On some questions concerning the differential geometry of curves in *n*-dimensional euclidean spaces

By G. S. MOLNÁR (Budapest)

1. Introduction

It is well-known that the classical Frenet-theory of curves in euclidean 3-space applies only to those curves which have non-vanishing curvature at each of their points. In this way, for example, the trivial case of a line segment is not covered by the usual treatment. Noticing this incompleteness K. Nomizu set about to extend the classical theory to a larger class of curves, to the so-called Frenet-curves [1]. A rigorous treatment of Frenet-curves including such special ones as plane curves, spherical curves and helices was elaborated by Yung-Chow Wong and Hon-Fei Lai [2] for the 3-dimensional case.

In the present paper some general methods will be developed in order to be able to extend a considerable part of the results in [2] for curves in higher dimensional euclidean spaces. Moreover some important results of R. BISHOP [3] will be also proved here for n>3.

Our methods are based mainly on a simple formula which relates two different families of moving frames being adapted to the same curve.

2. On moving frames of curves in \mathbb{R}^n

Let \mathbf{R}^n be the *n*-dimensional euclidean space and let us consider such a curve in \mathbf{R}^n which can be given in the following arc-length representation:

$$\Gamma: \underline{x} = \underline{x}(s), \quad s \in L = [0, \lambda],$$

where λ is the total length of the curve Γ , and the vector function $\underline{x}(s)$ is supposed to be of class C^{∞} on L. According to this, we will mean by a curve in this paper always an oriented C^{∞} [and regular] curve having a finite length λ where, of course, by a C^{∞} -function on a closed interval L, we mean a function which may be extended to a C^{∞} -function on an open interval containing L. Γ is called regular, if $\underline{x}'(s) \neq \underline{0}$. Regularity will also be supposed.

Let E(s), $s \in L$ be a matrix-function of class C^{∞} . It will be called a moving frame if

 $E(s) \in SO(n)$ holds for each $s \in L$,

or in other words if the vectors

$$\underline{e}_1(s), \ \underline{e}_2(s), ..., \underline{e}_n(s),$$

which are the consecutive columns of the matrix E(s), form a positively oriented orthonormal basis of \mathbb{R}^n for each $s \in L$.

We will say that a moving frame E(s) is adapted to a curve $\Gamma: \underline{x} = \underline{x}(s), s \in L$, if

$$\underline{x}'(s) = \underline{e}_1(s)$$

holds for each $s \in L$.

Let E(s) and $\tilde{E}(s)$, $s \in L$ be two different moving frames. They are called congruent if there exists an orthogonal matrix $R \in SO(n)$ such that $\tilde{E}(s) = RE(s)$ holds on the whole interval L. It is easy to see that if E(s) and $\tilde{E}(s)$, $s \in L$, are congruent moving frames being adapted to the curves $\Gamma: \underline{x} = \underline{x}(s)$ and $\tilde{\Gamma}: \underline{x} = \tilde{\underline{x}}(s)$, $s \in L$, respectively, then there exists an orientation preserving isometry of \mathbb{R}^n which carries the curve Γ into the curve $\tilde{\Gamma}$, that is $\underline{\tilde{x}}(s) = R\underline{x}(s) + \underline{a}$ holds for each $s \in L$, where $\underline{a} \in \mathbb{R}^n$.

Let E(s), $s \in L$ be an arbitrary moving frame. The usual derivational formulae for the frame-vectors can be conveniently expressed in the following matrix-equation:

(1)
$$E'(s) = -E(s)C(s), \quad s \in L$$

where C(s) is the so-called Cartan-matrix.

It is uniquely defined by the equation:

$$C(s) = -E^*(s)E'(s), s \in L$$

where asterisk denotes transposition.

It is evident that a Cartan-matrix is always skew-symmetric. This follows immediately from the fact that the matrix $(E^*(s)E(s))'$ is identically zero and thus

$$C^*(s) = -(E'(s))^*E(s) = E^*(s)E'(s) = -C(s)$$

holds for each $s \in L$.

Notice also that congruent moving frames must have the same Cartan-matrix. In fact, let $\tilde{E}(s) = RE(s)$, $s \in L$ and $R \in SO(n)$, then

$$\tilde{C}(s) = -\tilde{E}^*(s)\tilde{E}'(s) = -(E^*(s)R^*)(RE'(s)) = -E^*(s)E'(s) = C(s)$$

holds on L since R^*R is the unit matrix of SO(n).

Theorem 1. Let C(s), $s \in L$ be an arbitrary skew-symmetric matrix-function of class C^{∞} . Then there always exists a moving frame E(s), $s \in L$ whose Cartanmatrix is C(s), and all the moving frames having the same Cartan-matrix C(s) are congruent.

PROOF. The matrix-equation (1) can be considered as a linear system of differential equations for the unknown entries of E(s), $s \in L$. Let the initial condition be chosen so that, at a fixed value of parameter s_0 $E(s_0) \in SO(n)$ holds. If $E = \{e_j^i | i, j = 1, 2, ..., n\} \in m_n(\mathbb{R})$, where $m_n(\mathbb{R})$ denotes the set of all matrices of degree n with coefficients in \mathbb{R} , then $E \cdot C(s)$ is a continuous function on the closed (n^2+1) -dimensional square domain given by $s \in L$ and $|e_j^i| \le 1$ for

i, j = 1, 2, ..., n; consequently the existence of a solution satisfying the given initial condition is assured ([4], pp. 85—86).

On the other hand for the solution

$$(E(s)E^*(s))' = (-E(s)C(s))E^*(s) + E(s)(C(s)E^*(s)) = 0$$

holds on the whole interval L, and hence $E(s) \in SO(n)$ also holds for each $s \in L$

showing that E(s) is a moving frame.

According to the usual proof of the uniqueness let E(s) and $\tilde{E}(s)$, $s \in L$ be two solutions of the equation (1) for which $\underline{e}_j(s_0) = \underline{\tilde{e}}_j(s_0)$ holds for j = 1, 2, ..., n. It is easy to see that the derivative of the scalar-function

$$f(s) = \sum_{j=1}^{n} \langle \underline{e}_{j}(s), \, \underline{\tilde{e}}_{j}(s) \rangle$$

is identically zero.

So, since $f(s)=f(s_0)=n$ and $|\langle \varrho_j(s), \varrho_j(s)\rangle| \le 1$ we have that $E(s)=\widetilde{E}(s)$ holds for each $s \in L$.

At last, following of the uniqueness, all the moving frames which are solutions of the equation (1) must be congruent.

