
Alternative loop rings

By EDG AR G. GOODAIRE (St. John’s, Newfoundland)

§1. Introduction

Throughout this paper, R  will denote a commutative (associative) ring with 
identity süch that 2x = 0 implies that x ^ O  and L  will be a loop; that is, a set on 
which there is defined a closed binary operation (g, h )^ gh  relative to which there 
is a two-sided identity element and such that the left and right translation maps 
R(x) : g ^ g x  and L(x) : g ^ x g  are one-to-one maps of L  onto L . In particular, 
both left and right cancellation laws hold in L. The loop ring RL  is the free (Ieft) 
R-module with the elements of L  as a basis and distributive multiplication induced 
by that of L. Thus if x =  2  <*gg an^ y — ^ jß g S ’ ^g’ ßg^R areelementsof RL  
we have 0 eL *

X =  y  if and only if ag = ßg for all g£L

X + y = Z ( * g  + Pg)Sand
g

xy  = Z( Z
д hk=g

The group ring is an object about which much is known and of great interest 
from many different points of view (see for example the books by PASSMAN [9] or 
SEHGAL [12]). On the other hand, the literature on non-associative loop rings is 
sparce. There is a semi-simplicity result in a 1944 paper by R. H. Вииск [1] and 
a brief mention of loop rings in another of Bruck’s papers about loops two years 
later [2], but we are unaware of any loop ring research since 1955 when a most 
interesting article by LowELL— PAiGE [8] appeared. Here it is proven that if a com
mutative loop algebra over a field of characteristic different from 2  satisfies even the 
mild power associative identity x2-x2= x 3-x  then it is necessarily an associative 
group algebra. The discovery that the loop of units in the Cayley numbers has an 
alternative (and so power associative) loop ring which is not associative showed 
that the commutativity assumption by Paige is a vital ingredient in his strong theorem 
and encouraged us to consider further the situation in which alternative loop rings 
arise. In the first section of this paper, we exhibit a number of loops whose loop 
rings are alternative and completely classify those which are Moufang of “M(G , 2) 
type” . Then in Section 2 we find some properties necessarily shared by loops which 
have alternative loop rings and discuss which of these are also sufficient.



32 Edgar G. Goodaire

This research was accomplished while the author was a visitor in the School 
of Mathematics of the Georgia Institute of Technology. Sincere thanks are extended 
to the School for showing me just what “southern hospitality” really means and 
most especially to Professor D. A. RoBiNSON for drawing my attention to so much 
relevant literature and for his continual interest in my work.

An alternative ring is one in which y x - x = y x 2 and x - x y = x 2y  are identities. 
We refer the reader to the book by Schafer [11] for many of the properties of alterna
tive rings. Among these is the fact that they satisfy the Moufang identities

Since a loop is naturally embedded in any of its loop rings, if RL  is alternative, 
L  will also satisfy these Moufang identities. In fact, these identities are known to 
be equivalent in a loop and define the class of Moufang loops. One important feature
of Moufang loops is their diassociativity (the subloop generated by any pair of
elements is a group) so that, for example, the second equality in equation (1) above 
is unnecessary. Many Moufang loops are formed from groups in the following 
way (see CHEiN [4]):

(i) The set L  is the disjoint union of a non-abelian group G and the set
Gu9 where u is an indeterminate.

(ii) G has an involution g^g*.
(iii) Multiplication in L  is given by the rules

where g0 is an element in the centre of G which is fixed by the involution.
If G is any non-abelian group, g* =  g~ 1, and g0 is the identity of G9 then 

the corresponding Moufang loop L  is denoted M(G,  2). That L  is not a group 
is assured by the requirement that G be non-abelian. The loop of units in the 
Cayley numbers can be constructed by the above process taking G to be the 
quaternion group, the involution to be the inverse map again, and g0 to be the 
generator of the centre of G. In addition, any of the loops obtained by Chein’s 
Theorem 2' construction with k = 2  [4, p. 24] arise by the process described. All 
loops which can be constructed as above we will say are of t(,M (G 9 2) type” . There 
is a simple test for determining which of these loops have alternative loop rings.

