Topogenous g-mappings

By KÁLMÁN MATOLCSY (Debrecen)

0. Introduction

This paper presents a generalization of the notion of an *E-mapping*, which was introduced by M. HACQUE in [3] and [4].

Considering a set E, an E-mapping is a mapping 3 of the power set 2^E into the set of all systems of subsets of E with the following properties for $A, B, X, Y \subset E$:

- (E0) $z(A) \neq \emptyset$, and $Y \supset X \in z(A)$ implies $Y \in z(A)$.
- (E1) $3(\emptyset) = 2^{E}$.
- (E2) $X \in \mathfrak{Z}(A)$ implies $A \subset X$.
- (E3) $A \subset B$ implies $\mathfrak{Z}(A) \supset \mathfrak{Z}(B)$.

In [2] S. GACSÁLYI proved that the correspondence

$$(0.1) < + 3 < : 3 < (A) = \{X: A < X\}$$

defined between semi-topogeneous orders on E and E-mappings is one-to-one, and its inverse can be produced as follows:

$$(0.2) 3 \rightarrow <_3 : A <_3 B \text{ iff } B \in \mathfrak{Z}(A).$$

These concepts can be improved by a simple idea. Let g be a (single-valued) mapping of a set E onto a dense subset of the syntopogenous space $[E', \mathcal{G}']$; we frequently meet this situation in theory of extensions of syntopogenous spaces. If $<' \in \mathcal{G}'$, and as a value of an arbitrary $A' \subset E'$ we prescribe the system of those subsets X of E, which include the inverse image $g^{-1}(X')$ of a set $X' \subset E'$ such that A' <' X', we get a mapping of $2^{E'}$ into the set of all systems of subsets of E with properties similar to (E0)—(E3).

Starting out from the observation mentioned above, in chapter 1 of the paper the notion of a g-mapping will be defined for a fixed mapping $g: E \rightarrow E'$. In part 2 a correspondence will be produced between semi-topogeneous orders on E' and g-mappings like in (0.1), but in general this will be not one-to-one. The main result of this paragraph is a generalization of Gacsályi's perception, namely the corre-

spondence in question is an injection (a surjection), iff the mapping g is a surjection (an injection), consequently it is one-to-one, iff g is of this kind, too.

The special families of topogeneous g-mappings (so called syntopogenous g-families) and their application in the theory of extensions of syntopogenous spaces will be found in another notice of the author [5].

1. The notion of a g-mapping

Let us consider two sets E, E' and a single valued mapping $g: E \rightarrow E'$ (E, E' and g will be fixed throughout the whole paper). By a g-mapping we shall mean a mapping 3 defined on the power set $2^{E'}$ into the set of all systems of subsets of E, which satisfies the following conditions for $X, Y \subset E$ and $A', B' \subset E'$:

- (M0) $\mathfrak{Z}(A') \neq \emptyset$, and $Y \supset X \in \mathfrak{Z}(A')$ implies $Y \in \mathfrak{Z}(A')$.
- (M1) $\emptyset \in \mathfrak{Z}(A')$ iff $A' = \emptyset$.
- (M2) $X \in \mathfrak{Z}(A')$ implies $g^{-1}(A') \subset X$.
- (M3) $A' \subset B'$ implies $\mathfrak{Z}(A') \supset \mathfrak{Z}(B')$.
- (1.1) **Proposition.** If E=E' and g is the identity of E, then the g-mappings are identical with the E-mappings.

PROOF. Under the conditions of the proposition the equivalences (M0) \Leftrightarrow (E0), (M2) \Leftrightarrow (E2), (M3) \Leftrightarrow (E3) and the implication (M0) \cap (M1) \Rightarrow (E1) are obvious. For the verification of (E1) \cap (E2) \Rightarrow (M1) let us observe that by (E2) $\emptyset \in \mathfrak{J}(A)$ implies $A = g^{-1}(A) \subset \emptyset$, thus $A = \emptyset$.