Corollary. A curve in \mathbb{R}^n can be given uniquely up to an orientation preserving isometry by a prescribed skew-symmetric matrixfunction of class \mathbb{C}^{∞} .

Theorem 2. Let E(s) and $\tilde{E}(s)$, $s \in L$ be two different moving frames and denote by C(s) and $\tilde{C}(s)$ their Cartan-matrices, respectively. Then the following matrix-equation holds on the whole interval L:

(2)
$$\tilde{C}(s) = A'(s)A^*(s) + A(s)C(s)A^*(s),$$

where the matrix-function A(s) expressing the unique C^{∞} transfromation between the given moving frames is defined by

(3)
$$A(s) = \tilde{E}^*(s)E(s), \quad s \in L.$$

PROOF. It is enough to give a short verification of (2). From (3) we get that $\tilde{E}^*(s) = A(s)E^*(s)$ and $\tilde{E}(s) = E(s)A^*(s)$ hold for each $s \in L$.

On the other hand we will use the identity $(A(s)A^*(s))'=0$, $s \in L$, and also the very definitions of the Cartan-matrices C(s) and $\widetilde{C}(s)$. Thus

$$\widetilde{C}(s) = -\widetilde{E}^*(s)\widetilde{E}'(s) = -A(s)E^*(s)(E'(s)A^*(s) + E(s)A^{*'}(s)) =$$

$$= A(s)C(s)A^*(s) + A'(s)A^*(s)$$

identically holds on L.

Remarks. Let E(s), $s \in L$ be an arbitrary moving frame which is adapted to a curve Γ . It is easy to see that a matrix-function $\tilde{E}(s)$, $s \in L$ given in the form $\tilde{E}(s) = E(s)A^*(s)$, $s \in L$ will be also a moving frame of the same curve Γ if and only if the following conditions are satisfied for the C^{∞} matrix-function A(s), $s \in L$:

(i) $A(s) \in SO(n)$;

(ii) for entries in the first row and first column of A(s) $a_{11}(s) = 1$ and $a_{1j}(s) = a_{i1}(s) = 0$ hold for $i, j \neq 1$ and for each $s \in L$.

We will call here a C^{∞} matrix-function with the properties (i) and (ii) simply a frame-transformator.

Now some special types of moving frames will be defined for C^{∞} and regular curves lying in \mathbb{R}^n :

(a) A moving frame E(s), $s \in L$ will be called a *Frenet-frame* if for the frame vectors the following derivational formulae (the so-called Frenet-equations) hold for each $s \in L$:

$$e'_{i}(s) = k_{1}(s)\underline{e}_{2}(s),$$

 $e'_{1}(s) = -k_{i-1}(s)\underline{e}_{i-1}(s) + k_{i}(s)\underline{e}_{i+1}(s)$
for $i = 2, 3, ..., n-1$ and
 $e'_{n}(s) = -k_{n-1}(s)\underline{e}_{n-1}(s),$

where the suitable coefficients $k_i(s)$, i=1, 2, ..., n-1, are called the *pseudo-curvatures* belonging to E(s).

The definition shows that the entries in the corresponding Cartan-matrix C(s), $s \in L$ are the following:

$$c_{ij}(s) = k_i(s)$$
 for $i = 1, 2, ..., n-1$ and $j = i+1$;
 $c_{ij}(s) = 0$ for $i = 1, 2, ..., n-2$ and $j > i+1$;

and using the skew-symmetry

$$c_{ij}(s) = -c_{ji}(s)$$
 for $j \le i$.

(b) A moving frame E(s), $s \in L$ will be called here a *Bishop-frame* if for the frame vectors the following derivational formulae (the so-called Bishop-equations) hold for each $s \in L$:

$$\underline{e}'_1(s) = \sum_{i=1}^{n-1} b_i(s) \underline{e}_{i+1}(s)$$
 and $\underline{e}'_{i+1}(s) = -b_i(s) \underline{e}_1(s)$ for $i = 1, 2, ..., n-1$,

where the suitable coefficients $b_i(s)$, i=1, 2, ..., n-1, will be called the Bishop-coefficients belonging to E(s).

The definition shows that the entries in the corresponding Cartan-matrix C(s), $s \in L$ are the following

$$c_{ij}(s) = b_{j-1}(s)$$
 for $i = 1$ and $j > 1$;
 $c_{ij}(s) = 0$ for $i > 1$ and $j > i$;

and using the skew-symmetry

$$c_{ii}(s) = -c_{ii}(s)$$
 for $j \le i$.

Notice that in the Cartan-matrices of both a Frenet-frame and a Bishop-frame $\binom{n-1}{2}$ out of the $\binom{n}{2}$ independent entries are identically zero.

3. On Frenet-curves

Following Nomizu, a curve will be called a *Frenet-curve* if there exists a Frenet-frame which is adapted to it. It should be noted that a Frenet-curve may have more than one Frenet-frames adapted to it. In other words, there may exist many different systems of pseudo-curvatures which determine the same Frenet-curve in Rⁿ.

The problem of finding a necessary and sufficient condition for a curve to be a Frenet-curve has been studied by several authors including K. Nomizu [1] and A. Wintner [8] but the problem in its entire generality has not been solved yet. In any case an example of Nomizu shows that there are C^{∞} and regular curves in \mathbb{R}^n which do not admit Frenet-frames.

The following simple but rather strong sufficient condition is well-known from the classical treatment: Let $\Gamma: x = \underline{x}(s)$, $s \in L$ be a C^{∞} and regular curve in \mathbb{R}^n . If the consecutive derivative vectors $\underline{x}^{(i)}(s)$, for i = 1, 2, ..., n-1 are linearly independent at every $s \in L$ then Γ is a Frenet-curve.

The method for obtaining a Frenet-frame of such a curve Γ has been concisely presented by H. Gluck [5] and [6], as follows: The Gram—Schmidt orthonormalization process applied to the vectors

$$\underline{x}'(s), \ \underline{x}''(s), ..., \underline{x}^{(n-1)}(s)$$

gives the unit vectors

$$e_1(s), e_2(s), ..., e_{n-1}(s)$$

uniquely at every $s \in L$ including the fact that

$$\langle \underline{x}^{(i)}(s), \underline{e}_i(s) \rangle > 0$$
 for $i = 1, 2, ..., n-1$.

