Canonical systems in the ring of integers

By B. KOVACS and A. PETHO (Debrecen)

Introduction

Let R be a ring, a2€R, and Ny={0, 1, ...,n}. {a, Ny} is called a canonical
number system (CNS) in R if every y¢R has a unique representation

(1) y=a0+ala+...+amd"', H;GNO, ai’{O'

If there exists a CNS in R, then R is called CNS ring.

Denote by N={B,, p1, ..., B} asutset of R and let « be an element of R.
{«, N} is called a canonical system in R if every y€R has a unique representation
of the form (1), where a;¢N. R is called a CS ring, if there exists a canonical
system in R.

From the definitions it follows immediately that every CNS ring is a CS ring.
The converse of this assertion is not true as we shall show in Theorem 1.

W. PENNEY determined all integers o, such that {x, N} is a CNS in Z with
No={0.1, ..., || —1}. His result was extended to the ring of Gaussian integers
by I. KATAr and J. SzABG [2]. The same question has been answered for all quadratic
number fields by B. KovAcs and I. KATA1[3], [4]. The first author has given a neces-
sary and sufficient condition for the ring of integers of an algebraic number field
to have CNS [5]. In [6] he characterized all CNS rings.

The concept of CS rings has been introduced by B. KovAcs [7]. There he charac-
terized the structure of the additive group of such rings.

The question of determining all the CS in some rings seems to be difficult. We
were not able to solve this problem even in the simplest case, when the ring in
question is Z. We shall describe an algorithm after Theorem 4, by using it we can
decide if {x, N},ac¢Z, NSZ is a CS or not. In Theorem 5 we prove that for
every acZ o= —2 there exist infinitely many NS Z, such that {z, N} is a
canonical system in Z.

2. Connection between CNS and CS rings
As we have pointed out in the introduction every CNS ring is a CS ring. The
converse of this assertion is not true, as we shall show by an example.

Theorem 1. Let n=2 be a natural number, and denote by Z,., the ring of
nXn quadratic matrices over Z. Then Z,,., is a CS, but not a CNS ring.
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Proor. First we prove that Z, ., is not a CNS ring. Suppose the contrary,
i.e. that there exists a matrix A¢Z,,,, and N,={0, 1, ..., k}, such that {4, N,}
isaCNSin Z,,,. Then every B¢Z,,, can be written in the form

@) B= b, beN,, b,0.
i=0

Let Q,., be the ring of the nXn quadratic matrices over Q — the field of the
rational numbers — and denote by L(A) the subspace of Q,., generated by
E, A, A% .... Then the dimension of L(A) is at most n. This is obvious because
the degree of the characteristic polynomial p(2) of A4 is n, p(2) has integer co-
efficients and because by the theorem of Cayley and Hamilton p(A4)=0 holds.

If BeZ,,, has a representation in the form (2) then B is contained in L(A).
But Z,,, is not contained in any subspace of Q,,, of dimension less than n®
Further n®*=n, thus there exists a C<Z,,,\L(4), which does not have a repre-
sentation (2). Consequently Z,,, is not a CNS ring.

To complete the proof, we construct a canonical system in Z,,,. Let k=2
be a natural number and —Al=K, where I denotes the identity matrix of Z,,,.
Let N be the set of all matrices 4,=(q/’)), with 0=a{’), <k for any 1=/, m=n.
We show that {K, N} is a canonical system in Z,,,.

Let B=(b,, be an arbitrary element of Z,,,. b, , may be written uniquely
in the form

(3 b,,=cR+cA(=k)+...+crs(=k) '+, with 0=ch <k, j=0,..1,,
since {—k, {0, 1, ...,k—1}} isaCNSin Z([1]). Put T=1£;'§§_.,r"’ and C;=(c{h),
with ¢{)=0 for T=j>t,,. Then ¢;¢N and

(@) B O R e E

can be easily seen. Z,,,- K is a normal su~group in the additive group of Z,,,,

further N is a complete residue system of Z,,,/Z,.,- K. From this follows the

uniqueness of the representation of B in the form (4). This completes our proof.
We need the following lemma.

Lemma 1. Let R be a ring with at least two elements. If {x, N} is a CS in R,
then 06N and o is not a right zero divisor in R.

PrOOF. Let {x, N} be a canonical system in R and assume O¢N. Let
0=ay+a,0+...+a,0e™, af€AN, a,#0

be the representation of 0. By the assumption there exists a nonzero element x
of R. Let us write x in the form

X = bo+bya+...4+b,a®, bEN, b,#0.
Then x has another representation too, namely
x = by+ba+...+ b’ +ag*t1+... +a,am 1

in contradiction with the uniqueness of the representation.
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Further assume {z, N} to be a CS in R with « a right zero divisor. Let
0#x¢R be an element with xa=0. Write x=ag,+a,0+...+a,a™ with g¢EN,
a,#0. Then

0 = xa = apa+a,a*+... +a,a™+!

is a representation of 0. But by the first assertion 0¢N. Thus 0 has at least
two distinct representations, contrary to the uniqueness.

