On some questions concerning the differential geometry
of curves in n-dimensional euclidean spaces

By G.S. MOLNAR (Budapest)

1. Introduction

It is well-known that the classical Frenet-theory of curves in euclidean 3-space
applies only to those curves which have non-vanishing curvature at each of their
points. In this way, for example, the trivial case of a line segment is not covered
by the usual treatment. Noticing this incompleteness K. Nomizu set about to
extend the classical theory to a larger class of curves, to the so-called Frenet-
curves [1]. A rigorous treatment of Frenet-curves including such special ones as
plane curves, spherical curves and helices was elaborated by YUNG-CHOW WONG
and HoN-FEr Lai [2] for the 3-dimensional case.

In the present paper some general methods will be developed in order to be
able to extend a considerable part of the results in [2] for curves in higher dimensional
euclidean spaces. Moreover some important results of R. BisHor [3] will be also
proved here for n=3.

Our methods are based mainly on a simple formula which relates two different
families of moving frames being adapted to the same curve.

2. On moving frames of curves in R”

Let R" be the n-dimensional euclidean space and let us consider such a curve
in R” which can be given in the following arc-length representation:

I 3=x(9) £L=K 1L

where A is the total length of the curve I', and the vectorfunction x(s) is supposed
to be of class C= on L. According to this, we will mean by a curve in this paper
always an oriented C= [and regular] curve having a finite length A where, of course,
by a C=-function on a closed interval L, we mean a function which may be extended
to a C=-function on an open interval containing L. I' is called regular, if x'(s)#0.
Regularity will also be supposed.

Let E(s), scL be a matrix-function of class C=. It will be called a moving
frame if

E(s)€SO(n) holds for each s¢L,
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or in other words if the vectors

QI(S), Ez(s)s eey QN(S),

which are the consecutive columns of the matrix E(s), form a positively oriented
orthonormal basis of R" for each scL.
We will say that a moving frame E(s) is adapted to a curve I': x=x(s), seL, if

xX'(s) = es)
holds for each s¢L.

Let E(s) and E(s), scL be two different moving frames. They are called
congruent if there exists an orthogonal matrix R¢SO(n)such that E(s)=RE(s)
holds on the whole interval L. It is easy to see that if E(s) and E(s), scL, are
congruent moving frames being adapted to the curves I': x=x(s) and I': x=3(s),
s€L, respectively, then there exists an orientation preserving isometry of R" which
carries the curve I' into the curve I, thatis X(s)=Rx(s)+a holds for each s¢L,
where a<R".

Let E(s), scL be an arbitrary moving frame. The usual derivational formulae
for the frame-vectors can be conveniently expressed in the following matrix-equation:

(D E'(s) =—E(s)C(s), s€L

where C(s) is the so-called Cartan-matrix.
It is uniquely defined by the equation:

C(s) =—E*()E'(s), s€L

where asterisk denotes transposition.
It is evident that a Cartan-matrix is always skew-symmetric. This follows
immediately from the fact that the matrix (E*(s)E(s))’ is identically zero and thus

C*(s) =—(E'(5))'E(s) = E*(E"(s) = —C(s)

holds for each s¢L.
Notice also that congruent moving frames must have the same Cartan-matrix.
In fact, let E(s)=RE(s), scL and ReSO(n), then

CG)=—E*G)E (s5) = —(E*(s)R*)(RE’(5)) = —E*(5)E’(s) = C(s)
holds on L since R*R is the unit matrix of SO(n).

Theorem 1. Let C(s), scL be an arbitrary skew-symmetric matrix-function
of class C=. Then there always exists a moving frame E(s), scL whose Cartan-
matrix is C(s), and all the moving frames having the same Cartan-matrix C(s)
are congruent.

Proor. The matrix-equation (1) can be considered as a linear system of dif-
ferential equations for the unknown entries of E(s), s¢ L. Let the initial condition
be chosen so that, at a fixed value of parameter s, E(sy)€SO(n) holds. If E=
={ejli,j=1,2,...,n}em,(R), where m,(R) denotes the set of all matrices of
degree n with coefficients in R, then E-C(s) is a continuous function on the
closed (n®*+1)-dimensional square domain given by seéL and |ef|=1 for
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i,j=1,2, ..., n; consequently the existence of a solution satisfying the given initial
condition is assured ([4], pp. 85—86).
On the other hand for the solution

(E()E*(s)) = (—E(s)C(s))E* (s)+ E(s)(C(s)E*(s)) = O

holds on the whole interval L, and hence E(s)¢SO(n) also holds for each s¢L
showing that E(s) is a moving frame.

