v=—1.
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Lemma S. It q<C,[a, b] (v =—1/4), then
fu Vgdx =nn (a = x, < x, < b).

Proof. Consider the differential equation (11). Introducing the notation

1
=

U(u)= Y(ue °

s(v)dve

(see E. MakAI [2]) the differential equation (11) can be written in the following form:

(16) U+PU=0
where
P(u) = l—%[.§+%sz].
By (3)
1
P(u) = l+[74—+v] s* (0 < u =< u(b)
whence
(17) Pu)=1 (0=<u=u(b)).

Applying Sturm’s comparison theorem for the differential equation (16), we have
by (17), that the n-th root of the solution U of the differential equation (16) lies to
the left from nm, what proves the lemma.

Lemma 6. If g€ C,[a, b) (v = —3/4) then

't'I
f Vgdx = nx (a = x}, = x, < b).
K

Proor. Consider the solution of the differential equation (14) satisfying the
initial condition Z(0)=0, provided it exists. Introducing the notation

_% fs(v)du
V(u) = Z(u)+-e
(see ConN [3]). Equation (14) can be written in the form

(18) V+QV =0
where

0(u) = l+%[s'——é—sz].

By (3)
. 3
(19) Q) = 1—[?4- v] 54 (0 =u= u(b))
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whence

Qw) =1 (0<u=u(b)).

Applying Sturm’s comparison theorem it can be shown that the n-th root of the solu-
tion ¥ (u) is smaller than nmn.

Lemma 7. If q C,[a, b) (—3/4<v<—1/2), then

< ju—1,u fOr q monotonic

: Ix . y 4
y ;/. ﬁc [":-’u—l- [%] +"|J—~l.ll-—[%] otherwise.

Proor. Consider first the case of monotonic ¢. Assume ¢'(x)=0 (a<x<b).
(The proof can be easily modified for ¢ nondecreasing.) Since g"=0, we have by (4)

s* = (1—-2u)u?

and, by (18)

(20) QW) = 1+(1/4—(1—wHu"? (0= u = u(b)).
Consider a solution of the differential equation

(21) V(14— —pPu—2p* =0

satisfying the initial condition ¥ *(0)=0. It can be seen easily that
V() = Cu-J,_(u)

(where C<=0 denote, an arbitrary constant). Using Sturm’s comparison theorem
and (20) it can be shown, that the n-th root of the solution ¥V (u) of the differential
equation (18) is smaller than the n-th root of the solution ¥V *(u) of the differential
equation (21).

Note that in (20) equality takes place only for ¢=Cx'* (C=0), (a=0, b=0,
xo=a). At the same time, the differential equation y”+x""y=0 (—1<v<0) has
no solution satisfying 1(0)=1, »"(0)=0, since it has the independent pair of solutions

»n(x) = CVXJ,2uxt™),  yy(x) = CVxJ_,(2ux'/2).

Therefore only the estimation

[ Yadx <jp-1.,
X

holds.
Consider now the case of non monotonic ¢. Suppose that

gx)=0 for x=x*
and (@a=x*<b)
gx)=0 for x=x*
We may assume
xy=x*=x; (0

I

i=n).
Define
g(x) for xp=x=x"

g(x*) for x*=x=x.

q*(x) = {
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Denote by y*(x) the solution of the differential equation y*”+¢qy*=0 satisfying
the initial conditions y*(xp)=xy(xg), y*(x¢)=»"(x;). Let & be the i-th root of the
equation y*'(x)=0 (x=x;). It can be shown, that

(22) f Vgdx = fpf?dx.

Since ¢ and ¢* are monotonic on the intervals [xg, x{], [x/, x;] respectively, (22)
implies

xi x
f '/de Ejn—l.i and f de Eju—l.l!-‘l"
xo .\‘:

It is easy to see that

jp—l,i+j,u—l_n—£ E:"“T,;.l—l.[%] +jp—l‘n—[_:_]'

Lemma 8. If q<C,[a, b] (—3/4<v<—1/2) then

I

Ju-1,n+1 fOr g monotonic

f qux{-r_'_; 1[,|+1] +}” Ln1- [n+1] otherwise.

