On the convergence of iterated Pilgerschritt transformation
in nilpotent Lie groups

By N. NETZER and H. REITBERGER (Innsbruck)

The solution of the translation equation in a real Lie group can be defined as
the construction of a continuous homomorphism /#: R—G where A(1)=f is a given
element of G (c.f. R. LienL, [4]). In order to solve this problem requiring the
restriction A/[C, 1] to be homotopic to a given path ¢:[0,1] -G from the unit element
to the element f, R. LiepL has proposed the following method called Pilgerschritt
transformation.

First let G be a group of real nXn-matrices and ¢:[0,1]~G a %'-path
with ¢@(0=E (E is the unit matrix). We consider the function @:[0, 1]-G which
is defined by @(t)= X(1), where X isthe solution of the matrix differential equation

X'()X(t) '=10'(t)p(t)~* with initial condition X(0)=E. ¢ is called the Pilger-
schritt transform of ¢@. ¢ isa %""‘—function and @(0)=¢(0)=E and @(1)=eq(1).

This gives rise to the sequence ¢, @, ..., (p, ... of iterated Pilgerschritt transforms.
In this case the conjecture of R. LiEDL was that under weak conditions the sequence

of iterated Pilgerschritt transforms converges to a function 3: 10, 1]+G such that
@(:):exp tD, where D is a logarithm of ¢(1) having the property that ¢ and
(p are homotopic. The first author proved that this is true, if max l@’()|| 1s small

enough (c.f. N. NeTzer [7]). Integration shows that |@(t)] is small too, so this is
a local theorem. A corresponding global theorem cannot be expected because in
general log (¢(1)) does not exist in the Lie algebra of G. Therefore, it is necessary
to specialize the group G, if we want to have global theorems. R. Liedl proved
a global theorem for abelian groups (c.f. [4]). K. KUHNERT proved a corresponding
theorem for groups of matrices (%;;); j=;,..» With a;=1 and «;;=0 for j<i
(c.f. [3]). Therefore, the second author proposed to investigate nilpotent Lie groups
and the first author could give the proof of a global theorem for these groups. In
this paper, we shall give this first proof in an abriged form which was proposed by
the second author using the universal covering group.

If G is an arbitrary connected Lie group, we have to formulate the problem in
a different way because, in general, such a group is only locally isomorphic with
a matrix group. It is easy to show (c.f. R. LiepL [4]) that in a matrix group the
Pilgerschritt transform of ¢ can be defined as follows:

Let nm:0=ty<tij<...<t,_;<t,=1 be a partition of [0,1] and 7¢[0, 1],
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Oxi=lis1— i, tr =1, + 10, (k=0, ..., m—1), |n|:=max {5;/k=0, ..., m—1}. Put
(*) ¢(7) = Ililf}_lofp(f;-x)w(fm—u)"l e @ (1) (1) 7

This product exists in an arbitrary Lie group too as can be shown by a simple
compactness argument using the local isomorphism of a real Lie group with a suitable
group of matrices. Further, ¢ is a ¥~-path and @(1)=¢(1). In this paper we will
consider a real connected nilpotent Lie group of dimension n. We will start with
a ¢'-path :[0,1]1-G such that y(0)=e (e is the neutral element of G) and we
use formula (*) for calculating the Pilgerschritt transform (for other equivalent
definitions of the Pilgerschritt transform see R. LiepL [4], [5]). We shall prove that

M
W (t)=exp tD, if M is greater or equal to the degree of nilpotence of the group G.
First we investigate the formal background of this method. Let X={X;,...,X,}
be a finite set with X;#X; if i#j. Let A(X) denote the free (associative non—
commutative) algebra over R generated by X and A(X) the algebra of formal
power series with indeterminates X;, ..., X, and real coefficients. Further let
L(X) be the free Lie algebra generated by X, which we shall identify with its
canonical image in A(X), and L(X) theclosure of L(X) in A(X)(c.f. N. BOURBAKI

[1], chap. II, § 6, 2.). Therefore, an element of L(X) has the form > Za,‘ By
k=1 i=1

where the g,; are reals and the Jf.'i,,cJY are Lie brackets of order k. In particular
my=n and B,;= X for j=1,...,n. The Campbell—Baker—Hausdorff-formula

HUV)=U~+ V+-[U Flda. (U; Vef,(X)) gives rise to a group law

UoV:=H(U, V) on L(X)(c.f.N. BOURBAKI[]],Chap 11;§6,4.).1f U= 2, Z'a,.uﬁ'JlU
and V= Z Zbk,Bh then UoV = ch;ka with

Cpy = ”+b”+P”X
X(aygs ey Aymys ooy Qo115 oes Qg1 mp s Dyys oovy bxm,» vory Dg—gas oury ak—:.m,._.)