According to the usual proof of the uniqueness let E(s) and E(s), seL be
two solutions of the equation (1) for which e;(s,)=¢;(s,) holds for j=1,2, ..., n.
It is easy to see that the derivative of the scalar-function

f(s) = 121@;(5): €;(s))
is identically zero.
So, since f(s)=f(s)=n and |(e/(s), ¢(s))|=1 we have that E(s)=E(s)
holds for each s¢L.
At last, following of the uniqueness, all the moving frames which are solutions
of the equation (1) must be congruent.

Corollary. A curve in R" can be given uniquely up to an orientation preserving
isometry by a prescribed skew-symmetric matrixfunction of class C*=.

Theorem 2. Let E(s) and E(s), scL be two different moving frames and denote
by C(s) and C(s) their Cartan-matrices, respectively. Then the following matrix-
equation holds on the whole interval L:

2 C(s) = A'(5)4(5) + A(5)C(5)A™(s),

where the matrix-function A(s) expressing the unique C= transfromation between
the given moving frames is defined by

3) A(s) = E*(s)E(s), s€L.

Proor. It is enough to give a short verification of (2). From (3) we get that
E*(s)=A(s)E*(s) and E(s)=E(s)4*(s) hold for each s¢L.

On the other hand we will use the identity (A(s)A*(s))’=0, scL, and also the
very definitions of the Cartan-matrices C(s) and C(s). Thus

C(s) = —E*(s) E'(s) = —A(S)E*(s)(E'()A*(s)+ E(5)A*'(s)) =

= A(S)C(5)A*(s) + A'(s)A*(5)
identically holds on L.

Remarks. Let E(s), scL be an arbitrary moving frame which is adapted to
a curve I'. It is easy to see that a matrix-function E(s), s¢L given in the form
E(s)=E(5)A*(s), sc L will be also a moving frame of the same curve I" if and only
if the following conditions are satisfied for the C* matrix-function A(s), s€L:

(i) A(s)eSO(n);

(ii) for entries in the first row and first column of A(s) a,,(s)=1 and a,;(s)=
=a,(s)=0 hold for i,j+#1 and for each s<L.
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We will call here a C* matrix-function with the properties (i) and (ii) simply
a frame-transformator.
Now some special types of moving frames will be defined for C* and regular

curves lying in R":

(a) A moving frame E(s), scL will be called a Frenet-frame if for the frame
vectors the following derivational formulae (the so-called Frenet-equations) hold

for each scL:
e () = ky(s)ea(s),
er(s) = —ki_1(s) e—1(s)+ki(s) €51 (5)
for i=2,3,....,n—1 and
€,(5) = —kn-1(5)€n-1(9),

where the suitable coefficients k;(s), i=1,2,...,n—1, are called the pseudo-
curvatures belonging to E(s).

The definition shows that the entries in the corresponding Cartan-matrix
C(s), seL are the following:

c;(s)=ki(s) for i=1,2,....,n—1 and j=i+1;
¢i(s)=0 for i=1,2,...,n—2 and j=i+1;
and using the skew-symmetry
cij(s) =—cu(s) for j=i

(b) A moving frame E(s), s€L will be called here a Bishop-frame if for the
frame vectors the following derivational formulae (the so-called Bishop-equations)
hold for each s¢L:

60 = 3 biDen(®) and

€i+1(5) =—bi()e(s) for i=12..,n-1,

where the suitable coefficients b,(s), i=1,2,...,n—1, will be called the Bishop-
coefficients belonging to E(s).

The definition shows that the entries in the corresponding Cartan-matrix
C(s), scL are the following

¢;j(s) =b;_4(s) for i=1 and j=1;
c;j(s)=0 for i>=1 and j=>i;
and using the skew-symmetry
¢ij(8) = —c;;(s) for j=i.
Notice that in the Cartan-matrices of both a Frenet-frame and a Bishop-frame
[";1) out of the [;] independent entries are identically zero.
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3. On Frenet-curves

Following Nomizu, a curve will be called a Frenet-curve if there exists a Frenet-
frame which is adapted to it. It should be noted that a Frenet-curve may have more
than one Frenet-frames adapted to it. In other words, there may exist many dif-
ferent systems of pseudo-curvatures which determine the same Frenet-curve in R".

The problem of finding a necessary and sufficient condition for a curve to be
a Frenet-curve has been studied by several authors including K. Nomizu [1] and
A. WINTNER [8] but the problem in its entire generality has not been solved yet.
In any case an example of Nomizu shows that there are C*= and regular curves
in R" which do not admit Frenet-frames.

The following simple but rather strong sufficient condition is well-known from
the classical treatment: Let I': x=x(s), s¢L be a C* and regular curve in R"
If the consecutive derivative vectors x')(s), for i=1,2,...,n—1 are linearly
independent at every sc¢L then I’ is a Frenet-curve.