The choice of the last unit vector $\underline{e}_n(s)$, $s \in L$ is already independent of the derivative $\underline{x}^{(n)}(s)$, it is defined uniquely by the fixed orientation of \mathbf{R}^n . The pseudo-curvatures $k_i(s)$, i=1,2,...,n-1, $s \in L$ belonging to the above given Frenet-frame will be positive for i=1,2,...,n-2 and $\operatorname{sign} k_{n-1}(s) = \operatorname{sign} \langle \underline{x}^{(n)}(s), \underline{e}_n(s) \rangle$ holds on L. Moreover the absolute values of the pseudo-curvatures, called simply curvatures in this case, have concrete geometrical meaning. Namely, they are the velocities of the so-called osculating subspaces as it was pointed out first by E. EGERVÁRY [7].

In fact, the p-dimensional osculating subspaces (p=1, 2, ..., n-1) are spanned now just by the vectors $e_1(s)$, $e_2(s)$, ..., $e_p(s)$, $s \in L$ instead of the derivative vectors

$$\underline{x}'(s), \underline{x}''(s), ..., \underline{x}^{(p)}(s), s \in L.$$

Thus, as the method of H. Gluck shows, it is enough to consider the turning of the following unit p-vector:

$$n_p(s) = \underline{e}_1(s) \wedge \underline{e}_2(s) \wedge ... \wedge \underline{e}_p(s), \quad s \in L$$

where p = 1, 2, ..., n-1.

It can be noticed that the p-th curvature of Γ at a given parameter $s \in L$ is nothing else than the norm of the derivative p-vector $\underline{n}'_p(s)$, where the norm in the $\binom{n}{p}$ -dimensional euclidean vector space $\Lambda^p(\mathbb{R}^n)$ is defined by the inner product induced by that of \mathbb{R}^n . Let us differentiate $n_p(s)$ with respect to the arc-length s.

Using the Frenet-equations and also some basic properties of the exterior product, we get the above mentioned result:

$$\|\underline{n}'_{p}(s)\| = |k_{p}(s)|$$
 holds for $p = 1, 2, ..., n-1$ and $s \in L$.

It is convenient to say that a curve $\Gamma: \underline{x} = \underline{x}(s), s \in L$ has regularity of order p $(1 \le p \le n)$ if the consecutive derivative vectors $\underline{x}'(s), \underline{x}''(s), \dots, \underline{x}^{(p)}(s)$ are linearly independent at every $s \in L$. Now, it is clear that the classical Frenet-theory of curves covers only those Frenet-curves which have regularity of order (n-1).

For a further discussion of Frenet-curves we will prove here the following

important theorem of R. BISHOP [3] for the general n-dimensional case:

Theorem 3. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be an arbitrary C^{∞} and regular curve in \mathbb{R}^n . Then there always exists a Bishop-frame which is adapted to it.

On account of this theorem we may call here all C^{∞} and regular curves Bishop-curves, as well.

PROOF. Let s_0 be an arbitrarily fixed value in the parameter interval L and denote $e_1^*, e_2^*, ..., e_n^*$ a positively oriented orthonormal basis of \mathbf{R}^n where $e_1^* = \underline{x}'(s_0)$ holds. As there always exists a closed interval $L(s_0) \subseteq L$ containing s_0 where the vectors

$$\underline{x}'(s), \underline{e}_{2}^{*}, ..., \underline{e}_{n}^{*}, s \in L(s_{0})$$

remain linearly independent, the Gram—Schmidt orthonormalization process can be applied to these vectors at every $s \in L(s_0)$. So we have a local moving frame E(s), $s \in L(s_0)$ being adapted to the corresponding arc of the curve Γ .

Assume now that there is a frame transformator A(s), $s \in L(s_0)$ which carries the above chosen local moving frame E(s) into a local Bishop-frame E(s), $s \in L(s_0)$. Then on account of Theorem 2 the unknown entries in the matrix of the frame transformator A(s), $s \in L(s_0)$ have to satisfy the following system of differential equations:

$$a'_{ij}(s) = -\sum_{l=1}^{n} a_{il}(s) c_{lj}(s)$$
 for $i, j = 2, 3, ..., n$ and $s \in L(s_0)$.

We can write these equations in the more convenient matrix-form:

$$A_0'(s) = -A_0(s)C_0(s), s \in L(s_0)$$

where $A_0(s)$ and $C_0(s)$ denote the matrices obtained at every $\in L(s_0)$ by omitting the first rows and columns of the matrices A(s) and C(s), respectively. So, as it was shown in the proof of the Theorem 1, there exists a unique solution $A_0(s)$, $s \in L(s_0)$ satisfying a given initial condition $A_0(\bar{s}) \in SO(n-1)$, where $\bar{s} \in L(s_0)$, and

$$A_0(s) \in SC(n-1)$$
 holds on the whole interval $L(s_0)$.

The uniqueness of the local Bishop-frame $\tilde{E}(s)$, $s \in L(s_0)$ belonging to the above chosen initial condition

$$\tilde{E}(\bar{s}) = E(\bar{s})A^*(\bar{S}), \quad \bar{s} \in L(s_0)$$

is merely a consequence of the fact that the frame-transformator A(s) has been uniquely determined on the interval $L(s_0)$.

Only the global existence of a Bishop-frame adapted to the whole curve Γ remained to be shown. It is easy to see that there exists for L a finite system of open covering intervals on each of which the existence of a local Bishop-frame is assured. These local Bishop-frames can be patched together, and due to the above mentioned uniqueness they link together smoothly.

Remark. Let E(s), $s \in L$ be a Bishop-frame adapted to a given curve Γ . The corresponding Bishop-coefficients will be denoted by $b_i(s)$ for i = 1, 2, ..., n-1. Let further A(s), $s \in L$ be an arbitrary frame-transformator.

Then, on account of Theorem 2. the C^{∞} entries in the transformed Cartan-matrix $\tilde{C}(s)$, $s \in L$ are the following:

$$\tilde{c}_{ij}(s) = \sum_{l=2}^{n} b_{l-1}(s) a_{jl}(s)$$
 for $i = 1$ and $j > i$

$$\tilde{c}_{ij}(s) = \sum_{l=2}^{n} a'_{ii}(s) a_{jl}(s)$$
 for $i = 2, 3, ..., n-1$ and $j > i$

and using the skew-symmetry

$$\tilde{c}_{ij}(s) = -\tilde{c}_{ji}(s)$$
 for $j \leq i$.

Corollary 1. It is easy to see that $\tilde{C}(s)$, $s \in L$ will belong also to a Bishop-frame of the given curve Γ if and only if the frame-transformator A(s) is constant on the parameter interval L.

