Topogenous g-mappings

By KALMAN MATOLCSY (Debrecen)

0. Introduction

This paper presents a generalization of the notion of an E-mapping, which was
introduced by M. HACQUE in [3] and [4].

Considering a set E, an E-mapping is a mapping 3 of the power set 2F into
the set of all systems of subsets of E with the following properties for 4,B,X, YCE:

(E0) 3(4)=0, and YD Xe;(A) implies Y¢3(A).
(E1) 3(9)=2E.

(E2) Xe3(A) implies ACX.

(E3) AcB implies 3(A) > 3(B).

In [2] S. GAcsALYI proved that the correspondence

(0.1) < +3<i3<(A)={X: 4 <X}

defined between semi-topogeneous orders on E and E-mappings is one-to-one,
and its inverse can be produced as follows:

0.2) 3+ =<y:A=<,B iff BE3(A).

These concepts can be improved by a simple idea. Let g be a (single-valued)
mapping of a set E onto a dense subset of the syntopogenous space [E’, ¥’);
we frequently meet this situation in theory of extensions of syntopogenous spaces.
If <'¢%”, and as a value of an arbitrary A"CE’ we prescribe the system of those
subsets X of E, which include the inverse image g~%(X’) of a set X'CE’ such
that A"<'X’, we get a mapping of 25 into the set of all systems of subsets of
E with properties similar to (E0)—(E3).

Starting out from the observation mentioned above, in chapter 1 of the paper
the notion of a g-mapping will be defined for a fixed mapping g: E~E’. In part 2
a correspondence will be produced between semi-topogeneous orders on E’ and
g-mappings like in (0.1), but in general this will be not one-to-one. The main result
of this paragraph is a generalization of Gacsilyi’s perception, namely the corre-
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spondence in question is an injection (a surjection), iff the mapping g is a surjection
(an injection), consequently it is one-to-one, iff g is of this kind, too.

The special families of topogeneous g-mappings (so called syntopogenous
g-families) and their application in the theory of extensions of syntopogenous spaces
will be found in another notice of the author [5].

1. The notion of a g-mapping

Let us consider two sets E, E’ and a single valued mapping g: E~E’ (E, E’
and g will be fixed throughout the whole paper). By a g-mapping we shall mean
a mapping 3 defined on the power set 2£ into the set of all systems of subsets
of E, which satisfies the following conditions for X, YCE and A, B'’CE":

(M0) 3(4)#0, and Yo Xec3(A") implies Yei(A).
(M1) 0¢e3(4) iff A’=0.

(M2) Xe3(A’) implies g=Y(A)CX.

(M3) A’'cB’ implies 3(A")> 3(B’).

(1.1) Proposition. If E=E’ and g is the identity of E, then the g-mappings
are identical with the E-mappings.

Proor. Under the conditions of the proposition the equivalences (M0)<« (E0),
(M2)=(E2), (M3)=(E3) and the implication (MO)"(M1)=(El) are obvious.
For the verification of (El) (E2)=(M1) let us observe that by (E2) 0¢€3(A4)
implies A=g~(A4)cP, thus A4=0. |}

(1.2) Remark. In (Ml) we had to postulate that Dc3(A") implies A’=0,
because in general for a set A"CE’—g(E) the assumption 0¢3(4’) and (M2)
does not imply A"=#. Leaving this out of consideration we should have got a gen-
eralization of the notion of an E-mapping infiitted for the applications in extension
theory.

A g-mapping 3 will be said to be topogenous, if for any X, YCE and
A, B'CE’

(MQ") Xegz(4), Ye3(B') implies XNYe3z(4A'NB")
and

(MQ") Xe3(A), Ye3(B") implies XUYe3(A"UB’)

(cf. ch. 3 of [I]). The topogenous g-mappings have a simple lattice theoretical
characterization, in which, as in general topology it is usual, by a (filter) ideal in
E we mean a (proper filter) ideal of the lattice of all subsets of E.

(1.3) Lemma. A g-mapping 3 is topogenous iff
(1.3.1) 3(4") isafilterin E forany 0=A'CE’,

and
(1.3.2) the system {A'CE’:Xc3(A")} is an ideal in E’ for every XCE.
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ProOF. Let 3 be topogenous. By (M1) 0¢ 3(4”), and because of (M0) 3(4")
is increasing in E. If X, Ye3(4’), then XNYe3z(4’'NA)=3(4"). Similarly, by
(M3) the system in question is decreasing in E’ for every XCE. If X¢3(A4") and
Xe3(B’), then X=XUXe3(4’"UB").