The method for obtaining a Frenet-frame of such a curve I' has been concisely
presented by H. GLUCK [5] and [6], as follows: The Gram—Schmidt orthonormaliza-
tion process applied to the vectors

X'(s), X°(8), ... x*"1(9)

e1(s), €x(8), ..-» €x-1(5)

gives the unit vectors

uniquely at every s¢L including the fact that
(xO(s), &(s)) >0 for i=1,2,..,n—-1

The choice of the last unit vector e,(s), s€L is already independent of the derivative
x™(s), it is defined uniquely by the fixed orientation of R". The pseudo-curvatures
k(s), i=1,2,...,n—1, seL belonging to the above given Frenet-frame will be
positive for i=1,2,...,n—2 and sign k,_,(s)=sign (x"(s), ¢,(s)) holds on L.
Moreover the absolute values of the pseudo-curvatures, called simply curvatures in
this case, have concrete geometrical meaning. Namely, they are the velocities of the
so-called osculating subspaces as it was pointed out first by E. EGERVARY [7].

In fact, the p-dimensional osculating subspaces (p=1, 2, ..., n—1) are spanned
now just by the vectors e,(s), ex(s), ..., €,(s), s€L instead of the derivative vectors

X'(8), X7 (), ...y XP(s), s€L.

Thus, as the method of H. Gluck shows, it is enough to consider the turning of the
following unit p-vector:

n,(s) = e, (s)Aex(S)A... Agy(s), s€EL

where p=1,2, ...,n—1.
It can be noticed that the p-th curvature of I' at a given parameter s€L is
nothing else than the norm of the derivative p-vector n,(s), where the norm in the

[;)-dimensional euclidean vector space AP(R") is defined by the inner product
induced by that of R". Let us differentiate n,(s) with respect to the arc-length s.
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Using the Frenet-equations and also some basic properties of the exterior product,
we get the above mentioned result:

In, ()l = |k,(s)| holds for p=1,2,...n—1 and scL.

It is convenient to say that a curve I': x=x(s), s¢ L has regularity of order p
(1=p=n) if the consecutive derivative vectors x(s), x"(s), ..., x?)(s) are linearly
independent at every scL. Now, it is clear that the classical Frenet-theory of curves
covers only those Frenet-curves which have regularity of order (n—1).

For a further discussion of Frenet-curves we will prove here the following
important theorem of R. BisHor [3] for the general n-dimensional case:

Theorem 3. Let I': x=x(s), scL be an arbitrary C= and regular curve in R".
Then there always exists a Bishop-frame which is adapted to it.

On account of this theorem we may call here all C= and regular curves Bishop-
curves, as well.

PrOOF. Let s, be an arbitrarily fixed value in the parameter interval L and
denote ¢j, e, ..., €5 a positively oriented orthonormal basis of R" where =
=x'(s,) holds. As there always exists a closed interval L(s,)©L containing s,
where the vectors

X'(s), e,.... €5, SEL(s))

remain linearly independent, the Gram—Schmidt orthonormalization process
can be applied to these vectors at every s¢L(s,). So we have a local moving frame
E(s), s€L(s,) being adapted to the corresponding arc of the curve I'.

Assume now that there is a frame transformator A(s), s€L(s,) which carries
the above chosen local moving frame E(s) into a local Bishop-frame E(s), s€L(s).
Then on account of Theorem 2 the unknown entries in the matrix of the frame trans-
formator A(s), s€L(s,) have to satisfy the following system of differential equations:

aj;(s) = — Zn'au(s)fu(s) fJor i,j=23,..,n and s€L(so).
=1

We can write these equations in the more convenient matrix-form:
Ag(s) = —AYs)Co(s), s€L(se)

where A4,(s) and Cy(s) denote the matrices obtained at every €L(s,) by omitting
the first rows and columns of the matrices A(s) and C(s), respectively. So, as it
was shown in the proof of the Theorem 1, there exists a unique solution A(s),
s€L(s,) satisfying a given initial condition Ay(5)e SO(n—1), where §¢L(s,), and

As)eSC(n—1) holds on the whole interval L(s,).

The uniqueness of the local Bishop-frame E(s), sc¢L(s,) belonging to the above
chosen initial condition

E@G) = E(3)A*(5), S5€L(sg)

is merely a consequence of the fact that the frame-transformator A(s) has been
uniquely determined on the interval L(s,).
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Only the global existence of a Bishop-frame adapted to the whole curve I
remained to be shown. It is easy to see that there exists for L a finite system of
open covering intervals on each of which the existence of a local Bishop-frame is
assured. These local Bishop-frames can be patched together, and due to the above
mentioned uniqueness they link together smoothly.