Theorem 1. Let L  be a loop o f  M (G 9 2) type and R be a commutative ring 
such that 2x =  0=>x =  0. Then RL is alternative if  and only i f  g+g* is in the centre 
o f  the group ring RG fo r  all geG.

§2. Examples

(1)
(2)
(3)

x y  • Z X =  (x • y z ) x  =  x ( y z  • x) 

(xy  • x)z — x ( y  • xz)  

x ( y  ■ zy)  =  (xy

g •h u = h g • u 

gu • h =  gft* • u

gu • hu =  g0fc*g for all h, g,€G,
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PROOF. Firstofall,theinvolutionon G extendstoam apon RGi x = 2!agg ^  
t->x*:= 2^ttgg*, which is in fact a ring involution. Then observe that an element 
of RL has a unique expression as x+yu  with x ,yeR G  and that multiplication 
in RL  is given by

(x + yu)(a + bu) = (xa + g0b*y) + (bx+ya*)u.

For X = x + y u  and A=a+bu, itisstraigh tfo rw ard tocheck that

X A -A -X A *  = goQb*b,x] + [b*y,a + a*J) + (b[x,a + a*] + golb, b*]y + g0[b*b, y])u
and that

A - A X - A * X  = g0([x, b*b] + [a + a f  y*b]) + (b [x \a  + a*] + g0[bb*, y] + g<>y[b, b*uJ)

where [u,v] = uv -vu  is theringcom m uta to ro f u and v. Itfo llow sreadilythat 
the left and right alternative laws are equivalent for this kind of loop ring and that 
they will hold precisely when x+x* and xx* are central in RG and xx*=x*x, 
for all xiRG. These conditions clearly imply that g+g* is in the centre of RG 
for all giG. Conversely, if this condition is satisfied then certainly g^* + Ag* = 
(gA*) +  (g^*)* iscentral for all g,h tG .  Since 2x = 0 implies x =  0 in R , we 
see also that gg* must be central and hence that xx* will be central. Also x and 
X* must commute since x x * -x * x  is a linear combination of the expressions 
gg*-g*g and gA* + Ag*-g*A-^*g, for h ^ g tG .  The former is 0 because 
g£* =  g (g + g * )-£ 2 = (g + g * )£ -g 2 =g*g and the latter is g(h + h*)-gh+ hg*-  
-(g+g*)AT^A-A*g=(AhA*)g + Ag*-^(g+g*)-A*g which is also equal to 0 .

Corollaryl. Suppose L=M (G ,2) for some (non-abelian) group G and R 
is commutative without 2-torsion. Then RL is alternative i f  and only if  G is the 
direct product o f the group of quaternions with an abelian group of exponent 2.

PROOF. Inthissituation g*= g - 1  andw em ustdeterm inethegroupsforw hich 
g + g - 1  is always in the centre of the group ring. It is well known (see for example 
[9, p. 113]) that the centre of RG is spanned by the class sums, a class sum being 
the sum of the elements in a conjugacy class of G. Thus g + g - 1  is in the centre 
of RG for all g if and only if G has the property that h ^ g h i { g ,g -1} for all 
g and h in G. Obviously this forces G to be Hamiltonian and hence the direct product 
of the quaternions, an abelian group of exponent 2 , and an abelian group in which 
every element has odd order. In our situation, this third factor cannot occur. 
Conversely, it is easy to see that g + g - 1  is central for any quaternion g since the 
conjugacy classes in the group of quaternions are either singletons or sets of the 
form {g,g-1}-

Corollary 2. Any loop ring of the Cayley loop is alternative.

PROOF. The realization of the Cayley loop as a loop of M(G, 2) type has 
already been described and we have just noted that the quaternion group has the 
desired property with respect to the involution g ^ g -1.