Conversely, if (1.3.1) is satisfied by 3, then Xe¢3(4"), Y¢3(B’) together with
(M3) imply X, Ye3(4’NB’), and from this XN Ye3(4’NB’) follows. If (1.3.2)
holds, then because of (MO0) Xe3(4"), Yei(B") gives XU Ye3(4)N3(B"), thus
from our condition XUYe3(4'UB"). |}

Let 3,, 3, be two g-mappings. We shall say that 3, is coarser than 3,, or
equivalently 3, is finer than 3,, iff for every A’CE’ the inequality 3,(4")< 3.(4")
holds. This will be denoted by 3, C 3s-

(1.4) Remarks. Let 3 be a g-mapping. If there exists a topogenous g-mapping
finer than 3, then 3(4") is centred for any A’#0. Using the simple notation
3(x") instead of 3({x’}) for points x’ of E’, this condition is satisfied by 3 iff
3(x’) is centred for every x’cE’. In this case there exists a topogenous g-mapping
3%, which is the coarsest of all topogenous g-mappings finer than 3. 37 can be
defined as follows: (1.4.1) X¢€3%(4") iff there are natural numbers m and n such

m n
that A'= ) Af, X= (| X; and X;c3(A4;) for any 1=i=m, 1=j=n.

i=1 J=1
(Cf. [1], (3.7).) These facts have no importance from the point of view of our
further studies, therefore their proof will be omitted.

A g-mapping 3 will be called perfect, if for an arbitrary set I of indices

(MP) Xi€3(4) (ieD) implies iLEJIX.-'ES(U A7)

iel

(cf. ch. 4 of [1]). We shall prove that the structure of a perfect g-mapping is uniquely
determined by its values taken on the subsets of E’ having one element.

(1.5) Theorem. A g-mapping 3 is perfect iff
(1.5.1) 3(4) = N3(x):xe4’}

holds for any A’#0. If 3 is an arbitrary g-mapping, then there exists a perfect
g-mapping 3P, which is the coarsest of all perfect g-mappings finer than 3. For
A"#0, 37(A") can be defined by

(1.5.2) 3 (4) = N{a(x):x'e4’}
and 37(0)=2E.

Proor. For an arbitrary g-mapping 3 the inequality
3(4)c N{p(x):x'eAd’}

is obvious for @=A'CE’ (see (M3)). Let 3 be perfect, and Xe€3(x") for any
x"€A’. In this case because of A’= |J {x’} we have X¢ 3(4"). Conversely, suppose

XeEA
(1.5.1) and X;€3(4)) (ie), X= X;, A’=J A]. Then x'¢A’ implies x'cA;
i€l

iel
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for some icl, form this XD X,€3(x"). Consequently Xe¢3(x") for every x’cA4’,
thus by (1.5.1) Xe3(4).

It is easy to prove that 37 is a g-mapping for any g-mapping 3, and it is
perfect, since 3°(x")=3(x") for any x’c¢E’, hence 3” satisfies (1.5.1). Finally
if 3, is a perfect g-mapping finer than 3, then, for any x’€¢E’, 3(x")<3,(x"), con-
sequently by (1.5.1) 37(4")c3,(4") for every 0=A'CE’. |}

(1.6) Theorem. A mapping 3 of 2% into the set of all systems of subsets of
E is a perfect topogenous g-mapping iff for every x'c¢E’ there exists a filter {(x”)
in E such that

(1.6.1) x€cE, Xcf(g(x)) implies xeX,
Sfurther
(1.6.2) 3(0)=2F and 3(A)=N{f(x"): x’€A’} for any 9=A'CE’.

Proor. If 3 is a perfect topogenous g-mapping, then f(x")=3(x") satisfies
these conditions for any x’¢E’ (see (1.3) and (1.5)). Conversely, let f(x’) be
a filter in E for x’€E’ with conditions (1.6.1)—(1.6.2). 05 3(A4") for any A’CE’,
since E€3(A’). Every {(x’) is increasing in E, therefore YD X¢3(A4") implies
Ye3(A"). The fulfilment of (M1) follows from @4 {(x") (x"€¢E’), and from (1.6.2).
Xe3(A4'), xeg™'(A") implies Xe€f(g(x)), thus xeX. Finally if A’CB’, then

N{i): ¥ eBYN{i(x): X' ed’)

is trivial. We got that 3 is a g-mapping. 3(x")=f(x") and (1.5.1) give that 3 is
perfect, consequently it satisfies axiom (MQ”), too. Let Xe3(4’) and Ye3(B').
If x¥’€A’NB’, then X, Yej(x’), and since {(x) is a filter, we get X Yef(x'),
accordingly XNYe3(4'NB"). |

(1.7) Corollary. If 3 is a topogenous g-mapping, then 3° is perfect and topo-
genous. |}

2. g-mappings and semi-topogenous orders

Let < be a semi-topogenous order on the set X [1]. A subset X, of X
is called <-dense, if x<V cX implies X,V #0 for any xcX (or equivalently,
if xeX, then x<X—X, does not hold).