Remark. Let E(s), scL be a Bishop-frame adapted to a given curve I
The corresponding Bishop-coefficients will be denoted by b,(s) for i=1,2,...,n—1.
Let further A(s), s¢ L be an arbitrary frame-transformator.

Then, on account of Theorem 2. the C= entries in the transformed Cartan-
matrix C(s), seL are the following:

("ij(s):lg’b,_l(s)aﬁ(s) for i=1 and j=>i

Eu(s)=!=2'2'a,fi(s)a_,—,(s) for i=2,3,..,n—1 and j=>i

and using the skew-symmetry
(:"U(S) =_‘Eﬁ(5) for _} =i,

Corollary 1. It is easy to see that C(s), scL will belong also to a Bishop-frame
of the given curve I' if and only if the frame-transformator A(s) is constant on the
parameter interval L.

In fact, from A’(s)=0 we get that ¢ (s)=0 holds for i, j=2. Conversely,
if C(s) belongs to a Bishop-frame of I' then A’(s)A*(s)=0 has to hold for each
seL implying that A(s) is constant on the parameter interval L. This is in a
complete accordance with the fact that if once the frame-vectors ei, €, ..., €,
orthogonal to the tangent vector x’(s,) are chosen at an initial parameter sy€L

then the Bishop-frame of I' is already unique.

Corollary 2. K. Nomizu's crucial problem of finding a necessary and sufficient
condition for a C*= and regular curve to be a Frenet-curve can be answered now,

as follows:
The considered curve I' is a Frenet-curve if and only if there exists a suitable

Jrame-transformator A(s), scL for which

IZ bl_l(s)a‘“(s) -_ 0 for j = 2
=2
and

Z"afa(s)aﬂ(s)=0 for i=23,..,n-2 j>i+l
I1=2

hold at every scL.

Notice that the existence of a solution for A(s) having n;l unknown
independent C*= entries does not depend on the actual choice of the Bishop-co-

efficients b,(s), i=1, 2, ..., n—1, characterizing the given curve I.
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In the most interesting special case, where n=3, the above condition expressing
which entries have to vanish in the Cartan-matrix of the transformed moving frame
reduces to the following single equation:

b, (s) sin @ (s) = b, cos @(s) at every s€L,

where ¢(s), seL is the only C= scalar-function to be determined in the frame-
transformator
1 0 0

A(s)=|0 cosg@(s) sing(s)|, s€L.
0 —sin@(s) cos @(s)

Let us consider now only Frenet-curves in R". The following theorems will
show how far the pseudo-curvatures are determined by a given Frenet-curve.

Theorem 4. Let I': x=x(s), scL be a Frenet-curve in R" and p (1=p=m)
a fixed natural number. Let further sy L be an arbitrarily chosen value of parameter

Then the following two conditions are equivalent:
(i) The consecutive derivative vectors

X' (80, X°(30), «+-5 X0 (s) are
linearly independent for i=p, and linearly dependent for i=p,
(i1) ki(so)) #0 for i<p and
ki(s) =0 for i=p

hold at the given parameter s,, where k;(s) for i=1,2,...,n—1 and for s¢L
denote the pseudo-curvatures belonging to an arbitrary Frenet-frame adapted to the
curve I'.

PrOOF. Let E(s), scL be one of the Frenet-frames adapted to the given
curve I. Then the higher derivatives of x(s) can be obtained at each sc¢L as
linear combinations of the frame vectors ¢,(s), e.(s), ..., ,(s). Applying the Frenet-
equations we can write:

x'(s) = &, (s),

x"(8) = ky(s) e (9),

x0(s) = _2" J () €9),

where the coefficient 2 JT,(s) is equal to zero for each j=>r; moreover, it can be
verified that 1,(s)= H k,(s) holds for j=r and 2=r=n. On account of basic

properties of the extenor multiplication we can get the following expression:

¥ OAOA. A0 = { T K O}a@Ae®A.Ag 9
=1

for each s¢L and 2=r=n.
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Using the fact that the vectors x'(s), x"(s), ..., x")(s) are linearly independent
in R" if and only if the corresponding r-vector

X (AX"(A...Ax"(s)

is not zero, the proof of our theorem can easily be completed, since

p—1 p
'E ki(sq) # 0 and :Q ki(sy) =0
has to hold at s,cL.

Remark. Let E(s), scL be a Frenet-frame adapted to a given curve I’ and
ki(s) for i=1,2,...,n—1 and for se¢L the corresponding pseudo-curvatures.
Then the parameter interval L can be decomposed in the following form:

L=1l)L
=1
where
Ll = [S: kl(s) = 0]’
i-1
L; = {s: JT ki(s) #0 and k,/(s)= 0} Jor 2=i=n-1
=1
and

L, = {s: :gl k,(s) # 0}.