where ijER[YIs sivy Ym1+...+mk_p zl- A zm|+‘.,+mk-1]9 Plj:‘O (f:l! bty "}v
deg P,;=k and the order of P;; in Y and the order of Py; in Z are greater or
equal 10 1. Purther FolYs, oo Yiih vmess ™ Tho civn = Yok ..t ) =0

The following definitions are motivated by the fact that for a Lie group G and
its Lie algebra L(G) the exponential map is a local diffeomorphism and that
exp (x)oexp (y)=exp H(x, y), if x and y are elements of a suitable neighbourhood
of 0¢L(G)

Let ¢:]0, 1]=L(X): t— Z’ 24:1,;1(0;5?,U be a map such that the functions
=1 j=
a,;: [0, 1]-R are contlnuous and (p(O) OcL(X). If n is a partltlon of [0, 1] as
above and t€[0,1] and re(s, £;4,], we put @(t, 7, m):= 3 Z&U(a‘, T, 1) Byj:=
k=1 =1

=@t op(t) o...op(t5)op(ty) ~*. Further we put 4,;(0):=0. If |“-.m° a;(t, 1, m)=:
x|~
=14, (t, ) exists for each ¢, 7¢[0, 1] and for each k=1 and for each jec{l, ..., m}
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and if the functions 4,,(r,7) are continuous we put 4, (1):=4,/(1, t) and we call

the map @:[0, 1]=L(X):t— > ZakJ(I)B,” the Pilgerschritt transform of ¢.

"'l j=1
If ¢ is the Pilgerschritt transform of ¢, we define analogously the functions

i y 3
@(t, T, m) - A 2 ay(t,t, m)By; resp. Gyt 1):= llmu a(t,t,n) and we call
& S ||~

o) = 4 Z&-' B,; the twice iterated Pilgerschritt transform of ¢. Analogously
k=1 j=1

we use the notation 3 and &’,‘ j(M<N) to denote the M-times iterated Pilgerschritt
transform.

A sufficient condition for the existence of the Pilgerschritt transform is given by
the following

Lemma. If all a,; are €'-functions, then the Pilgerschritt rransform @ of ¢
exists and the a; are polynomial functions.

ProoFr. For s,1¢[0,1] we have
@(s)oe(t)! = (%’ %‘au(s}B”)o(%' ;‘—a”(r)ﬂn) =
= %' Z(au(s)—a”(f)+g”(s, ”)ka
J

where g, (s, 1)=Pyf(ay(s), ..., —ay(1), ...). The g;; are €*-functions and g, (1, 1)=0.
Let n be a partition of [0, 1] as above and 0=i=m—1.

Then

e(tNoe(1) ' = Z Z (“kj(’n—“kj(fi)“i'gu(ff; f.‘))Bu =

— ;’ ZTO [a”(gm)_k 8kj (qir) ’i)] B”1 i
5 2 27059‘!«) Bj;j where 1 = g“) qll) 2yt
k J
If 1e(t;, 1;.,], the a,(¢, 7, ) are given inductively by ¢(0)=0= 3 ;ﬁkj(o' 7, 1)B,,
3
ot 1. )= @)oo (t) 1od(l;, T, 70) =

=(2 % 79; :z(uBu)O(; 2 a;(t;, T, M) By;) =
. Z Z(au(h, T 7!)+1.’5;a(l] + Py (t0f? s oovy Gy (8 T, W), ...))By; =
—H S‘ Zakf T R)Bju‘-

We interprete the Py; as polynomials in the indeterminates Z,, ..., Z, & 4, _, With
coefficients in R[Y;. ..., Y, &+ +m _,] and denote the r-th homogeneous part of
k-1 ,
P by P{?. Then ¢t,1,n)= 2‘ 2, (dej(tis T, ) +26,(s? + 3 (28 P (af?, ...,
r=1
.9 all(’h T, Tf) ))Bk;_ ?‘ Z(akj(rh T, JT)+T($ (G ?"'PJE})(a{?’ sy 611(’“ T, n)s )+
J
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()

+0(8))By; = 2 .]Z'ﬁ'u(f 7, m)B,;, where lim ——==0. Let k, be a natural number.

We show that by
ékj (0) T, ff) — 01

é&j(’:ﬂ; T, |) =

= a;(t;, T, W) +10; [0! ?'i' Z (@6 P (2D, ..., dna (8, T, 1), )] =~

=144 (ti, T, N+ (s Guas ooy Gy )5
(l=k=ky, 1=j=m, 0si=m-—1)

there is given a one-step-method (c.f. R. GRIGORIEFF [2]), which solves the initial
value problem:

vilt) =1 [“,,(:)+ = 11, r)+P£}’[au(r)+ O8u @), ..., 000, ]] P
(* *)