We shall prove that a g-mapping 3.. can be assigned to any semi-topogenous
order <" on E’, provided g(E) is <'-dense.

(2.1) Proposition. If <’ is a semi-topogenous order on E’ such that g(E)
is <'-dense, then the definition

(21.1) 3. (AV={XCE: A <E’'-g(E-X)} (A’'CE’) yields a g-mapping 3..,
which will be called the g-mapping deduced from <.

Before the verification of (2.1) we give a lemma explaining (2.1.1):

(2.2) Lemma. Under the conditions of (2.1) Xe€3_..(A") iff there exists a set
X'CE’ such that A’<'X’ and g~ (X)CX.
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PrOOF. In fact, if there is such a set X’, then E—-XcCE-g~(X’), thus
g(E-X)cg(E—g (X"))CE’'—X’, therefore A’<'X'CE’—g(E—X). Conversely,
if Xe3_..(A"), then putting X'=E’'—g(E—X), we have A"<'X’ and g7 '(X")=
=E—g (g(E-X)cX. |

PrOOF OF (2.1). Let us consider the system of axioms defining a semi-topogenous
order (see [1], (0,)—(0,), and prove the validity of (M0)— (M3).

(MC): A’<'E’—g(E—E), thus Ec3_(A"). If XcY and Xe¢3..(4"), then
by (2.2) Ye3 . .(A).

(M1D): 0<"0 implies 0€3_..(0). If 0e3_..(A4") and x'€A4’, then x"<'E’'—g(E)
(see (0,)), but this contradicts the density of g(E).

(M2) If Xe3.(A4") and X’ is a set required by (2.2), then because of (0,)
we have g~ (4)cg (X)) cX.

(M3): If A’cB’ and X¢€3..(B"), then B’'<'E'—g(E-X), thus (0;) and
(2.1.1) imply Xe3.(4"). §

We show that the notion of a topogenous or perfect g-mapping introduced in
part 1 very exactly corresponds to the concept of a topogenous or perfect semi-
topogenous order [I].

(2.3) Proposition. Let <" be a semi-topogenous order on E’, and g(E) be
<'-dense.

(2.3.1) If <" is topogenous, then 3_. is topogenous, too.
(2.3.2) 3.=3<'? consequently if <' is perfect, then 3. is also of this kind.

ProoF. (2.3.1): If Xe3.(A") and Ye3_..(B"), then A"<'E'—g(E—X) and
B’<’E’—g(E—Y), consequently A'NB’<'(E’'—g(E—X))N(E'—g(E-Y))=E’—
—g(E-(XNY)),and A’"UB’ <"(E’—g(E—X))U(E’—g(E— Y))CE’'—g(E—- (XU Y)).
In view of these we get XMNY¢e3_..(A'NB’) and similary XU Ye3_.(4"UB").

(2.3.2): ¢(E) is obviously <"?-dense, and X¢€32(4")ex’<'E’—g(E—X) for any
XA oA <PE' —g(E—X) o Xe3(A) (see [1], (4.7)).

If <’ is perfect, then <'P= <’, therefore 32.=3... This means that 3_.
is perfect (see (1.5)). i

It is easy to show that if E=E’ and g is the identity of E, then by the defini-
tion (2.1.1) the correspondence described in (0.1) is obtained. After this we shall
study the effect of the mapping g having on the properties of the correspondence
<"—+3... The connection existing between the behaviour of <—~3.. and g can
be formulated in the following general duality theorem:

(2.4) Theorem. If E’ consists of at least two elements, then
(2.4.1) <'—=3.. issurjective iff g is injective;
(24.2) <'—=3_. isinjective iff g is surjective;
(2.4.3) <'—=3.. is one-to-one iff g is of this kind.

T
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The case of a set E’ containing one element x” is trivial, namely the unique
semi-topogenous order on E’ is <= <, p and the unique g-mapping IS 3.

The proof of theorem (2.4) can be read from (2.5), (2.7), (2.12) and (2.13),
finally (2.4.1) and (2.4.2) imply (2.4.3).