(1.2) Remark. In (M1) we had to postulate that $\emptyset \in \mathfrak{Z}(A')$ implies $A' = \emptyset$, because in general for a set $A' \subset E' - g(E)$ the assumption $\emptyset \in \mathfrak{Z}(A')$ and (M2) does not imply $A' = \emptyset$. Leaving this out of consideration we should have got a generalization of the notion of an E-mapping infiitted for the applications in extension theory.

A g-mapping 3 will be said to be topogenous, if for any $X, Y \subset E$ and $A', B' \subset E'$

- (MQ') $X \in \mathfrak{Z}(A')$, $Y \in \mathfrak{Z}(B')$ implies $X \cap Y \in \mathfrak{Z}(A' \cap B')$ and
 - (MQ") $X \in \mathfrak{Z}(A')$, $Y \in \mathfrak{Z}(B')$ implies $X \cup Y \in \mathfrak{Z}(A' \cup B')$
- (cf. ch. 3 of [1]). The topogenous g-mappings have a simple lattice theoretical characterization, in which, as in general topology it is usual, by a (filter) ideal in E we mean a (proper filter) ideal of the lattice of all subsets of E.
 - (1.3) Lemma. A g-mapping 3 is topogenous iff
- (1.3.1) $\mathfrak{Z}(A')$ is a filter in E for any $\emptyset \neq A' \subset E'$, and
- (1.3.2) the system $\{A' \subset E' : X \in \mathfrak{Z}(A')\}\$ is an ideal in E' for every $X \subset E$.

PROOF. Let 3 be topogenous. By (M1) $\emptyset \notin \mathfrak{Z}(A')$, and because of (M0) $\mathfrak{Z}(A')$ is increasing in E. If $X, Y \in \mathfrak{Z}(A')$, then $X \cap Y \in \mathfrak{Z}(A' \cap A') = \mathfrak{Z}(A')$. Similarly, by (M3) the system in question is decreasing in E' for every $X \subset E$. If $X \in \mathfrak{Z}(A')$ and $X \in \mathfrak{Z}(B')$, then $X = X \cup X \in \mathfrak{Z}(A' \cup B')$.

Conversely, if (1.3.1) is satisfied by 3, then $X \in \mathfrak{Z}(A')$, $Y \in \mathfrak{Z}(B')$ together with (M3) imply $X, Y \in \mathfrak{Z}(A' \cap B')$, and from this $X \cap Y \in \mathfrak{Z}(A' \cap B')$ follows. If (1.3.2) holds, then because of (M0) $X \in \mathfrak{Z}(A')$, $Y \in \mathfrak{Z}(B')$ gives $X \cup Y \in \mathfrak{Z}(A') \cap \mathfrak{Z}(B')$, thus

from our condition $X \cup Y \in \mathfrak{Z}(A' \cup B')$.

Let \mathfrak{z}_1 , \mathfrak{z}_2 be two g-mappings. We shall say that \mathfrak{z}_1 is coarser than \mathfrak{z}_2 , or equivalently \mathfrak{z}_2 is finer than \mathfrak{z}_1 , iff for every $A' \subset E'$ the inequality $\mathfrak{z}_1(A') \subset \mathfrak{z}_2(A')$ holds. This will be denoted by $\mathfrak{z}_1 \subset \mathfrak{z}_2$.

(1.4) Remarks. Let \mathfrak{Z} be a g-mapping. If there exists a topogenous g-mapping finer than \mathfrak{Z} , then $\mathfrak{Z}(A')$ is centred for any $A' \neq \emptyset$. Using the simple notation $\mathfrak{Z}(X')$ instead of $\mathfrak{Z}(X')$ for points X' of E', this condition is satisfied by \mathfrak{Z} iff $\mathfrak{Z}(X')$ is centred for every $X' \in E'$. In this case there exists a topogenous g-mapping \mathfrak{Z}^q , which is the coarsest of all topogenous g-mappings finer than \mathfrak{Z} . \mathfrak{Z}^q can be defined as follows: (1.4.1) $X \in \mathfrak{Z}^q(A')$ iff there are natural numbers M and M such

that
$$A' = \bigcup_{i=1}^m A_i'$$
, $X = \bigcap_{j=1}^n X_j$ and $X_j \in \mathfrak{F}(A_i')$ for any $1 \le i \le m$, $1 \le j \le n$.