PrOOF. Let y:(x) be the solution of the differential equation (1) salisfying the
initial conditions y;(é)_l vg(f) 0 (xo=¢=x;), and denote by (§=)x,, X7 1,
. Xz, n+1 the roots of the equ.mon Ye(x)=0 (x={).
Assume x;;41=b(i=1, ..., n+1). It can be shown, that x/=x; ;,, (i=1,2,...),
whence

23) f Vgdx = fﬁdx;‘f”;/}}'dx.
x5 - ¥ &

Consider the right hand side of (23). The first term can be arbitrarilis small. Applying
Lemma 7 for the second term, we get the assertion.

Lemma 9. If g¢C,la, b] (—3/4<v<—1/2) then

= ju-1.a7/2 for q monotonic,

"V’_dx[ ; ; i
x;f q é}#_l.[%]+‘}”_l."+l_[£:._1] otherwise.

Proor. Consider first the case of monotonic ¢. Decampose the interval of
integration into the subintervals [x,, x,_,], [x.-,, X,]- Thus the assertion follows
at once from Lemma 8 and Lemma 3.

If ¢ is not assumed to be monotonic, the proof is similar to that of Lemma 8.

Theorem 1.
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If ¢(x)=0 (a<x<b) and qcC,la,b], then

xn = Ju-1.aF7/2 or =34=v<-1]2

& O | e /

x = jyrt+(n—=1/2)n  for v =—3/4,

b.. (n+1/2)n = f qux{gj"'““ Jor =J4&y<=1/3

= j,-1+nm  for v =—3/4,

(n—Dn<| «, <ju-1,m-172 for =34 <v<-—1]2

Cii (n—1n < f ﬁdx =n-1/2)n for —1=v=-34
Jut(—=1n =) % =m-—-1/2)x for v<=-—1,

n—-12)n <| =« < jy-1,n Jor =3/4<v<-1/2

d., (n—1/2)n = f Vgdx{= nn Jor —1=v=-3/4
Joyt—=12)n =] x =nn Jor v<-—1.

PROOF. a., The left hand side coincides with that in Lemma 5. Consider the
right hand side. For —3/4=v< —1/2, Lemma 9 applies. For v = —3/4 the interval
[xo, x,] should be decomposed as follows: [x,, x,]=[xy, Xo]U[Xe, X;5—1]Ux;—1, X,]).
Thus Lemmas 2,6 and 3 can be applied.

b., For the left hand side inequality the decomposition [x,, x,]=[X,x¢] U[xg, X
and Lemmas 3. and 6. can be applied. The right hand side inequality in the Lase
—3/4=v=<=—1/2 follows from Lemma 8. For v = —3/4 Lemmas 2. and 6. should
be applied.

c., The left hand side inequalities follows from Lemma 4. and 5. [xg, x,]=
=[x, x,]U[x,, x,]. For the right hand side inequalities Lemmas 6., 7. and 3. should
be appllcd (["0! n] [xos n-l]U[xn -1 X, n])

, The left hand side inequality follows from Lemma 4., 5. and 3. ([xg, x;]=
=[x",, x,]U[x,, Xp-1)U[xy—1, x7]). The right hand side inequalities coincides with
the assertions of Lemma 6. and Lemma 7., respectively.

Theorem 2.
If qeC,la, b], then
Ry o =2j a1t ian for =3/4=v<-—1]2
a., nm= f }"qu{ " 1’[2] = [2]
Xy = jurt(n—=D=m for v <—3/4,
PR =Jj,_ L[2 ]+j# 1a-[2] for —3/4=v<-—1/2
b., nem = f lqu =jy1tnem for —1=v=-3/4
J-ptnem = = jy1t+nern for v=—1,
(ﬂ—l)'ﬂ - x:' o ‘:jn—-l_[%] +jll'-l,ﬂ"[%] for —3/4 = v-=:—-1/2
C., (n—1)-n < Vgdx{=n.n for —1=v=-3/4
2¢j_+ (=1 =)™ =n-n for v<-—1.
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ProOOF. Similar to the proof of Theorem 1., based on the Lemmas 2.—9.

Remark. By our method also the case v=0 can be treated. If v=0, inequalities
(2), (3), and (4) turn to their opposite. Hence the statements and proofs of Lemmas
2.—6. remain valid with opposite relation signes. Thus we get the above mentioned
results of A. ELBERT [l].
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