Theorem 5. Let E(s) and E(s) be two different Frenet-frames adapted to
a given Frenet-curve I': x=x(s), scL. If x'(s), x"(s), ..., x"P'(s) are linearly inde-
pendent vectors at a given parameter s,¢ L then &(s,)=¢e(s,) holds for i=1,2,...,p
and sycL, where ¢; is either +1 or —1.

PROOF. Let A(s), scL be the frame-transformator carrying E(s) into E(s).
Then, on account of Theorem 2., the following conditions are satisfied for each
seL and l=i<j=n:

(4)
n ; n—-1 f f | 1
t=21I ay (5)011(5) +'=Z{‘ [“i.i(s)a,‘.tu(s)““ﬂi.i+1(5)aj1(3)}' ki(s) = {f) © f(;: j G :-I_l__ 1,

where k(s) and k(s), for i=1,2,...,n—1 and for sc¢L denote the pseudo-
curvatures belonging to E(s) and E(s), respectively.

Let /S L denote an open neighbourhood of s, where the vectors x'(s), x"(s), ...,
veey XP)(5), sl are still linearly independent, and so we have that k;(s)=0 holds
for each se/ and i=1,2,...,p—-1.

Now, we start proving our theorem step by step. First it is trivial that &,(s)=
=¢,¢,(s) holds on I, where & =1. From (4) k,(s)=a,,(s)as(s)k,(s), s€L can be
obtained since for i,j#1 a,(s) and a,,(s) are identically zero on /. Let us
compare now the Frenet-equations valid for &/(s) and ¢'(s). Using also the con-
dition that k,(5)=0 for sec/, we get that a,,&(s)=e.(s) holds for each s¢cl.

5
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Thus, we already know that e,(s))=¢,e.(s;) holds at s,cL. Continuing this pro-
cedure analogously we will arrive at the last step. Then from (4)

kp—l(s) = ap—-l,p—l(s)app(s)kp—l(s)s 561

can be obtained since we have already that @, ,_,(s) and a,_, ,(s) are identically
zero on I for i,j#p—1. Let us compare now the Frenet-equations valid for
€,-1(s) and e,_,(s). Using also the condition that k,_,(s)#0 for sc/, we get
that a,,(s)¢,(s)=¢,(s) holds for each se/. Thus, we know that &,(so)=¢,e,(s,)
holds at s,cL, as well.

Remark 1. Notice that the r-dimensional osculating subspaces of the given
curve I' surely exist at the parameter s,¢L for r=1,2, ..., p. So, as it was shown
earlier, their velocities also exist and are given by the absolute values of the correspond-
ing pseudo-curvatures k,(s,) for r=1,2,...,p. It is reasonable to ask whether
these values do not depend on the choice of the Frenet-frame which is actually
adapted to the curve I'. In fact, we can see from the proof of the above theorem
that for the different pseudo-curvatures k,(s) and k/(s) the following conditions
hold at the given parameter syeL: |k, (s))|=|k,(s0)=0 for r=1,2,...,p—1, and
due to Theorem 4. |k, (so)|=k,(s0)!-

Finally, in order to cover also the case p=n, it seems convenient to accept
for the n-th pseudo-curvature function k,(s) the following definition: k,(s)=0
for each s¢L.

Remark 2. As the proof of the Theorem 5. shows the matrix of the frame-
transformator A(s), se L must have the following form at s,¢L:

{ o | €8 | Lae, i)
Baale skl
A(Su)= 0 e Op ap+l’p+1 e ap+1’,'
0 0 K ool
In particular, let p=n—1.
Then
&0

0O g ... 0

A(sy) = holds, where

0B sl
n—=1
g =1 and 8"=;g &.

Consequently there are only 2"2 possibilities for the choice of different Frenet-
frames adapted to a curve I' having regularity of order (n—1).
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4. Characterization of curves lying in p-planes

Definition 1. Let I': x=x(s), scL be a C= and regular curve in R" It is
said that I’ lies in a p-plane (1=p<n) if there exists a p-dimensional linear sub-
manifold of R" containing I.

Definition 2. We say that I' lies uniformly in a p-plane if it lies in a p-plane
but it has no subarcs lying in an r-plane, where r<p.

Theorem 6. Let I': x=Xx(s), scL be a Frenet-curve. If there exists a Frenet-
frame E(s), scL adapted to thz curve I' where k,(s)=0 identically holds on the
whole interval L (1=p<n), then I' lies in a p-plane.