(Cf. [1], (3.7).) These facts have no importance from the point of view of our further studies, therefore their proof will be omitted.

A g-mapping 3 will be called *perfect*, if for an arbitrary set I of indices

(MP)
$$X_i \in \mathfrak{Z}(A_i')$$
 $(i \in I)$ implies $\bigcup_{i \in I} X_i \in \mathfrak{Z}(\bigcup_{i \in I} A_i')$

(cf. ch. 4 of [1]). We shall prove that the structure of a perfect g-mapping is uniquely determined by its values taken on the subsets of E' having one element.

(1.5) Theorem. A g-mapping 3 is perfect iff

$$\mathfrak{Z}(A') = \bigcap \{\mathfrak{Z}(x') : x' \in A'\}$$

holds for any $A' \neq \emptyset$. If 3 is an arbitrary g-mapping, then there exists a perfect g-mapping \mathfrak{Z}^p , which is the coarsest of all perfect g-mappings finer than 3. For $A' \neq \emptyset$, $\mathfrak{Z}^p(A')$ can be defined by

(1.5.2)
$$\mathfrak{z}^p(A') = \bigcap \{\mathfrak{z}(x') : x' \in A'\}$$
 and $\mathfrak{z}^p(\emptyset) = 2^E$.

PROOF. For an arbitrary g-mapping 3 the inequality

$$\mathfrak{Z}(A') \subset \bigcap \{\mathfrak{Z}(x') : x' \in A'\}$$

is obvious for $\emptyset \neq A' \subset E'$ (see (M3)). Let 3 be perfect, and $X \in \mathfrak{Z}(x')$ for any $x' \in A'$. In this case because of $A' = \bigcup_{x' \in A'} \{x'\}$ we have $X \in \mathfrak{Z}(A')$. Conversely, suppose (1.5.1) and $X_i \in \mathfrak{Z}(A_i')$ ($i \in I$), $X = \bigcup_{i \in I} X_i$, $A' = \bigcup_{i \in I} A_i'$. Then $x' \in A'$ implies $x' \in A_i'$

for some $i \in I$, form this $X \supset X_i \in \mathfrak{z}(x')$. Consequently $X \in \mathfrak{z}(x')$ for every $x' \in A'$, thus by (1.5.1) $X \in \mathfrak{z}(A')$.

It is easy to prove that \mathfrak{z}^p is a g-mapping for any g-mapping \mathfrak{z} , and it is perfect, since $\mathfrak{z}^p(x') = \mathfrak{z}(x')$ for any $x' \in E'$, hence \mathfrak{z}^p satisfies (1.5.1). Finally if \mathfrak{z}_1 is a perfect g-mapping finer than \mathfrak{z} , then, for any $x' \in E'$, $\mathfrak{z}(x') \subset \mathfrak{z}_1(x')$, consequently by (1.5.1) $\mathfrak{z}^p(A') \subset \mathfrak{z}_1(A')$ for every $\emptyset \neq A' \subset E'$.

- (1.6) **Theorem.** A mapping \mathfrak{F} of $2^{E'}$ into the set of all systems of subsets of E is a perfect topogenous g-mapping iff for every $x' \in E'$ there exists a filter $\mathfrak{F}(x')$ in E such that
- (1.6.1) $x \in E$, $X \in f(g(x))$ implies $x \in X$, further
- (1.6.2) $\mathfrak{Z}(\emptyset) = 2^E$ and $\mathfrak{Z}(A') = \bigcap \{ f(x') : x' \in A' \}$ for any $\emptyset \neq A' \subset E'$.