This corollary actually implies that any loop ring of a Hamiltonian Moufang 
loop is alternative for this kind of loop is just a product of the Cayley loop with an 
abelian group [3, p. 87—88] and hence has an alternative loop ring because of

3
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Proposition 2. The loop rings of a loop L are alternative i f  and only if  L satisfies 
two conditions:

A. I f  g , h9 k ^ L  associate in some order then they associate in all orders.
B. I f  g ,h ,k e L  do not associate, then gh -k= g-kh= h-gk .
In particular a direct product of loops will yield loop rings which are alternative 

but not associative if and only if precisely one of the loops has properties A and 
B while the remaining loops are abelian groups.

PROOF. We have already noted that if any loop ring of a loop L  is alternative, 
then L  is Moufang. Property A is known to hold for Moufang loops because 
actually, the subloop generated by three elements which associate in some order 
is a group [3, p. 117]. To obtain B, let g9h and k  be any elements in L  which 
do not associate and let x and y be the loop ring elements h+ k  and l+ g  
respectively. Since y x - x = y x 2 w e se e th a t g h -k+ g k-h  = g-hk+ g-kh .  B ythe 
linear independence of the loop elements in a loop ring it follows that gh • k —g • kh. 
Considering x • xy =  x2y  with x =  g + h and y — 1 +  k 9 we obtain also gh • k  = h • gk. 
Conversely, assuming that L  is a loop with properties A and B, note first that 
if h and k  comm ute(forinstanceif h=k)  then g, h and k  mustassociateinall 
orders; otherwise, g-kh = g-kh= gh-k .  Now let R  be any commutative ring 
andlet x = 2 * gg , y = 2 ß gg beelem entsof RL. Consider

y x . x - y x 2 = 2  ßg(2
9 Kk

where we can assume that the inner sum is taken over just those h and k  for which 
gh k —g hk^O, implying in particular that h ^ k  by our preliminary remark. 
But for a fixed g and a pair of distinct elements h and k 9 the inner sum will 
contain the expression gh • k —g • hk+gk • h —g • kh. Assuming gh • k —g • hk ̂  0, 
then also g k - h - g - k h ^  0 by A and so the expression is 0 by B. Thus y x - x = y x 2. 
The left alternative law in RL follows in a similar fashion.

We prove the last statement of the proposition for direct products of two loops, 
the general case being an easy induction. It is straightforward to check that the 
direct product of an abelian group and a loop satisfying A and B is a loop with 
the same two properties. On the other hand, if L 1X L 2 satisfies A and B then 
certainlyboth L1 and L 2 doalso. Since L1X L 2 isnotassociativewemayassume 
that L1 is not associative and show why L 2 must be an abelian group. In fact 
we have only to show that L 2 is abelian because of our earlier observation that if 
two elements commute they necessarily associate with any third.For this,we simply 
let g9 h and k  be three elements of L 1 which do not associate, a and b any 
two elements of L 2 and notice that since (g9 1), (h, a) and (k, b) do not associate 
in L1X L 29 it must be that (g9 l)(A, a) • (A, b) — (g9 1) • Qc9 b)(h9 a).

In closing this section we remark that no Hamiltonian Moufang loop which 
is not a group is M(G, 2) for any group G since in M(G9 2) every minimal set 
of generators contains an element of order 2. Thus there is no overlap in our 
examples.
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§3. What Loops Arise?

If g, h and k are elements of a loop L  then the associator (g, h, k) and 
commutator (g9 h) are defined by

gh- k  = (g •
and

gh = (hg)(g,

The associator and commutator subloops are those subloops generated by all 
associators and all commutators respectively. The set {(g9h9k)\k iL )  is denoted 
by (g, h, L) and the meaning of (g, L ) is clear too. The nucleus N(L) and centre
Z(L) of L  are the subgroups of L

N(L) = {g£L\ (g, h, k) = (h, g, k) =  1 for all

Z(L) = {g£N(L)\ (g, =  1 for all

In any ring all of the above definitions have obvious aralcgues. We use [x,y,z]  
to denote the (ring) associator x y - z —x -y z  and [ x ,y ] = x y -y x  for the (ring) 
commutator.