In fact, from A'(s)=0 we get that $\tilde{c}_{ij}(s)=0$ holds for $i,j \ge 2$. Conversely, if $\tilde{C}(s)$ belongs to a Bishop-frame of Γ then $A'(s)A^*(s)=0$ has to hold for each $s \in L$ implying that A(s) is constant on the parameter interval L. This is in a complete accordance with the fact that if once the frame-vectors $\underline{e}_2^*, \underline{e}_3^*, \ldots, \underline{e}_n^*$ orthogonal to the tangent vector $\underline{x}'(s_0)$ are chosen at an initial parameter $s_0 \in L$ then the Bishop-frame of Γ is already unique.

Corollary 2. K. Nomizu's crucial problem of finding a necessary and sufficient condition for a C^{∞} and regular curve to be a Frenet-curve can be answered now, as follows:

The considered curve Γ is a Frenet-curve if and only if there exists a suitable frame-transformator A(s), $s \in L$ for which

$$\sum_{l=2}^{n} b_{1-1}(s) a_{jl}(s) = 0 \quad for \quad j > 2$$

and

$$\sum_{l=2}^{n} a'_{il}(s) a_{jl}(s) = 0 \quad for \quad i = 2, 3, ..., n-2 \quad j > i+1$$

hold at every $s \in L$.

Notice that the existence of a solution for A(s) having $\binom{n-1}{2}$ unknown independent C^{∞} entries does not depend on the actual choice of the Bishop-coefficients $b_i(s)$, i=1, 2, ..., n-1, characterizing the given curve Γ .

In the most interesting special case, where n=3, the above condition expressing which entries have to vanish in the Cartan-matrix of the transformed moving frame reduces to the following single equation:

$$b_1(s) \sin \varphi(s) = b_2 \cos \varphi(s)$$
 at every $s \in L$,

where $\varphi(s)$, $s \in L$ is the only C^{∞} scalar-function to be determined in the frame-transformator

$$A(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi(s) & \sin \varphi(s) \\ 0 & -\sin \varphi(s) & \cos \varphi(s) \end{pmatrix}, \quad s \in L.$$

Let us consider now only Frenet-curves in R". The following theorems will show how far the pseudo-curvatures are determined by a given Frenet-curve.

Theorem 4. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a Frenet-curve in \mathbb{R}^n and $p \ (1 \le p \le m)$ a fixed natural number. Let further $s_0 \in L$ be an arbitrarily chosen value of parameter

Then the following two conditions are equivalent:

(i) The consecutive derivative vectors

$$x'(s_0), x''(s_0), \dots, x^{(i)}(s_0)$$
 are

linearly independent for $i \leq p$, and linearly dependent for i > p,

(ii)
$$k_i(s_0) \neq 0$$
 for $i < p$ and $k_i(s_0) = 0$ for $i = p$

hold at the given parameter s_0 , where $k_i(s)$ for i=1, 2, ..., n-1 and for $s \in L$ denote the pseudo-curvatures belonging to an arbitrary Frenet-frame adapted to the curve Γ .

PROOF. Let E(s), $s \in L$ be one of the Frenet-frames adapted to the given curve Γ . Then the higher derivatives of $\underline{x}(s)$ can be obtained at each $s \in L$ as linear combinations of the frame vectors $\underline{e}_1(s)$, $\underline{e}_k(s)$, ..., $\underline{e}_n(s)$. Applying the Frenet-equations we can write:

$$\underline{x}'(s) = \underline{\varrho}_1(s),$$

$$\underline{x}''(s) = k_1(s)\underline{\varrho}_2(s),$$

$$\dots$$

$$\underline{x}^{(r)}(s) = \sum_{j=1}^{n} \lambda_{jr}(s)\underline{\varrho}_j(s),$$

where the coefficient $\lambda_{jr}(s)$ is equal to zero for each j > r; moreover, it can be verified that $\lambda_{jr}(s) = \prod_{l=1}^{r-1} k_l(s)$ holds for j=r and $2 \le r \le n$. On account of basic properties of the exterior multiplication we can get the following expression:

$$\underline{x}'(s) \wedge \underline{x}''(s) \wedge \dots \wedge \underline{x}^{(r)}(s) = \left\{ \prod_{l=1}^{r-1} k_l^{r-l}(s) \right\} e_1(s) \wedge e_2(s) \wedge \dots \wedge e_r(s)$$

for each $s \in L$ and $2 \le r \le n$.

65

Using the fact that the vectors $\underline{x}'(s)$, $\underline{x}''(s)$, ..., $\underline{x}^{(r)}(s)$ are linearly independent in \mathbb{R}^n if and only if the corresponding r-vector

$$\underline{x}'(s) \wedge \underline{x}''(s) \wedge ... \wedge \underline{x}^{(r)}(s)$$

is not zero, the proof of our theorem can easily be completed, since

$$\prod_{l=1}^{p-1} k_l(s_0) \neq 0 \quad \text{and} \quad \prod_{l=1}^{p} k_l(s_0) = 0$$

has to hold at $s_0 \in L$.

Remark. Let E(s), $s \in L$ be a Frenet-frame adapted to a given curve Γ and $k_i(s)$ for i = 1, 2, ..., n-1 and for $s \in L$ the corresponding pseudo-curvatures. Then the parameter interval L can be decomposed in the following form:

$$L = \bigcup_{i=1}^{n} L_i$$

where

$$L_1 = \{s: k_1(s) = 0\},\$$

$$L_i = \left\{ s : \prod_{l=1}^{i-1} k_l(s) \neq 0 \text{ and } k_i(s) = 0 \right\} \text{ for } 2 \leq i \leq n-1$$

and

$$L_n = \left\{ s \colon \prod_{l=1}^{n-1} k_l(s) \neq 0 \right\}.$$

Theorem 5. Let E(s) and $\tilde{E}(s)$ be two different Frenet-frames adapted to a given Frenet-curve $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$. If $\underline{x}'(s), \underline{x}''(s), ..., \underline{x}^{(p)}(s)$ are linearly independent vectors at a given parameter $s_0 \in L$ then $\tilde{e}_i(s_0) = \varepsilon_i \underline{e}_i(s_0)$ holds for i = 1, 2, ..., p and $s_0 \in L$, where ε_i is either +1 or -1.