PROOF. If 3 is a perfect topogenous g-mapping, then f(x') = 3(x') satisfies these conditions for any $x' \in E'$ (see (1.3) and (1.5)). Conversely, let f(x') be a filter in E for $x' \in E'$ with conditions (1.6.1)—(1.6.2). $\emptyset \neq 3(A')$ for any $A' \subset E'$, since $E \in 3(A')$. Every f(x') is increasing in E, therefore $Y \supset X \in 3(A')$ implies $Y \in 3(A')$. The fulfilment of (M1) follows from $\emptyset \notin f(x')$ ($x' \in E'$), and from (1.6.2). $X \in 3(A')$, $x \in g^{-1}(A')$ implies $X \in f(g(x))$, thus $x \in X$. Finally if $A' \subset B'$, then

$$\bigcap \{ \mathfrak{f}(x') \colon x' \in B' \} \subset \bigcap \{ \mathfrak{f}(x') \colon x' \in A' \}$$

is trivial. We got that \mathfrak{F} is a g-mapping. $\mathfrak{F}(x') = \mathfrak{F}(x')$ and (1.5.1) give that \mathfrak{F} is perfect, consequently it satisfies axiom (MQ"), too. Let $X \in \mathfrak{F}(A')$ and $Y \in \mathfrak{F}(B')$. If $x' \in A' \cap B'$, then $X, Y \in \mathfrak{F}(x')$, and since $\mathfrak{F}(x')$ is a filter, we get $X \cap Y \in \mathfrak{F}(x')$, accordingly $X \cap Y \in \mathfrak{F}(A' \cap B')$.

(1.7) Corollary. If \mathfrak{z} is a topogenous g-mapping, then \mathfrak{z}^p is perfect and topogenous.

2. g-mappings and semi-topogenous orders

Let < be a semi-topogenous order on the set X [1]. A subset X_0 of X is called <-dense, if $x < V \subset X$ implies $X_0 \cap V \neq \emptyset$ for any $x \in X$ (or equivalently, if $x \in X$, then $x < X - X_0$ does not hold).

We shall prove that a g-mapping $\mathfrak{z}_{<}$ can be assigned to any semi-topogenous order <' on E', provided g(E) is <'-dense.

- (2.1) **Proposition.** If \prec' is a semi-topogenous order on E' such that g(E) is \prec' -dense, then the definition
- (2.1.1) $\mathfrak{Z}_{<}(A') = \{X \subset E : A' <'E' \mathfrak{g}(E X)\}\ (A' \subset E')$ yields a g-mapping $\mathfrak{Z}_{<'}$, which will be called the g-mapping deduced from <'.

Before the verification of (2.1) we give a lemma explaining (2.1.1):

(2.2) **Lemma.** Under the conditions of (2.1) $X \in \mathfrak{Z}_{<}(A')$ iff there exists a set $X' \subset E'$ such that A' <' X' and $g^{-1}(X') \subset X$.

PROOF. In fact, if there is such a set X', then $E-X \subset E-g^{-1}(X')$, thus $g(E-X) \subset g(E-g^{-1}(X')) \subset E'-X'$, therefore $A' <'X' \subset E'-\xi(E-X)$. Conversely, if $X \in \mathfrak{Z}_< (A')$, then putting $X' = E' - \xi(E-X)$, we have A' <'X' and $g^{-1}(X') = E-g^{-1}(g(E-X)) \subset X$.

PROOF OF (2.1). Let us consider the system of axioms defining a semi-topogenous order (see [1], $(0_1) - (0_3)$), and prove the validity of (M0) – (M3).

- (M0): A' < E' g(E E), thus $E \in \mathfrak{z}_< (A')$. If $X \subset Y$ and $X \in \mathfrak{z}_< (A')$, then by (2.2) $Y \in \mathfrak{z}_< (A')$.
- (M1): $\emptyset < \emptyset$ implies $\emptyset \in \mathfrak{z}_{<}(\emptyset)$. If $\emptyset \in \mathfrak{z}_{<}(A')$ and $x' \in A'$, then x' < E' g(E) (see (0_3)), but this contradicts the density of g(E).
- (M2) If $X \in \mathfrak{Z}_{< \cdot}(A')$ and X' is a set required by (2.2), then because of (0_2) we have $g^{-1}(A') \subset g^{-1}(X') \subset X$.
- (M3): If $A' \subset B'$ and $X \in \mathfrak{F}_{<}(B')$, then B' < E' g(E X), thus (0_3) and (2.1.1) imply $X \in \mathfrak{F}_{<}(A')$.