Theorem3. Suppose L is a loop (but not a group) which has an alternative
loop ring RL9 R a commutative ring without 2-torsion. Then

(i) g 4 N (L )  for all geL.
(11) N(L) = Z(L).
(iii) For g ,h tL ,  (g,A) =  l i f  and only i f  (g9h9L) = l.
(iv) If g9 h9 k i L  and (g, h, k ) ^  I5 then (g9 h9 k) = (g9 h)=(h9 k)=(g, k)

is a central element of crder 2 .
(v) The commutator and associator subloops are equal subgroups o f order 2

contained in Z(L).

PROOF. The reader is reminded that L  is necessarily Moufang so that if three
elements in L  associate in any order, then they generate a subgroup. We use this
fact, Proposition 2, and the linear independence of the loop elements in a loop ring 
implicitly and freely in what follows.

(i) The alternative ring RL  satisfies the linearization of the Moufang identity 
xy • zx= (x • yz)x ; namely,

xy  • zw + wy • zx =  (x • yz) w + (w • yz)x.

Setting x = y = g 9z = h ,w = k  with g ,h ,k e L ,  weobtain g2 hk + kg hg=g2h ' k  + 
H-(k-gh)g . Assume g2,h  and k  donotassociate. Then g*h-k = kg hg. Also, 
neithertriple g9h9k  nor g ,h ,kg  canassociate,thelatterbecause ih  kg = g(h kg) 
would imply g(hk-g)=g(h-kg)  by ( 1) and hence hk -g = h -kg  upon cancellation. 
Hence kh-g2 = (kh -g)g-(h  • kg)g = kg • hg—g2h • k — g2 • kh = kg2-h = k-hg2\ i.e. 
k9 h and g2 do associate. (Moufang loops in which all squares are in the nucleaus 
have been identified by Chein and Robinson [5] as precisely the extra loops of 
F. FENYVES [6 ]; that is, those loops which satisfy any one of the three equivalent 
identities (xy -z )x= x(y -zx ), y x - z x  = (y-xz)x  and x y -x z= x(y x -z ) .  We also

3*
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refer the reader to the paper by D. A. RoBiNSON in these Publicationes [10] in which 
a holomorphy theory tor extra loops is developed.)

(ii) First we note that the nucleus of a Moufang loop is normal [3, p. 114], 
that L/N  is then a dissociative loop of exponent 2, hence commutative, and hence 
a group [6 ]. Also it is clear that the nucleus of L  is contained in the nucleus of RL. 
Nowlet niN(L)  andlet g ,h ,k  beanythreeelem entsof L  whichdonotassociate. 
Then gh-k=nXg-hk),  1 Pn1^N(L) (smce L/N  is a group) and gn = (ng)n2 for 
some n2eN(L) (smce L/N  iscom m utative)andsothe(rm g)associator [g,h9k\ = 
=  (Az1 - I )g-hk  and the (ring) commutator [g,n\=ng(n2 — 1). Now Kleinield 
has shown that in any alternative rmg, [x, n][x, y, z] = 0, where n is in the nucleus 
but x , y , z  are arbitrary [7, p. 132]. Makmg the obvious substitutions, we obtain 
herethat {ng{n2- \ ) \ { n x — \)g-hk) — 0. Smce n2 — \ and H1- I  arein thenucleus 
of RL , we have n g ( (n 2 - l ) ( ^ - l ) )g -h k = 0  and then (Az2 - I ) ( A A 1 - I )  =  O since 
ng and g • hk are invertible in RL  (bemg elements of the loop L) and for any 
y  and invertible x in an alternative ring, it is true that y x - x ^ = x ^ - x y = y .  
Thus U1jTn2=I pn1U2 and since U1P 1, л2=1 and gn=ng. So n commutes 
with all non-nuclear elements and is therefore central because the complement of 
any proper subloop of a diassociative loop generates the loop.