ProOF. Let s,¢L be an arbitrarily chosen parameter value. It is enough
to show that (x(s)—x(se))An,(sp)=0 identically holds for each seL, where n,(s)
denotes the p-vector formed by the vectors ¢(s), for j=1,2,..,, p, of the con-
sidered Frenet-frame E(s), s¢ L. First, on account of the Frenet-formulas and some

basic properties of the exterior multiplication, it is easy to see that %(n,(s)) =0
holds for each s¢L. Thus we can get the following identity:

‘ e(s)An,(sp) =0, s€L.
An integration of this last equation already shows the desired result.

Remark. It should be noticed that the condition k,(s)=0 for each s¢L,
is only a sufficient but not a necessary condition for a Frenet-curve to lie in a p-plane.

Theorem 7. If a Frenet-curve I’ lies in a p-plane then for each system of its
pseudo-curvatures
P
]I k(s)=0 holds for every scL.
i=1
PrOOF. Since I' lies in a p-plane, there exists a suitable p-vector n,, so that
(x(s) —x(s9))An,=0 identically holds on L. Thus for the derivative vectors x(s)
x")(s)An,=0 also holds for each natural number r and seL. It is easy to see that
the consecutive derivative vectors x'(s), x"(s), ..., x”’(s) cannot be linearly in-
dependent if r=p and so Xx'(s)Ax"(s)A...Ax?*!(5)=0 identically holds on L
implying that
P
Il ki(s)=0

I=1
also has to hold for each seL.

Remark: If a Frenet-curve I' lies in a p-plane then the previously introduced

p
decomposition of the parameter interval L is the following L=|J L;, in other
i=1

words L;=0 for i=p+1,...,n

Definition: A curve I':x=x(s), seL will be called strictly p-regular curve if
for the consecutive derivative-vectors x’(s), x"(s), ..., X'(s), s€L the following
conditions hold:

b1
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(i) they are linearly independent for r=p,
(ii) they are linearly dependent for r=p.

Theorem 8. Every strictly p-regular curve I' is a Frenet-curve lying uniformly
in a p-plane.

Proor. First we show that I' is a Frenet-curve. Applying the Gram—Schmidt
orthonormalization process for the linearly independent derivative vectors x'(s),
x"(s), ..., x? (s), we get for each scL the first p unit vectors of a Frenetframe
E(s). It is easy to see on account of the condition (ii) that

% (er(DA e (S)N ... Aep(s)) =0

has to hold for each scL. So, from the first p Frenet-equations we get for the
pseudo-curvatures k,(s) the following results:

pr—1
T k() #0 and k,(s) =0
I=1

hold on the whole interval L.
Notice that the unit vectors

§p+l(s)! _ep+2(s)! vesy _en(s)! S€L,

of a suitable Frenet-frame E(s) can te chosen from that constant (n—p)-dimensional
subspace of R" which is orthogonal to the p-dimensional sutspace spanned by
the linearly independent vectors x’(s), x'(s), ..., x'? (s). This choice, however,
has much freedom and so the corresponding pseudo-curvatures

kys1(8) Kpia(8), ooy Koy (5)

may be arbitraEriy C= scalar-functicns on L.

Let now E(s), seL denote a Frenet-frame adapted to the given curve I' and
k(s), for i=1,2,....,n—1 and for scL be the corresponding pseudo-curvatures.
Then by Theorem 4 k,(s)=0 holds on L and therefore we have that I’ lies in
a p-plane. Moreover, again by Theorem 4

p—1
1” k,(s) # 0, s€L
=1

holds and therefore on account of Theorem 7 we have that I' has no subtarcs lying
in any lower dimensional r-plane.

Remark. For the parameter interval L of a strictly p-regular curve we have:
-1
L=L = {s: T k() # 0, k,(s) = 0}.
I=1

Lemma. Let I': x=x(s), scL be an arbitrary Frenet-curve in R". Then it
has a dense subset which is the union of a countable number of strictly i-regular curves,
where i=1,2, ..., n.
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PROOF. Let us consider the above mentioned decomposition of the parameter
interval L

L= L.
i=1
Then, on account of a simple topological lemma applied by [2] we can state that
=L
im]

also holds, where LY denotes the interior of L;. Assuming that R has the usual
topology, the open set LY can be given as union of a countable family of disjoint
open intervals. It is evident that to each of such an open subinterval a strictly
i-regular subarc of the given curve I' will belong since

i-1
H kl (5) 2 0 and k,-(s) - 0
=1

hold there identically.

Theorem 9. Let I': x=x(s), s¢ L be a Frenet-curve lying uniformly in a p-plane.
Then for the p-th pseudo-curvature function of any Frenet-frame adapted to the given
curve I' k,(s)=0 holds on the whole fnten,a! L.