We show that the notion of a topogenous or perfect g-mapping introduced in part 1 very exactly corresponds to the concept of a topogenous or perfect semi-topogenous order [1].

- (2.3) **Proposition.** Let <' be a semi-topogenous order on E', and g(E) be <'-dense.
- (2.3.1) If <' is topogenous, then 3<' is topogenous, too.
- (2.3.2) $3^{p}_{<} = 3 < p$ consequently if < is perfect, then 3< is also of this kind.

PROOF. (2.3.1): If $X \in \mathfrak{z}_{<'}(A')$ and $Y \in \mathfrak{z}_{<'}(B')$, then A' <'E' - g(E - X) and B' <'E' - g(E - Y), consequently $A' \cap B' <'(E' - g(E - X)) \cap (E' - g(E - Y)) = E' - g(E - (X \cap Y))$, and $A' \cup B' <'(E' - g(E - X)) \cup (E' - g(E - Y)) \subset E' - g(E - (X \cup Y))$. In view of these we get $X \cap Y \in \mathfrak{z}_{<'}(A' \cap B')$ and similarly $X \cup Y \in \mathfrak{z}_{<'}(A' \cup B')$.

- (2.3.2): $\varepsilon(E)$ is obviously $<'^p$ -dense, and $X \in \mathfrak{F}_<^p(A') \Leftrightarrow x' <' E' g(E X)$ for any $x' \in A' \Leftrightarrow A' <'^p E' \varepsilon(E X) \Leftrightarrow X \in \mathfrak{F}_<'^p(A')$ (see [1], (4.7)).
- If \prec' is perfect, then $\prec'^p = \prec'$, therefore $\mathfrak{z}^p_{\prec'} = \mathfrak{z}_{\prec'}$. This means that $\mathfrak{z}_{\prec'}$ is perfect (see (1.5)).

It is easy to show that if E = E' and g is the identity of E, then by the definition (2.1.1) the correspondence described in (0.1) is obtained. After this we shall study the effect of the mapping g having on the properties of the correspondence $<' \rightarrow \mathfrak{z}_<$. The connection existing between the behaviour of $<' \rightarrow \mathfrak{z}_<$ and g can be formulated in the following general duality theorem:

- (2.4) Theorem. If E' consists of at least two elements, then
- (2.4.1) $<' \rightarrow 3_<$, is surjective iff g is injective;
- (2.4.2) $<' \rightarrow 3_<$, is injective iff g is surjective;
- (2.4.3) $<' \rightarrow 3_<$, is one-to-one iff g is of this kind.

The case of a set E' containing one element x' is trivial, namely the unique semi-topogenous order on E' is $<' = <_{\emptyset, E'}$ and the unique g-mapping is $\mathfrak{Z}_{<'}$. The proof of theorem (2.4) can be read from (2.5), (2.7), (2.12) and (2.13), finally (2.4.1) and (2.4.2) imply (2.4.3).

(2.5) Examples. Let E' be a set consisting of at least two elements, and suppose that g is not an injection. We shall study two different cases.

(2.5.1) g is not a surjection.

Put $f(g(x)) = \{X \subset E: g^{-1}(g(x)) \subset X\}$ for any $x \in E$, and $f(x') = \{X \subset E: x_0 \in X\}$ for every $x' \in E' - g(E)$, where x_0 is a fixed element of E such that $g^{-1}(g(x_0))$ contains at least two elements. The filters f(x') ($x' \in E'$) satisfy condition (1.6.1), therefore we have a perfect topogenous g-mapping g-mapping cannot be deduced from some semi-topogenous order g- on g- such that g(E) is g-dense.