PROOF. Let A(s), $s \in L$ be the frame-transformator carrying E(s) into $\widetilde{E}(s)$. Then, on account of Theorem 2., the following conditions are satisfied for each $s \in L$ and $1 \le i < j \le n$:

(4)

$$\sum_{l=1}^{n} a'_{il}(s) a_{ji}(s) + \sum_{l=1}^{n-1} \left\{ a_{i,l}(s) a_{j,l+1}(s) - a_{i,l+1}(s) a_{jl}(s) \right\} \cdot k_{l}(s) = \begin{cases} \tilde{k}_{i}(s) & \text{for } j = i+1 \\ 0 & \text{for } j > i+1, \end{cases}$$

where $k_i(s)$ and $\tilde{k}_i(s)$, for i=1, 2, ..., n-1 and for $s \in L$ denote the pseudo-curvatures belonging to E(s) and $\tilde{E}(s)$, respectively.

Let $I \subseteq L$ denote an open neighbourhood of s_0 where the vectors $\underline{x}'(s)$, $\underline{x}''(s)$, ..., ..., $\underline{x}^{(p)}(s)$, $s \in I$ are still linearly independent, and so we have that $k_i(s) \neq 0$ holds for each $s \in I$ and i = 1, 2, ..., p-1.

Now, we start proving our theorem step by step. First it is trivial that $\underline{e}_1(s) = e_1\underline{e}_1(s)$ holds on I, where $e_1 = 1$. From (4) $\tilde{k}_1(s) = a_{11}(s)a_{22}(s)k_1(s)$, $s \in L$ can be obtained since for $i, j \neq 1$ $a_{i1}(s)$ and $a_{1,j}(s)$ are identically zero on I. Let us compare now the Frenet-equations valid for $\underline{e}_1'(s)$ and $\underline{e}_1'(s)$. Using also the condition that $k_1(s) \neq 0$ for $s \in I$, we get that $a_{22}\underline{e}_2(s) = \underline{e}_2(s)$ holds for each $s \in I$.

Thus, we already know that $\underline{e}_{\varepsilon}(s_0) = \varepsilon_2 \underline{e}_{\varepsilon}(s_0)$ holds at $s_0 \in L$. Continuing this procedure analogously we will arrive at the last step. Then from (4)

$$\tilde{k}_{p-1}(s) = a_{p-1,p-1}(s)a_{pp}(s)k_{p-1}(s), \quad s \in I$$

can be obtained since we have already that $a_{i,p-1}(s)$ and $a_{p-1,j}(s)$ are identically zero on I for $i, j \neq p-1$. Let us compare now the Frenet-equations valid for $\underline{e}'_{p-1}(s)$ and $\underline{e}'_{p-1}(s)$. Using also the condition that $k_{p-1}(s) \neq 0$ for $s \in I$, we get that $a_{pp}(s)\underline{e}_p(s)=\underline{e}_p(s)$ holds for each $s \in I$. Thus, we know that $\underline{e}_p(s_0)=\underline{e}_p\,\underline{e}_p(s_0)$ holds at $s_0 \in L$, as well.

Remark 1. Notice that the r-dimensional osculating subspaces of the given curve Γ surely exist at the parameter $s_0 \in L$ for r=1, 2, ..., p. So, as it was shown earlier, their velocities also exist and are given by the absolute values of the corresponding pseudo-curvatures $k_r(s_0)$ for r=1, 2, ..., p. It is reasonable to ask whether these values do not depend on the choice of the Frenet-frame which is actually adapted to the curve Γ . In fact, we can see from the proof of the above theorem that for the different pseudo-curvatures $k_r(s)$ and $\tilde{k}_r(s)$ the following conditions hold at the given parameter $s_0 \in L$: $|\tilde{k}_r(s_0)| = |k_r(s_0)| > 0$ for r=1, 2, ..., p-1, and due to Theorem 4. $|\tilde{k}_p(s_0)| = |k_p(s_0)|$.

Finally, in order to cover also the case p=n, it seems convenient to accept for the *n*-th pseudo-curvature function $k_n(s)$ the following definition: $k_n(s)=0$

for each $s \in L$.

Remark 2. As the proof of the Theorem 5. shows the matrix of the frame-transformator A(s), $s \in L$ must have the following form at $s_0 \in L$:

$$A(s_0) = \begin{pmatrix} \varepsilon_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & & & \vdots \\ 0 & \dots & \varepsilon_p & 0 & \dots & 0 \\ 0 & \dots & 0 & a_{p+1, p+1} & \dots & a_{p+1, n} \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & a_{n, p+1} & \dots & a_{nn} \end{pmatrix}$$

In particular, let p=n-1. Then

$$A(s_0) = \begin{pmatrix} \varepsilon_1 & 0 & \dots & 0 \\ 0 & \varepsilon_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \varepsilon_n \end{pmatrix} \quad \text{holds, where}$$

$$\varepsilon_1 = 1$$
 and $\varepsilon_n = \prod_{l=1}^{n-1} \varepsilon_l$.

Consequently there are only 2^{n-2} possibilities for the choice of different Frenet-frames adapted to a curve Γ having regularity of order (n-1).

4. Characterization of curves lying in p-planes

Definition 1. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a C^{∞} and regular curve in \mathbb{R}^n . It is said that Γ lies in a p-plane $(1 \le p < n)$ if there exists a p-dimensional linear submanifold of \mathbb{R}^n containing Γ .

Definition 2. We say that Γ lies uniformly in a p-plane if it lies in a p-plane but it has no subarcs lying in an r-plane, where r < p.

Theorem 6. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a Frenet-curve. If there exists a Frenet-frame E(s), $s \in L$ adapted to the curve Γ where $k_p(s) = 0$ identically holds on the whole interval L ($1 \le p < n$), then Γ lies in a p-plane.

PROOF. Let $s_0 \in L$ be an arbitrarily chosen parameter value. It is enough to show that $(\underline{x}(s) - \underline{x}(s_0)) \wedge \underline{n}_p(s_0) = 0$ identically holds for each $s \in L$, where $\underline{n}_p(s)$ denotes the *p*-vector formed by the vectors $\underline{e}_j(s)$, for j = 1, 2, ..., p, of the considered Frenet-frame E(s), $s \in L$. First, on account of the Frenet-formulas and some basic properties of the exterior multiplication, it is easy to see that $\frac{d}{ds}(n_p(s)) = 0$ holds for each $s \in L$. Thus we can get the following identity:

$$\underline{e}_1(s) \wedge \underline{n}_p(s_0) = 0, \quad s \in L.$$

An integration of this last equation already shows the desired result.

Remark. It should be noticed that the condition $k_p(s)=0$ for each $s \in L$, is only a sufficient but not a necessary condition for a Frenet-curve to lie in a p-plane.