(iii) We noted in the proof of Proposition 2 that (g, h) =  1 implies (g9 h, L) =  1. 
For the converse we suppose that (g ,h ,L) = 1, equivalently that [g9h9RL\ = 0 
and conclude as does KbEiNFELD [7, p. 133] that [g,gh] is in the nucleus of RL. 
But writing g h ‘g=ng-gh=ng2h, neN(L), we have [g,gh\ = ( \ —n)g2h and so 
[g2h ,x ,y]  = [ng2h,x,y]  fo ra ll x ,yeR L .  Since n and g2 a re in  N(L)=Z(L)9 
itfollow sthat [h9x 9y]=n[h9x9y] fo rall x ,y tR L .  If H^N(L) = Z(L)9 obviously 
(g9 h) = l ; otherwise, choose x, y e L  so that [/i, x, y]P 0 and then as before obtain 
[h ,x ,y ]= ( l-n ')h x -y  with lPn '^N (L).  Then we see that ( l -n ' )h x -y  = 
=Az(l —n')hx • y  andthus \ —r í= n ( \—rí)\ i .e ., l+ nn '= n+ n '  andso n = \= (g 9h).

(iv) Suppose g,h  and k  donotassociate. Then (g9h9k)=n£N(L)=Z(L)  
so we can write g h k= n (g -h k ) .  But gh-k  = g-kh = kg-h  and g-hk  = gk-h  
and so kg-h=n(gk-h)=ngk-h  and kg=ngk. Also, because all squares are in 
N (L)= Z  (L)9 g2k = kg2 = ngk • g = ng • kg= ng • ngk = (ng)2k = n2g2k and Ai2 =  1. Since 
kg=ngk, it now follows that gk=nkg = kgn so that n = (g,k). Now hg-k= g-hk  
and h -gk= gh-k  and so (h9g9k) = (g9h9k). The above argument now yields 
(g9 h9 k)=(h, k). Similarly (g, h) = (g, k 9 A) =  (g, h9 k).

(v) Part (iii) shows that the associator and commutator subloops are equal 
and part (iv) shows that this subloop is a central subgroup of exponent 2. There
fore to establish (v), it is enough to show that if two associators are not 1 , then they 
are equal. We will rely heavily now on two consequences of (iv); firstly, that the 
associator of three elements is independent of the order in which those elements 
appear and secondly, that if two associators, neither equal to 1 , have a pair of ele
ments in common, then they are equal (to the commutator of the common pair). 
Suppose two associators (g, h9 k) and (g, b9 c)9 neither 1, havejust the one element 
g in common. It is known that in any alternative ring, the function /(x , y, z, w) = 
=[xy,z9w]—y[x,z9w] — [y9z9w]x is skew-symmetric [7]. Consider f (b 9c9g9h) = 
= [bc9 g9 h] -c[b, g, h] —[c9 g9 h]b in the alternative ring RL. Each of the associators 
(b9g9h) and (c9g9h) has two elements in common with each of (g9h9k) and 
(g, b9 c) so that if either of the former associators is not 1 , we can easily establish
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(g,A,A) = (g,A,c). A lso if (bc,g,h)y* 1 wehave (Ac,g,A) =  (g,A,A) o n th e o n e  
hand, and (bc, g, h) = (bc, g) on the other, but bc • g = b • gc =  gA • c =  (g • Ac)(g, b, c) 
says that (Ac, g) =  (g, b, c). So again we would have (g, 6 , c) = (bc, g, A) =  (g, A, A). 
Thus it is possible now to assume that [Ac,g,A] = [A,g,A] =  [c,g,A ]=0 and so 
alsothat f (b ,c ,g ,h )  = 0. Byskewsymmetry, 0 =/(A ,A ,g,c) =  [AA,g,c]-A[A,g,c]- 
-[A,g,c]A = [AA,g,c]-A[A,g,c] since we are assuming that [A,g,c] =  0. Hence 
[AA,g,c]=A[A,g,c]. Since [A,g,c] 3̂ 0 and h isinvertib lein  RL , w e se e th a t 
[AA,g,c] ^ 0  and so (AA,g,c)=^ 1. Applying the above argument to /(A,A,g,A) 
allows us to assume also that (AA, g, A) ̂  1 and so that (AA, g, k)  ̂  1 because 
(b, h)eZ(L). But (AA, g, c) and (bh, g, A) have two elements in common. Hence 
(g,A,A) =  (AA,g,A) = (AA,g,c) =  (g,A,c). We conclude that if two associators, 
neither 1 , havejust a single element in common, then they are equal. Finally suppose 
that (g, A, k) and (a, b, c) are two arbitrary associators, neither equal to 1. Con
sidering /(g , A, A, a) =  [gA, A, tf]-A[g, A, tf]-[A, A, cr]g we see that each associator 
on the right has an element in common with (g, A, A) and (a, A, c) and so if any is 
not 0 we can easily obtain (g, A, k) = (a, b, c). Thus we may assume that each of 
the associators [gA, A, д], [g, A, я] and [A, A, я] and so /(g , A, A, tf) as well are 
zero. By skew symmetry, 0 = /(g , a, A, A) =  [ga, A, A] -fl[g, A, A]-[a, A, A]g= 
=  [gtf,A,A]-tf[g>A?^]- Asbeforeweseethat [g#,A,A]^0 andsimilarly [gtf,A,c]?^ 
3̂ 0 . Thus (g,A,A) =  (gtf,A,A) = (gtf,A,c) =  (tf,A,c), concluding the proof.