(In fact, assume that <' is such an order. Then $\{x_0\} \in \mathfrak{Z}(x')$ for an $x' \in E' - g(E)$. Because of the choice of x_0 this means $x' < E' - g(E - x_0) = E' - g(E)$,

which is impossible, since g(E) is <'-dense.

(2.5.2) g is a surjection.

Suppose that x_0 and y_0 are fixed elements of E such that $g^{-1}(g(x_0))$ has at least two members, and $g(x_0) \neq g(y_0)$. Put $f(g(x)) = \{X \subset E : g^{-1}(g(x)) \subset X\}$ for $y_0 \neq x \in E$, and $f(g(y_0)) = \{X \subset E : V \subset X\}$, where $V = g^{-1}(g(y_0)) \cup \{x_0\}$. Since the filters f(x') ($x' \in E'$) have property (1.6.1), we can define a perfect topogenous g-mapping \mathfrak{F} in accordance with (1.6.2). \mathfrak{F} cannot be deduced from some semitopogenous order, that is there does not exist $-(x') \in \mathbb{F}$ such that $x_0 \in \mathbb{F}$ is obviously $-(x') \in \mathbb{F}$ and $x_0 \in \mathbb{F}$ is obviously $-(x') \in \mathbb{F}$. Indeed, $x_0 \in \mathbb{F}$ are the same time $x_0 \in \mathbb{F}$ such that $x_0 \in \mathbb{F}$ such that $x_0 \in \mathbb{F}$ such that $x_0 \in \mathbb{F}$ is obviously $x_0 \in \mathbb{F}$. From these $x_0 \in \mathbb{F}$ but because of the properties of $x_0 \in \mathbb{F}$ this is an impossibility.

Further we shall consider a semi-topogenous order on E' for any g-mapping 3, from which 3 can be deduced, provided g is an injection.

(2.6) **Proposition.** Let 3 be a g-mapping. Then a semi-topogenous order $<_{ta}$ can be defined on E' by the following formula:

$$(2.6.1) \quad A' <_{\dagger \delta} B' \Leftrightarrow A' \subset B' \quad and \quad g^{-1}(B') \in \mathfrak{Z}(A').$$

PROOF. $\emptyset <_{t_3} \emptyset$ and $E' <_{t_3} E'$ obviously hold. By the definition $A' <_{t_3} B'$ implies $A' \subset B'$. Finally let us suppose $A' \subset A'_1 <_{t_3} B'_1 \subset B'$. Then $A' \subset A'_1 \subset B'_1 \subset B'$ and $g^{-1}(B') \supset g^{-1}(B'_1) \in \mathfrak{F}(A'_1) \subset \mathfrak{F}(A')$ (see (M3)), hence $A' \subset B'$ and $g^{-1}(B') \in \mathfrak{F}(A')$ (cf. (M0)), that is $A' <_{t_3} B'$.

(2.7) **Theorem.** If \mathfrak{z} is an arbitrary g-mapping, then $<_{\mathfrak{t}\mathfrak{z}}$ is the finest of all semi-topogenous orders <' on E' such that g(E) is <'-dense and $\mathfrak{z}_<$, $\square \mathfrak{z}$. In particular, if g is an injection, then $\mathfrak{z}_{<_{\mathfrak{t}\mathfrak{z}}}=\mathfrak{z}$, i.e. \mathfrak{z} can be deduced from $<_{\mathfrak{t}\mathfrak{z}}$.

PROOF. If $x' \in E'$ and $x' <_{t_3} B'$, then $g^{-1}(B') \in \mathfrak{z}(x')$, hence by (M1) $\emptyset \neq g(g^{-1}(B')) = g(E) \cap B'$. This shows that g(E) is $<_{t_3}$ -dense. If $A' <_{t_3} X'$ and