Theorem 7. If a Frenet-curve Γ lies in a p-plane then for each system of its pseudo-curvatures

$$\prod_{i=1}^{p} k_{i}(s) = 0 \quad holds for \ every \ s \in L.$$

PROOF. Since Γ lies in a p-plane, there exists a suitable p-vector n_p , so that $(\underline{x}(s)-\underline{x}(s_0)) \wedge \underline{n}_p = 0$ identically holds on L. Thus for the derivative vectors $\underline{x}^{(r)}(s) \times \underline{x}^{(r)}(s) \wedge \underline{n}_p = 0$ also holds for each natural number r and $s \in L$. It is easy to see that the consecutive derivative vectors $\underline{x}'(s), \underline{x}''(s), \ldots, \underline{x}^{(r)}(s)$ cannot be linearly independent if r > p and so $\underline{x}'(s) \wedge \underline{x}''(s) \wedge \ldots \wedge \underline{x}^{(p+1)}(s) = 0$ identically holds on L implying that

$$\prod_{l=1}^{p} k_l(s) = 0$$

also has to hold for each $s \in L$.

Remark: If a Frenet-curve Γ lies in a p-plane then the previously introduced decomposition of the parameter interval L is the following $L = \bigcup_{i=1}^{p} L_i$, in other words $L_i = 0$ for i = p + 1, ..., n.

Definition: A curve $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ will be called strictly p-regular curve if for the consecutive derivative-vectors $\underline{x}'(s), \underline{x}''(s), \dots, \underline{x}^{(r)}(s)$, $s \in L$ the following conditions hold:

- (i) they are linearly independent for $r \leq p$,
- (ii) they are linearly dependent for r>p.

Theorem 8. Every strictly p-regular curve Γ is a Frenet-curve lying uniformly in a p-plane.

PROOF. First we show that Γ is a Frenet-curve. Applying the Gram—Schmidt orthonormalization process for the linearly independent derivative vectors $\underline{x}'(s)$, $\underline{x}''(s)$, ..., $\underline{x}^{(p)}(s)$, we get for each $s \in L$ the first p unit vectors of a Frenetframe E(s). It is easy to see on account of the condition (ii) that

$$\frac{d}{ds} (\underline{e}_1(s) \wedge \underline{e}_2(s) \wedge ... \wedge \underline{e}_p(s)) = 0$$

has to hold for each $s \in L$. So, from the first p Frenet-equations we get for the pseudo-curvatures $k_i(s)$ the following results:

$$\prod_{l=1}^{p-1} k_l(s) \neq 0 \quad \text{and} \quad k_p(s) = 0$$

hold on the whole interval L.

Notice that the unit vectors

$$\underline{e}_{p+1}(s), \underline{e}_{p+2}(s), ..., \underline{e}_n(s), s \in L,$$

of a suitable Frenet-frame E(s) can be chosen from that constant (n-p)-dimensional subspace of \mathbb{R}^n which is orthogonal to the p-dimensional subspace spanned by the linearly independent vectors $\underline{x}'(s), \underline{x}'(s), ..., \underline{x}^{(p)}(s)$. This choice, however, has much freedom and so the corresponding pseudo-curvatures

$$k_{p+1}(s), k_{p+2}(s), ..., k_{n-1}(s)$$

may be arbitrary C^{∞} scalar-functions on L.

Let now $\tilde{E}(s)$, $s \in L$ denote a Frenet-frame adapted to the given curve Γ and $\tilde{k}_i(s)$, for i=1,2,...,n-1 and for $s \in L$ be the corresponding pseudo-curvatures. Then by Theorem 4 $\tilde{k}_p(s)=0$ holds on L and therefore we have that Γ lies in a p-plane. Moreover, again by Theorem 4

$$\prod_{l=1}^{p-1} k_l(s) \neq 0, \quad s \in L$$

holds and therefore on account of Theorem 7 we have that Γ has no subarcs lying in any lower dimensional r-plane.

Remark. For the parameter interval L of a strictly p-regular curve we have:

$$L = L_p = \left\{ s \colon \prod_{i=1}^{p-1} k_i(s) \neq 0, \ k_p(s) = 0 \right\}.$$

Lemma. Let $\Gamma: x = x(s)$, $s \in L$ be an arbitrary Frenet-curve in \mathbb{R}^n . Then it has a dense subset which is the union of a countable number of strictly i-regular curves, where i = 1, 2, ..., n.

PROOF. Let us consider the above mentioned decomposition of the parameter interval L

$$L = \bigcup_{i=1}^{n} L_{i}.$$

Then, on account of a simple topological lemma applied by [2] we can state that

$$L = \bigcup_{i=1}^{n} \bar{L}_{i}^{0}$$

also holds, where L_i^0 denotes the interior of L_i . Assuming that **R** has the usual topology, the open set L_i^0 can be given as union of a countable family of disjoint open intervals. It is evident that to each of such an open subinterval a strictly *i*-regular subarc of the given curve Γ will belong since

$$\prod_{l=1}^{i-1} k_l(s) \neq 0 \quad \text{and} \quad k_i(s) = 0$$

hold there identically.

Theorem 9. Let $\Gamma: x = \underline{x}(s)$, $s \in L$ be a Frenet-curve lying uniformly in a p-plane. Then for the p-th pseudo-curvature function of any Frenet-frame adapted to the given curve Γ $k_p(s) = 0$ holds on the whole interval L.

PROOF. Since Γ lies in a p-plane $L = \bigcup_{i=1}^p L_i$ holds. On the other hand $L_i^0 = 0$ has to hold for i = 1, 2, ..., p-1 because Γ lies uniformly in a p-plane. Thus, for the parameter interval L is valid $L = \overline{L_p^0}$. Consider now a parameter value $s_0 \in L$ for which $s_0 \notin L_p^0$ holds. Then, due to the continuity of the function $k_p(s)$ $k_p(s_0) = 0$ holds, as well, and our theorem is proved.

Notice that a necessary and sufficient condition for a Frenet-curve to lie in a p-plane has not been found yet. The following theorem gives such a condition generally for C^{∞} and regular curves in terms of the Bishop-coefficients.

Theorem 10. Let $\Gamma: x = \underline{x}(s)$, $s \in L$ be an arbitrary C^{∞} and regular curve in \mathbb{R}^n . It lies in a p-plane if and only if there exists a Bishop-frame E(s), $s \in L$ adapted to Γ so that the corresponding Bishop-coefficients satisfy the following conditions: $b_p(s) = b_{p+1}(s) = \ldots = b_{n-1}(s) = 0$ for each $s \in L$.