ProoF. Since I' lies in a p-plane L= U L; holds. On the other hand L{=0

has to hold for i=1,2,...,p—1 because I‘ lies uniformly in a p-plane. Thus,
for the parameter interval L is valid L= E“ Consider now a parameter value
so€L for which s,¢ L% holds. Then, due to the continuity of the function k,(s)
k,(sy)=0 holds, as well, and our theorem is proved.

Notice that a necessary and sufficient condition for a Frenet-curve to lie in
a p-plane has not been found yet. The following theorem gives such a condition
generally for C= and regular curves in terms of the Bishop-coefficients.

Theorem 10. Let I': x=x(s), sc L be an arbitrary C= and regular curve in R".
It lies in a p-plane if and only if there exists a Bishop-frame E(s), s€L adapted to
I' so that the corresponding Bishop-coefficients satisfy the following conditions:
b (s)=by\(s)=...=b,_,(s)=0 for each scL.

Proor. First suppose that I' lies in a p-plane, i.e. the vectorfunction x(s)
satisfies the following equation for each seL:

(x ) =x(G)) A AugA ... A, =0

where u,, s, ..., u, are mutually orthogonal unit vectors spanning the p-plane
which goes through a fixed point x(sy), s,€L. Let us complete now this system
of vectors uy, uy, ...,u, to a positively oriented orthonormal basis u,, us, ..., u,
of R" and denote by ReSO(n) the matrix of that orthogonal transformation
which carries the above chosen basis into the canonical basis of R". Then, it is
easy to see that the curve I" given by

I: x = R(x(s)—x(s0)
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will lie in the p-dimensional linear sutspace of R”" spanned by the first p vectors
of its canonical basis and so it can be identified with a curve (I ), lying in the space R?.

Consequently on account of Theorem 3 we can adapt to I' a Bishop-frame
E(s), seL so that only the first p frame-vectors

_é,l (S), gi(s)a they gp (S)
may change along the curve I'. Let then
E(s) = R*E(s), scL

be the corresponding Bishop-frame adapted to the curve I'. Since E(s) and E(s)
are congruent moving frames, they have the same Cartan-matrix so that

By = bpss () =...= b,y () =0
hold for each se¢L.

Conversely, let us suppose that the given curve I' has a Bishop-frame E(s), s¢L
for the Cartan-matrix of which the considered conditions hold. Then, on account
of the Bishop-equations the p-vector

n,(s) = e1()Aea(s)A... Agy(s), s€L
is constant on the parameter interval L. Thus, it is easy to see that
(x(8)—x(s0)) A1, (s0) = O

identically holds on L implying that I' lies in a p-plane.

Remark 1. Let I': x=x(s), s€eL be a Frenet-curve in R" lyirg in a p-plane.
As it was shown in the above proof, there always exists an orientation preserving
isometry carrying the given curve I' into a curve I' which can be identified with
a C= and regular curve (), lying in R?. The curve (I),, however, may not be
a Frenet-curve in R”. This is the reason of the fact that the proof of the Theorem 10
cannot be modified so as to yield an analogous theorem for Frenet-curves where
the conditions would be given in terms of the pseudo-curvatures.

Remark 2. Let I': x=x(s), scT, be a Frenet-curve in R" and denote by
E(s), scL a Frenet-frame which is adapted to it. The given curve I’ lies in a
p-plane if and only if there exists a frame-transformator A(s), s€L so that in the
Cartan-matrix C(s), scL belonging to the transformed moving frame we have the
following entries:

¢;(9)=0 for j=p+1, p+2,..,n and for s€L,
¢;(8)=0 for i, j=2,3,...,n and for s€L.

Notice that this condition given now for a Frenet-curve is nothing else then the
condition used in Theorem 10.
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5. On Curves lying on p-spheres

Definition. Let I': x=x(s), seL be a C= and regular curve in R". It is said that
I' lies on a p-sphere having center-vector ¢ and radius r if I' liesin a (p+1)-
plane which contains this p-sphere and

<$(s)—§s X(S)—g) = r?

holds on the parameter interval L. (1= p<n).
The following theorem gives a convenient characterization of the spherical
curves in terms of the Bishop-coefficients:

Theorem 11. Let I': x=x(s), sc¢L be a C= and regular curve in R". It lies
on a p-sphere (of radius r) if and only if there exists a Bishop-frame E(s), s¢L adapted
to I' so that the corresponding Bishop-coefficients satisfy the following conditions:

by() == and byss() = byra(s) =...= by_y(s) = 0

r
hold for each s€ L, where r=0 is the radius of the p-sphere.