 $g^{-1}(X') \subset X$, then we have $g^{-1}(X') \in \mathfrak{Z}(A')$, and from (M0) $X \in \mathfrak{Z}(A')$ follows that is $\mathfrak{Z} <_{\mathfrak{Z}_3}$. Let <' be a semi-topogenous order on E' such that g(E) is <'-dense, and $\mathfrak{Z} <_{\mathfrak{Z}_3}$. If A' <' B', then $A' \subset B'$ and $g^{-1}(B') \in \mathfrak{Z} <_{\mathfrak{Z}_3}(A') \subset \mathfrak{Z}(A')$, therefore $A' <_{\mathfrak{Z}_3} B'$, so that $<' \subset C_{\mathfrak{Z}_3}$. Finally assume that g is an injection, and $X \in \mathfrak{Z}(A')$. Then for $X' = A' \cup g(X)$ we have $A' \subset X'$ and $g^{-1}(X') = X$, since $g^{-1}(A') \subset X$. This gives $A' <_{\mathfrak{Z}_3} X'$, thus $X \in \mathfrak{Z}_{<_{\mathfrak{Z}_3}}(A')$.

- (2.8) Proposition. Let 3 be a g-mapping.
- (2.8.1) If \mathfrak{z} is topogenous, then $<_{\mathfrak{t}_3}$ is also topogenous.
- (2.8.2) $<_{t_3}^p = <_{t_3}^p$, in particular $<_{t_3}$ is perfect for every perfect 3.

PROOF. (2.8.1): Suppose $A' <_{t_3} B'$ and $C' <_{t_3} D'$. Then $A' \subset B'$, $C' \subset D'$, $g^{-1}(B') \in \mathfrak{Z}(A')$ and $g^{-1}(D') \in \mathfrak{Z}(C')$. Obviously $A' \cap C' \subset B' \cap D'$, $A' \cup C' \subset B' \cup D'$, and from the topogenity of \mathfrak{Z} the relations $g^{-1}(B' \cap D') = g^{-1}(B') \cap g^{-1}(D') \in \mathfrak{Z}(A' \cap C')$, $g^{-1}(B' \cup D') = g^{-1}(B') \cup g^{-1}(D') \in \mathfrak{Z}(A' \cup C')$ follow. Thus we have $A' \cap C' <_{t_3} B' \cap D'$, $A' \cup C' <_{t_3} B' \cup D'$, consequently $<_{t_3}$ is topogenous. (2.8.2): $A' <_{t_3}^p B' \Leftrightarrow x' <_{t_3} B'$ for any $x' \in A'$ (see [1], (4.7)) $\Leftrightarrow x' \in B'$ and $g^{-1}(B') \in \mathfrak{Z}(A') \Leftrightarrow A' <_{t_3}^p B'$. Therefore if \mathfrak{Z} is perfect, then by (1.5) $\mathfrak{Z} = \mathfrak{Z}^p$, and thus $<_{t_3}^p = <_{t_3}$. In view of [1], (4.9) this means that $<_{t_3}$ is perfect.

The semi-topogenous order $<_{\dagger 3}$ was defined on E'. In another way one can determine a semi-topogenous order $<_{\dagger 3}$ on E for an arbitrary g-mapping 3. This order will be used for the examination of the case of a surjective g.

(2.9) **Proposition.** If 3 is a g-mapping, we have a semi-topogenous order $<_{\dagger \delta}$ on E given by the following definition:

$$(2.9.1) A <_{\dagger \delta} B \Leftrightarrow B \in \mathfrak{Z}(\varsigma(A)).$$

PROOF. $\emptyset <_{i3}\emptyset$ and $E <_{i3}E$ are obvious. If $A <_{i3}B$, then $B \in \mathfrak{Z}(g(A))$, therefore by (M2) $A \subset g^{-1}(g(A)) \subset B$. Finally suppose $A \subset A_1 <_{i3}B_1 \subset B$. Then $B \supset B_1 \in \mathfrak{Z}(g(A_1))$, $g(A) \subset g(A_1)$, consequently because of (M0) and (M3) $B \in \mathfrak{Z}(g(A))$, that is $A <_{i3}B$ holds.

Let us observe that if g is the identity of E=E', then $<_{i_3}=<_{i_3}$ for any g-mapping 3, and the correspondence $\mathfrak{z}\to<_{i_3}$ is identical with (0.2).