PROOF. First suppose that Γ lies in a p-plane, i.e. the vector function $\underline{x}(s)$ satisfies the following equation for each $s \in L$:

$$(\underline{x}(s)-\underline{x}(s_0))\wedge\underline{u}_1\wedge\underline{u}_2\wedge\ldots\wedge\underline{u}_p=0$$

where $u_1, u_2, ..., \underline{u}_p$ are mutually orthogonal unit vectors spanning the *p*-plane which goes through a fixed point $\underline{x}(s_0)$, $s_0 \in L$. Let us complete now this system of vectors $u_1, u_2, ..., u_p$ to a positively oriented orthonormal basis $\underline{u}_1, \underline{u}_2, ..., \underline{u}_n$ of \mathbb{R}^n and denote by $R \in SO(n)$ the matrix of that orthogonal transformation which carries the above chosen basis into the canonical basis of \mathbb{R}^n . Then, it is easy to see that the curve $\widetilde{\Gamma}$ given by

$$\tilde{\Gamma}$$
: $\underline{x} = R(\underline{x}(s) - \underline{x}(s_0))$

will lie in the p-dimensional linear subspace of \mathbb{R}^n spanned by the first p vectors of its canonical basis and so it can be identified with a curve $(\tilde{\Gamma})_p$ lying in the space \mathbb{R}^p .

Consequently on account of Theorem 3 we can adapt to $\tilde{\Gamma}$ a Bishop-frame $\tilde{E}(s)$, $s \in L$ so that only the first p frame-vectors

$$\underline{\tilde{e}}_1(s), \underline{\tilde{e}}_2(s), ..., \underline{\tilde{e}}_p(s)$$

may change along the curve $\tilde{\Gamma}$. Let then

$$E(s) = R^* \tilde{E}(s), \quad s \in L$$

be the corresponding Bishop-frame adapted to the curve Γ . Since E(s) and $\tilde{E}(s)$ are congruent moving frames, they have the same Cartan-matrix so that

$$b_p(s) = b_{p+1}(s) = \dots = b_{n-1}(s) = 0$$

hold for each $s \in L$.

Conversely, let us suppose that the given curve Γ has a Bishop-frame E(s), $s \in L$ for the Cartan-matrix of which the considered conditions hold. Then, on account of the Bishop-equations the p-vector

$$\underline{n}_p(s) = \underline{e}_1(s) \wedge \underline{e}_2(s) \wedge \dots \wedge \underline{e}_p(s), \quad s \in L$$

is constant on the parameter interval L. Thus, it is easy to see that

$$(\underline{x}(s)-\underline{x}(s_0))\wedge\underline{n}_p(s_0)=0$$

identically holds on L implying that Γ lies in a p-plane.

Remark 1. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a Frenet-curve in \mathbb{R}^n lying in a p-plane. As it was shown in the above proof, there always exists an orientation preserving isometry carrying the given curve Γ into a curve $\widetilde{\Gamma}$ which can be identified with a C^{∞} and regular curve $(\widetilde{\Gamma})_p$ lying in \mathbb{R}^p . The curve $(\widetilde{\Gamma})_p$, however, may not be a Frenet-curve in \mathbb{R}^p . This is the reason of the fact that the proof of the Theorem 10 cannot be modified so as to yield an analogous theorem for Frenet-curves where the conditions would be given in terms of the pseudo-curvatures.

Remark 2. Let $\Gamma: x = x(s)$, $s \in T$, be a Frenet-curve in \mathbb{R}^n and denote by E(s), $s \in L$ a Frenet-frame which is adapted to it. The given curve Γ lies in a p-plane if and only if there exists a frame-transformator A(s), $s \in L$ so that in the Cartan-matrix $\widetilde{C}(s)$, $s \in L$ belonging to the transformed moving frame we have the following entries:

$$\tilde{c}_{1j}(s) = 0$$
 for $j = p+1, p+2, ..., n$ and for $s \in L$,
 $\tilde{c}_{ij}(s) = 0$ for $i, j = 2, 3, ..., n$ and for $s \in L$.

Notice that this condition given now for a Frenet-curve is nothing else then the condition used in Theorem 10.

5. On Curves lying on p-spheres

Definition. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a C^{∞} and regular curve in \mathbb{R}^n . It is said that Γ lies on a p-sphere having center-vector \underline{c} and radius r if Γ lies in a (p+1)-plane which contains this p-sphere and

$$\langle \underline{x}(s) - \underline{c}, \ \underline{x}(s) - \underline{c} \rangle = r^2$$

holds on the parameter interval L. $(1 \le p < n)$.

The following theorem gives a convenient characterization of the spherical curves in terms of the Bishop-coefficients:

Theorem 11. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a C^{∞} and regular curve in \mathbb{R}^n . It lies on a p-sphere (of radius r) if and only if there exists a Bishop-frame E(s), $s \in L$ adapted to Γ so that the corresponding Bishop-coefficients satisfy the following conditions:

$$b_p(s) = \frac{1}{r}$$
 and $b_{p+1}(s) = b_{p+2}(s) = \dots = b_{n-1}(s) = 0$

hold for each $s \in L$, where r > 0 is the radius of the p-sphere.

PROOF. First suppose that Γ lies on a p-sphere having center-vector c and radius r. Then by Theorem 10 there exists a Bishop-frame

$$E(s) = \{e_1(s), e_2(s), ..., e_n(s)\}, s \in L$$

so that $e_i(s)$ is constant for i>p+1 and

$$(\underline{x}(s) - \underline{x}(s_0)) \wedge \underline{e}_1(s) \wedge \underline{e}_2(s) \wedge ... \wedge \underline{e}_{n+1}(s) = 0$$

identically holds on L.

Moreover by Theorem 3 the initial condition

$$\underline{e}_{p+1}(s_0) = \frac{1}{r}(\underline{c} - x(s_0)), \quad s_0 \in L$$

can be satisfied at the choice of this Bishop-frame E(s). Using now the fact that the vectors $\underline{c} - \underline{x}(s)$ and $\underline{e}_1(s)$ are everywhere perpendicular to each other, we can write:

$$\underline{c} - \underline{x}(s) = A_1(s)\underline{e}_2(s) + A_2(s)\underline{e}_3(s) + \dots + A_p(s)\underline{e}_{p+1}(s)$$

holds for each $s \in L$, where the coefficient-functions

$$A_i(s) = \langle c - \underline{x}(s), \underline{e}_{i+1}(s) \rangle$$
 for $i = 1, 2, ..., p$

are constant on L since

$$A_i'(s) = \langle -e_1(s), e_{i+1}(s) \rangle + \langle e_1(s), -e_i(s) \rangle = 0$$

holds for each $s \in L$. Thus

$$\underline{c} - \underline{x}(s) = r\underline{e}_{n+1}(s)$$

identically holds on the whole interval L.