As we mentioned in the introduction every CNS ring is a CS ring. By Theorem 1
Z,., 18 such a CS ring which is not a CNS ring. We find the following question
interesting: Do there exist in a CNS ring such canonical systems, which are not
CNS? In the following we shall prove some results concerning this problem.

Theorem 2. Let {o, Ny} be a CNS and ¢ be a unit in the ring R. Then
{,€- Ny} is a CS in R.

PrROOF. According to [6] every CNS ring is commutative. Let 0#y¢R. Write

y-e~l=apta,a+...+a,2™, a, N, a,#0.
Then
y = (ag+a,2+...+a,a™e = (ae)+(a,e)a+... +(a,e)a™.

The theorem is proved.
3. Canonical systems in Z
If {, N} isa CSin Z, then |«/=2, as one can easily show. Further N

must form a complete residue system mod « and by Lemma 1 0¢N. In the
sequel N will denote a subset of Z with these properties.

Theorem 3. Let acZ, NS Z. Put K=£ng§|bj|. {0, N} isaCSin Z if
- |

K
and only if any 0Z£ycZ, with |[y|=——— can be written in the form

o] —1
(5) ¥ =ag+a,a+..+a,-af, a€N, a #0.
PrOOF. Let meZ and
(6) m = dy+ma, my; = a,+my, ...

with a;¢N. It is clear that m does not have any representation (5) if and only
if all m; of the sequence (6) do not.

Assume there exists an integer which can not be written in the form (5). Let
m denote one of the — in absolute value — smallest integers with this property. Then

m—a)| _|m| K

= 4.
lof * Jet|

|m| = |my| =

Thus |m|= 7

meZ, with |m|=

. Therefore if {x, N} is not a CS in Z, then there exists an

IO!TI-{— ] which has not any representation (5).
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If all integers |m|= have a representation (5), then all integers have and

K
laf —1
this is unique because N is a complete residue system mod a. This proves com-
pletely the assertion.

Remarks: 1. One can effectively decide of a given {x, N} whether it is a CS
in Z in the following way: First examine whether N is a complete residue system

in Z. Then test all integers with |m|= [T‘l!i_l’ whether they have a representation
(5). This can be done in finitely many steps. Of course start with an m, from
the sequence (6). If |m;|= ML—l for an i, then

m;—a;
o

m| K K
-.—.*..-—.-.
1

My =

lIA

Thus all members of (6) lie in absolute value below If m has a representa-

=1

tion (5), then this procedure breaks off in at most %_(1— steps. Otherwise there

: : K
exists an m’, with |m’|§-]—a—|-—-]— and

7 m’' = a,+a,0+...+m'e* for some k=1 and a;fN.

With the described procedure one can decide in 0(K?) steps whether {x, N}
isaCSin Z.

2. From (7) and from Theorem 3 follows the condition: {x, N} is a CS in
2K such that the
o] —1

Z if and only if, there do not exist integers r with 0=r=

congruence
X +x0+...+x,0 =0 (mod1—a+?)

is solvable in integers x;, X, ..., X,€N, x,#0.
To prove one further general result on canonical systems in Z we need the
following lemma:

Lemma 2. Let the real number B be a root of the polynomial with real coef-
ficients P(x)=by+byx+...4+b,x*. Let h(P)=h=max {|by, ..., |bs|}. Then

h
=—+1
Proor. See for example [8] page 5.
Theorem 4. Let {x, N} CS in Z. Put K:r;leaj\:‘( lb| and k:oﬂi& |b|. Then
either |[K|<|a| or K/k=|a|—1.
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ProOF. Let N={0,b,,...,by_,}. For simplicity assume K=|b,| and
k=|b,|. Further assume K2|a| N is a complete residue system mod « and
0cN, thus b,#0 (mod ) and K=|z|. So there exists an integer 0y, with
[yl<lx|, y=by(mod @) and y and b; have the same sign. Write

y=b+ca+...+c,a" c¢€N, ¢, #0.
Thus « is a real root of the polynomial b,—y+c;x+...4+¢;x"=P(x). By the
assumption ﬁ(P)zmax {|b,-—yl lesls «oos lcal}=K and |c,|=k. From Lemma 2

HE

4. Infinite families of canonical systems in Z

In 3. we have proved general theorems on CS in Z. The following question
remains open: How many sets N exists for a given integer a such that {o, N}
isa CSin Z. We shall prove in this section, that if a< —2, then there exist infinitely
many. Indeed, the following theorems are true:

Theorem 5. Let o<=—2 and Ny={0,1,...,2—1,b,t+1, ..., |x|—1} with
integers b,u where b=t—ud*, 2=t=|a|—1, k=1, Osu<|a|—1, uzt. Then
{2, N;} isaCSin Z.