Proor. First suppose that I' lies on a p-sphere having center-vector ¢ and
radius r. Then by Theorem 10 there exists a Bishop-frame

E(s) = {e1(s), €a(s), ..., €a(9)}, sEL
so that e;(s) is constant for i=p+1 and
(x() =3 (DA er(S)A (A .. Aepir(s) = 0

identically holds on L.
Moreover by Theorem 3 the initial condition

e,+1(5) = % (e=x(s0)), so€EL

can be satisfied at the choice of this Bishop-frame E(s). Using now the fact that the
vectors ¢—x(s) and g,(s) are everywhere perpendicular to each other, we can
i c—x(s) = A, (s)ex(5)+ Az(5)es () + ... +A4,(5)e, +1(5)
holds for each secL, where the coefficient-functions
A;(s) =(c—x(s), €+1(s)) for i=1,2,...,p
are constant on L since
A ()=(=e1(), is1(8))+{c—x(s), =bi(er(s)) =0

holds for each s¢L. Thus
c—x(s) = re,:+1(5)

identically holds on the whole interval L.
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A derivation with respect to the arc-length s already shows that b,(s)=1/r
holds for each seL, as well.

Conversely, let us suppose that the given curve I' has a Bishop-frame E(s),
seL for the Cartan-matrix of which the considered conditions hold. Then the vector-
function

c(s) = x(s)+re,+1(5)

is constant on L since its derivative is identically zero. So, using simply ¢ instead
of ¢(s), it is evident that
@x@®)-e x(@)-¢c)=r

holds for each s¢L, and consequently the curve I' lies on a p-sphere having center-
vector ¢ and radius r.

Remark 1. Let I': x=x(s),s¢L bea C*= and regular curve in R"” and denote
by b,(s), b.(s), ..., b,_,(s) the Bishop-coefficients belonging to a Bishop-frame
E(s), se L adapted to I'. Then, according to R. BisHoP [3], a curve defined in R"™!
by the vector-function b(s), s¢ L whose coordinates are just the Bishop-coefficients
b(s),i=1,2,...,n=1 and s¢L, is called a normal development of the given curve.

So, the above theorem, involving also Theorem 10 where 1/r=0, can be given
in the following form:

A C= and regular curve I' lies on a p-sphere of radius r (I1=p<n) if and
only if it has in R"~! a normal development b(s), se L which lies in the (p—1)-
plane spanned by the first (p—1) element of the canonical basis of R"™' and
going through the point P(0,0,...,0,1/r,0, ...,0) where only the p-th coordinate
differs from zero for r<ee. _

On the other hand, if b(s), s¢L is an arbitrary other normal development
belonging to the given curve I', then on account of Theorem 2 and Theorem 3 we
have that Y

b(s) = Ayb(s)

holds for each s¢L, where A,€S0(n—1).

Thus the curve b(s), scL lies also in a (p—1)-plane which has the distance
1/r from the origin of the vector-space R"~1.

So we have obtained the characterization of the spherical curves given in [3].
A proof of the corresponding theorem for the usual 3-dimensional case can be
found there.

Remark 2. Let I': x=x(s), scL be a Frenet-curve in R" and denote by E(s),
seL a Frenet-frame which is adapted to it. The given curve I" lies on a p-sphere
of radius r if and only if there exists a frame transformator A(s), s€L so that in
the Cartan-matrix C(s), s€L belonging to the transformed moving frame we have
the following entries:

- — for j=p+1, s€L
clj(s) = $k
0 for j=p+2,..,n, s€L;

&)= 0 for i,j=23,..,n s€EL.
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Notice that this condition given now for a Frenet-curve is nothing else then the
condition used in Theorem 11.

The above formulae are closely related to the ones given in [2] for the usual
case where n=3 and p=2. In fact, let k,(s) and ky(s), s¢L be pseudo-curvatures
belonging to a Frenet-curve I' in R3. Then, on account of Theorem 2, the matrix
C(s), seL has the following independent entries:

¢12(s) = ky(s) cos @ (s)
¢13(5) = —ky(s) sin ¢ (s)
Ca3(5) = ka(s)+ ¢’ (5),

where ¢(s), s€L is a C= scalar-function to be determined in the frame-transfor-
mator A(s), s€eL. Thus, the Frenet-curve I’ lies on a sphere of radius r if and
only if there exists a C= scalar-function ¢(s), s€L so that

—ky(s)sin@(s) = —i— and ky(s)+¢’(s) =0 hold on L.

Finally, we can easily obtain the following consequence by eliminating ¢(s)
from the above two equations: If the Frenet-curve I' lies on a sphere having radius
r<oo then for the pseudo-curvatures k,(s) and ky(s), se¢L we have that

(ki) = (ks () ko () ((rkn ())*—1)

identically holds on the parameter interval L.
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