A derivation with respect to the arc-length s already shows that $b_{\rho}(s) = 1/r$ holds for each $s \in L$, as well.

Conversely, let us suppose that the given curve Γ has a Bishop-frame E(s), $s \in L$ for the Cartan-matrix of which the considered conditions hold. Then the vectorfunction

$$\underline{c}(s) = \underline{x}(s) + r\underline{e}_{p+1}(s)$$

is constant on L since its derivative is identically zero. So, using simply c instead of c(s), it is evident that

 $\langle x(s)-c, x(s)-c\rangle = r^2$

holds for each $s \in L$, and consequently the curve Γ lies on a p-sphere having centervector g and radius r.

Remark 1. Let $\Gamma: \underline{x} = \underline{x}(s)$, $s \in L$ be a C^{∞} and regular curve in \mathbb{R}^n and denote by $b_1(s), b_2(s), ..., b_{n-1}(s)$ the Bishop-coefficients belonging to a Bishop-frame $E(s), s \in L$ adapted to Γ . Then, according to R. BISHOP [3], a curve defined in \mathbb{R}^{n-1} by the vector-function b(s), $s \in L$ whose coordinates are just the Bishop-coefficients $b_i(s)$, i=1,2,...,n-1 and $s\in L$, is called a normal development of the given curve.

So, the above theorem, involving also Theorem 10 where 1/r=0, can be given

in the following form:

A C^{∞} and regular curve Γ lies on a p-sphere of radius r $(1 \le p < n)$ if and only if it has in \mathbb{R}^{n-1} a normal development $\underline{b}(s)$, $s \in L$ which lies in the (p-1)plane spanned by the first (p-1) element of the canonical basis of \mathbb{R}^{n-1} and going through the point P(0, 0, ..., 0, 1/r, 0, ..., 0) where only the p-th coordinate differs from zero for $r < \infty$.

On the other hand, if $\underline{b}(s)$, $s \in L$ is an arbitrary other normal development belonging to the given curve Γ , then on account of Theorem 2 and Theorem 3 we have that

$$\tilde{b}(s) = A_0 \underline{b}(s)$$

holds for each $s \in L$, where $A_0 \in SO(n-1)$.

Thus the curve $\underline{b}(s)$, $s \in L$ lies also in a (p-1)-plane which has the distance

1/r from the origin of the vector-space \mathbb{R}^{n-1} .

So we have obtained the characterization of the spherical curves given in [3]. A proof of the corresponding theorem for the usual 3-dimensional case can be found there.

Remark 2. Let $\Gamma: x = \underline{x}(s)$, $s \in L$ be a Frenet-curve in \mathbb{R}^n and denote by E(s), $s \in L$ a Frenet-frame which is adapted to it. The given curve Γ lies on a p-sphere of radius r if and only if there exists a frame transformator A(s), $s \in L$ so that in the Cartan-matrix $\tilde{C}(s)$, $s \in L$ belonging to the transformed moving frame we have the following entries:

$$\tilde{c}_{1j}(s) = \begin{cases} \frac{1}{r} & \text{for } j = p+1, & s \in L \\ 0 & \text{for } j = p+2, ..., n, & s \in L; \end{cases}$$

$$\tilde{c}_{ij}(s) = 0$$
 for $i, j = 2, 3, ..., n, s \in L$.

Notice that this condition given now for a Frenet-curve is nothing else then the condition used in Theorem 11.

The above formulae are closely related to the ones given in [2] for the usual case where n=3 and p=2. In fact, let $k_1(s)$ and $k_2(s)$, $s \in L$ be pseudo-curvatures belonging to a Frenet-curve Γ in \mathbb{R}^3 . Then, on account of Theorem 2, the matrix $\widetilde{C}(s)$, $s \in L$ has the following independent entries:

$$\tilde{c}_{12}(s) = k_1(s) \cos \varphi(s)$$

 $\tilde{c}_{13}(s) = -k_1(s) \sin \varphi(s)$
 $\tilde{c}_{23}(s) = k_2(s) + \varphi'(s)$,

where $\varphi(s)$, $s \in L$ is a C^{∞} scalar-function to be determined in the frame-transformator A(s), $s \in L$. Thus, the Frenet-curve Γ lies on a sphere of radius r if and only if there exists a C^{∞} scalar-function $\varphi(s)$, $s \in L$ so that

$$-k_1(s)\sin\varphi(s) = \frac{1}{r}$$
 and $k_2(s) + \varphi'(s) = 0$ hold on L .

Finally, we can easily obtain the following consequence by eliminating $\varphi(s)$ from the above two equations: If the Frenet-curve Γ lies on a sphere having radius $r < \infty$ then for the pseudo-curvatures $k_1(s)$ and $k_2(s)$, $s \in L$ we have that

$$(k'_1(s))^2 = (k_1(s)k_2(s))^2((rk_1(s))^2 - 1)$$

identically holds on the parameter interval L.

References

- K. Nomizu, On Frenet equations for curves of class C, Tôhoku Math. J. 11 (1959), 106—112.
 Yung-Chow Wong and Hon-Fei Lai, A critical examination of the theory of curves in thredimensional differential geometry, Tôhoku Math. J. 19 (1967), 1—31.
- [3] R. BISHOP, There is more than one way to frame a curve, *Amer. Math. Monthly* 82 (1975), 246—251.
- [4] E. Kamke, Differentialgleichungen I. Leipzig, 1962.
- [5] H. Gluck, Higher curvatures of curves in Euclidean spaces I., Amer. Math. Monthly 73 (1966), 699—704.
- [6] H. Gluck, Higher curvatures of curves in Euclidean spaces II., Amer. Math. Monthly 74 (1967), 1049—1056.
- [7] E. EGERVÁRY, Über die Kurven des n-dimensionalen euklidischen Raumes, Math. Term. Tud. Értesítő 59 (1940), 796—797.
- [8] A. WINTNER, On Frenet's equations, Amer. J. Math. 78 (1956), 349-356.

(Received 25 April, 1980)