Any list of identities or properties which would characterize precisely those 
loops whose loop rings are alternative (other than the two conditions of Proposi
tion 2 ) seems to require the inclusion of some form of property (iv) of this last 
theorem. We oifer

Theorem 4. The following are equivalent:
(1) L is a loop with an alternative loop ring
(2) L is a loop with the property that i f  three elements associate in some order then 
they associate in all orders and i f  g, A and A are elements of L which do not associate 
then gh • k —g • kh=h  • gA.
(3) L is an extra loop which satisfies the identity (i(x, y, z), x) =  1 and is such that 
i f  g, A and A areelementsof L whichdonotassociatethen (g,A,A)=(g,A) =  (A,A).

PROOF. Before commencing we suggest it interesting to observe that at present 
we know of no entirely loop theoretical way of establishing the equivalence of (2 ) 
and (3) ; that is, the proof that a loop described by the loop theoretical properties in (2) 
is the same as one described by those in (3) (and, for example, has a centre equal 
to its nucleus) relies heavily on the fact that such a loop has an alternative loop ring. 
The equivalence of (1) and (2) is of course part of Proposition 2 and the fact that
(2) implies (3) is part of Theorem 3. To see why (3) implies (2), we use Lemma 5.5 
of BRUCK [3, p. 125]to note thatin  a Moufang loop satisfying ( (x ,y ,z ) ,x )=  1, 
the associator (x, y, z) is in the centre of the subloop generated by x, y  and z 
and has nth power equal to (x", y, z). If in addition then the loop is extra, all 
associators must have square 1. Now if g, A and A associate in some order, they 
associate in all orders because L is Moufang, and if they do not associate, then 
{g ,h ,k)=n^N{L)  because L/N  is a group when L  is extra. Thus gA-A =  
=  ( g • A 'c)n= n( g A Tc)= ng h 7c — (ng)(khn) = ( gn){nkh) =  g(ri*kh)= g • AA. Also if
(A ,g,A)=//^A(L), then w' = (A,g) =  (g,A)-1= ^  since п~г=п. S o w eh av ea lso  
gh • k=nhg  • k -n {h  • gA)(A, g, k)=n2h • gk=h  • gA.
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