(2.10) **Theorem.** Let \prec' be a semi-topogenous order on E', and g(E) be \prec' -dense. Then we have $g^{-1}(\prec') = \prec_{i,i,j}$.

PROOF. In fact, $A g^{-1}(<')B \Leftrightarrow \xi(A) <'E' - \xi(E-B)$ (see [1], (5.1)) $\Leftrightarrow B \in \xi_{<'}(g(A)) \Leftrightarrow A <_{\xi_{\delta}<'}B$.

- (2.11) **Proposition.** If 3 is a g-mapping, then
- (2.11.1) $<_{43}$ is topogenous, if 3 is one.
- (2.11.2) $<_{\dagger\delta}^p = <_{\dagger\delta}^p$, therefore if 3 is perfect, then $<_{\dagger\delta}$ is perfect, too.

PROOF. (2.11.1): Supposing $A <_{i3} B$ and $C <_{i3} D$, we get $B \in \mathfrak{Z}(g(A))$ and $D \in \mathfrak{Z}(G(C))$. $g(A \cap C) \subset \mathfrak{Z}(A) \cap g(C)$ and $g(A \cup C) = g(A) \cup g(C)$, thus $B \cap D \in \mathfrak{Z}(G(C))$

 $\in \mathfrak{Z}(g(A \cap C))$ (cf. (M3)), and $B \cup D \in \mathfrak{Z}(g(A \cup C))$. This means that $A \cap C <_{i_3} B \cap D$ and $A \cup C <_{i_3} B \cup D$.

(2.11.2): $A <_{i_3}^p B \Leftrightarrow x <_{i_3} B$ for every $x \in A \Leftrightarrow B \in \mathfrak{Z}(g(x))$ for any $x \in A \Leftrightarrow B \in \mathfrak{Z}^p(g(A)) \Leftrightarrow A <_{i_3}^p B$. If \mathfrak{Z} is perfect, then $\mathfrak{Z} = \mathfrak{Z}^p$, consequently $<_{i_3}^p = <_{i_3}$ implies that $<_{i_3}$ is perfect.

(2.12) **Theorem.** Let g be a surjection and \mathfrak{F} be a g-mapping. If there exists a semi-topogenous order <' on E' such that $\mathfrak{F} = \mathfrak{F}_{<'}$, then $<' = \mathfrak{F}(<_{\mathfrak{F}})$.

PROOF. If 3 = 3 < 1, then 3 = 3 < 1, in accordance with (2.10). By [1], (6.36) this implies

 $<' = g(g^{-1}(<')) = g(<_{i3}).$

(2.13) Example. Suppose that E' is a set having at least two elements, and g is not a surjection. Put $<'_1 = <_{\emptyset, E'}$, and let $<'_2$ be the biperfect topogenous order generated by the system $\mathfrak{S} = \{\emptyset, g(E), E'\}$ (see [1], (2.1)). Then $<'_1 \neq <'_2$, g(E) is $<'_1$ - and $<'_2$ -dense, and obviously $\mathfrak{Z}_{<'_1} = \mathfrak{Z}_{<'_2}$. This gives that in this situation the correspondence $<' \to \mathfrak{Z}_{<'}$ cannot be injective.

References

- Á. Császár, Foundations of General Topology, Oxford—London—New York—Paris, 1963.
 S. Gacsályi, On Hacque's E-mappings and on semi-topogenous orders, Publ. Math. (Debrecen) 12 (1965), 265—270.
- [3] M. HACQUE, Sur les E-structures, C. R. Acad. Sci. Paris 254 (1962), 1905—1907 and 2120—2122.
 [4] M. HACQUE, Étude des E-structures, Séminaire Choquet (Initiation à l'Analyse) 1 re année, 1962, no. 6 (Mimeographed).
- [5] K. MATOLCSY, Syntopogenous g-families and their application in extension theory, Publ. Math. (Debrecen) 31 (in print).

(Received August 7, 1980)