= (“l’:j(!) +f;:j('i Uggs coes Ul;-l,mk_l))
Consistency follows from the fact that

max_l T!ﬁ?)(rf.’ vn (1), ---)—.ﬁj(’n vy (1), )‘ =

ic{0,...,m
- ie{ol.ljl.%z-(-- }T a‘t:“+ 2 (@)~ 1Pm(°‘m coes U (), )_

- [a.‘,(r.) + 280, 00429 0+ 282 1, et )| =

()g!u (f

0
= T{“u(Ct}) ag (1) +—= g“ ('ii_?, ) ——=(, )+

|€{ll

+PY [a;,(:“*)+ P81 02, 10y s 0 D ..~

0
—P{P [an(’:]  Son gu (tis 1), s v (1), - ]+0(5i)|

converges to 0, if |n|—~0 (c.f. R. D. GRIGORIEFF [2], 1.1. (11)). Convergence will be
proved in the following way (c.f. [2], 2.2.): The P;} are polynomials and therefore
there exist an ¢=0 and a Lipschitz constant L=0 such that |z|<e& implies

|ﬂ(1i) (s Paxs oo ."k-r.m.‘,,)_fk‘j)“is Zyns eovs -'-'k-l.mkq]’ =

[1A

=1 (}+' 2: (Tai)r_lpn) (dli.?a Ty yllv . }_ain Z (151)" IP”)(“{ Ty zll" )

= LI|(yu—2zu); -.-» (yk—l,mk_;_zk—l.mk_l)"-
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If k=k,, the solution does not depend on the choice of k,. This proves the exis-
tence of @.
The initial value problem ( * %) has the solution

vt =1 [f “if(é)d‘:""f 'aéi:{(é, §)dé+

+JP’£}) [ail(é)"{--a-rr%ll(é’ C)s ey vll(é)y ] d{]

and therefore

p (r)—r[a W+ [ 284 ¢ yae+
kj = kj ; Ds s €

+d,‘ P“) [all(€)+dgll (Cr é)s b2 dll(f)a R dé]

Induction on k shows that the &;; are polynomials. ||
To prove that the iterated Pilgerschritt transformation is a method which solves
the translation equation in a nilpotent Lie group, we need the following
M
Proposition. If McN and k=M, then a,;(t)=ta, (1) for each jc{l, ..., m}.
PrOOF. The proof is by induction on M. Since P,;=0 for 1=j=n, we have

Bg;J =0 and therefore 4, (t)=ta,(1). We assume that
= M M1 M 1 om,
¢ (1) = tA+k2;‘ 21 @ (t)B,;, where A= Za”(])B”
=M j=

If = is a partition of [0, 1] as above, we have:

M-1

o @ @ =tA—1,A+ z (' aw(r;)* a,,,,(:,))s,,,+

Mar -1
+terms with Lie brackets of order = M+1 = 19,4+ > ré,(Mﬁm)(é}‘}})Bm-;-
i=1

+terms with Lie brackets of order =M+1 (f,_,=&{;=1).
This implies

M-.

(p (l g 77 Tf) =TA+ Z 2761( 5,,_,)’(6(‘))ij+

+terms with Lie brackets of order = M+1
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and
1 M-1 M-1
am(f] = ilm 275 ( au;) (E(“) =71 f( 5Mj)’(§)d‘: = T dy;(1).

Since ¢(1,m, 1)=¢(l) we have ﬁ'u(l)=a,u(l) for each j, k, reN.
Now we can prove the announced global theorem for nilpotent Lie groups.

Theorem. Let G be a real connected Lie group of dimension n and order of
nilpotence N. Let :[0,1]1-G be a €'-path with y(0)=e. Then there exists an
element D of the Lie algebra L(G) of G such that the iterated Pilgerschritt transform
M

l_fl( 1)=exp (tD)/[0, 1] whenever M=N. Further, exp (tD)/[0, 1] is homotopic to .

Proor. Let (A4,,...,A4,) be a basis of L(G). By @ we denote the homo-
morphism @: L(X)—~L(G): X;—A;. A group law on L(G) is given by
D(u)o D(v)=D(H(u, v)) (u, UGL(X ). ‘The group (L(G), o) is the universal covering
group of G with the covering projection exp: L(G)—~G which is a group homo-

morphism (c.f. J. Tits [9], 2.4.). Let y*:[0, 1]+L(G): 1 Z'aj(t)AJ- be the lifting
=1
of ¥ with ¥*(0)=0¢L(G). Since exp is a Iocal diffeomorphism, ¥* 1s a %'-path.

N m,

We put ¢:[0, 1]-L(X): t— Z'aj(r)X Then l,l/ (1) = 2’ ?a,(t)di(B”) and there-
fore 47 ()= Zfa,-(l)AJ- if M=N. Since exp: L(G)—~G is a continuous group
i=1

M M
homomorphism we have Jy=exp * and therefore * is the lifting of . This
M -
implies Y (t)=exp [z ra,-(])A,-] for M=N. For the homotopy see LIEDL [4].
J=1
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