Theorem 6. Let x<—2 and N,={0,a,2,...,|a|—1} a,v integers with
a=1—vek k=1, 0=v=|a|—1, v#1. Then {a, N,} isaCSin Z.

PrOOF OF THEOREM 5. Let N={0, 1, ..., [x|—1}. It is well known that {a, N}
is CNSin Z. If u=0 then b=t and N,=N. So we may assume u=0. In this
case [b|=lx|, therefore [b|=max {x|x¢N,}. By Theorem 3 it is enough to show
Bl _ le—uot|

el =1 Jof -1
®) n= 3aa with aEN, a,0.
i=0

Then

that all integers m, with [m|= are representable by {a, N,}. Put

[s/2] . [si21-e ’
In| =| 2 ana®— 3 ay_,a*77,
i=0 i=1
where £=0 or 1 according as s is even or odd, and [x] denotes the integer part
of x. All coefficients in (8) are non-negative, thus

©) In| = laf*— || (la| = 1) A +|af2+... + |2 ~2) = ‘T']:';‘!
if s is even and
(' I = Jaf—(a]= D01+ [+ o) = 2L
if s is odd. Consequently
In| = la}s_+1
T+ 1

holds in both cases.
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In the sequel L(n) will denote the length of n, i.e. L(n)=v if n=20'nicx!,

i=0
with neN, n,#0.
|t — uo|
jor| —1

Now we shall show that if |m|= , then L(m)=k. Of course, let k be

even, then
|t—uo|  ulaf  |afti41
S 7 A ™ 1 e ™ %

holds because of u<|x|—1, and |¢|>2. Similarly if k is odd, then

t—ua®|  ulal*+a|  Jaf**+14|al
(12) =1 ~ Jo[=1 |a+1

Comparing (11) and (12) with (9) and (10) we see that the smallest integer with
length k+1 is in absolute value greater then ll|ac__|f_of-[' Thus by Theorem 3 we
must establish the representability of integers with length at most k£ by {x, N,}.
|t —uak|
la| -1 "

In the sequel let |m|=

(13) m= >mqa, meN, m,=0.
i=0

Case 1. Let L(m)<k. If m;#t for j=0,1,...,v, then all m,;eN,, and we
have nothing to do. Otherwise let j =0 denote the smallest index with m;=t¢; then

v ) =l ! v :
m= Zma'= 3 mo+bad+ J moai+uaitt,
i=0 i=0 i=j41
m;, i=0,1,...,j—1, b and u belong to N,, furthermore j+k=v. Changing
all coefficients of (13) which are equal to ¢ to b+ux* we receive the representation
of m by {a, Ny}

Case 2. Let L(m)=k, my#t. Take M=
Case 1 M is representable by {x, N,}, consequently m too.

Case 3. Let L(M)=k, my=t, my<|a|—u. Replace m, by b+uc*, then we
have m{V=b, mMV=m,, i=1,2,...,k—1, m{ =m,+u<|«|. Here and in the sequel
m{™ will denote the j-th coefficient in the representation of m after the j-th substi-

B~ e LOWS=k. O TRtk

the assumption of Case 1, therefore it is and so m too is representable by {x, N,}.

Case 4. L(M)=k, my=t, m,=|a|—u. Replacing m, by b+ux* we have
miP=b, mM=m;, i=1,2,...k—1, mM=m+u=a|. Let m+u=w+(—1)
and take m@=m{, i=0,1,...,k—=1, m{P=weN, m{®,=—1. We distinguish
two cases:

MM Then L(M)=<k, thus by

tution. m{¥eN for j=1,2,...,k. Take M=
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m®» =m®, mP =b, mP=m®, i=23,..,k mP=u—1cN.
a) m{»=m,=1. Then replacing m{® by b+us* we have

m®» =mP, mP=>b, mP=mP®, i=23, ..,k m®,=u—1€N.

—m® —m'®
Take M=1 m"a, Ll then M=m®+...+m®, "1, ie. L(M)<k, and

we get again case |.
b) m{@=t. Write —1=(l|—1)+a, and mP=m®, i=0,1,...,k,
m®,=|a|—1€N, mB,=1¢N. Put
{mg‘”, if m® #t
~ b, if m® =1

and m{Y=m{» for i=0,1,3,...,k+1. Then

ml), = {

m{¥,eN follows from the assumption u<|x|—1. In both cases the length of

M_m—m54)+m{”at+m§”a3
= =

proves the theorem.

1, if m® =1t
utl, if m® =t

is less than k. We can apply again case 1, and this

ProoF oF THEOREM 6. Now one must check the representability of integers
with length at most k41 by {«, N,}. This may be done with the same method
as in the proof of Theorem 5.
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