(2.5) Examples. Let E’ be a set consisting of at least two elements, and suppose
that g is not an injection. We shall study two different cases.

(2.5.1) g is not a surjection.

Put f(:(v))={XcE: g Y(g(x))cX} for any x€E, and f(x)={XCE:x,cX}
for every x’¢E’—g(E), where x, is a fixed element of E such that g='(g(x,))
contains at least two elements. The filters f(x") (x"€E”) satisfy condition (1.6.1),
therefore we have a perfect topogenous g-mapping 3 defined by (1.6.1), but this
g-mapping cannot be deduced from some semi-topogenous order <" on E’ such
that g(E) is <’-dense.

(In fact, assume that < is such an order. Then {x,}¢3(x") for an x'€E’—
—g(E). Because of the choice of x, this means x'<'E’'—g(E—xg)=E —g(E),
which is impossible, since g(E) is <'-dense.

(2.5.2) g is a surjection.

Suppose that x, and y, are fixed elements of E such that g=*(g(x,)) has at
least two members, and g(xo)=g(y,). Put f(g(x))={X<E:g Y g(x)cX} for
yo#=x€E, and f(g(yy)={XCE:VcX}, where V=g Yg(y,))U{x,}. Since the
filters f(x’) (x’€¢E’) have property (1.6.1), we can define a perfect topogenous
g-mapping 3 in accordance with (1.6.2). 3 cannot be deduced from some semi-
topogenous order, that is there does not exist <" on E’ such that 3=3_. (in this
case g(E)=E’ is obviously <’-dense). Indeed, V¢ 3(g(y,)), consequently there
is a set X’ such that g(y,) <X’ and g~ '(X')CV. At the same time g (X’)¢
€3(g(»))=1(g(»y), therefore ¥—g~(X’). From these g~(X")=V, but because
of the properties of x, this is an impossibility. JJ

Further we shall consider a semi-topogenous order on E’ for any g-mapping 3,
from which 3 can be deduced, provided g is an injection.

(2.6) Proposition. Let 3 be a g-mapping. Then a semi-topogenous order =,
can be defined on E’ by the following formula:

(261) A'<,B'oACB and g~(B)ey4).

PROOF. @<, 0 and E’=<_ E’ obviously hold. By the definition A’<, B’
implies A’C B’. Finally let us suppose 4’CA;<, BicB’. Then A’"CA;cB/CB’
and g~ (B)Dg (B¢ 3(A) < 3(A") (see (M3)), hence A’ B’ and g~ (B’)c3(4)
(cf. (M0)), thatis A’ <, B’". |

(2.7) Theorem. If 3 is an arbitrary g-mapping, then <, is the finest of all
semi-topogenous orders <" on E’ such that g(E) is <'-dense and 3..C3. In
particular, if g is an injection, then 3. y— ie. 3 can be deduced from =,,.

Proor. If x’¢E’ and x"<, B’, then g '(B")€3(x"), hence by (M1) P
#g(g~(B))=g(E)NB’. This shows that g(E) is <,-dense. If A’<, X’ and
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g (X)X, then we have g~ (X")€3(4"), and from (MO) Xe3(A4") follows
that is 3=<,C3. Let <" be a semi-topogenous order on E’ such that g(E) is
<"-dense, and 3..C3. If A"<'B’, then A'cB’ and g~ (B)c3.(A)C3(A4),
therefore A”<;,B’, so that <'C<,,. Finally assume that g is an injection,
and X¢3(A"). Then for X'=A"Ug(X) we have A’cX’ and g~(X")=JX, since
g Y (A’)cX. This gives A"<,X’, thus X€3<u(A'). ||
(2.8) Proposition. Let 3 be a g-mapping.

(2.8.1) If 3 is topogenous, then <, is also topogenous.

(2.8.2) <h,= <, in particular <, is perfect for every perfect 3.

Proor. (2.8.1): Suppose A4’<, B’ and C’<,D’. Then A’cB’, C'cD’,

g7 (B")e3(4’) and g~ (D")€3(C’). Obviously A’'NC’'cB’'ND’, A/’UC'cB’UD’,
and from the topogenity of 3 the relations g~ (B’ND")=g " B')Ng~YD")e
€3(4'NC), g '(B'UD)Y=g (B )Ug " (D')e3(4’UC") follow. Thus we have
A'NC' < ,B'ND’, A’UC"<,B"UD’, consequently <, is topogenous.
(28.2): A’ <} B'ex"<, B forany x"cA” (see[l],(4.7))=x"eB” and g~(B")¢€3(x")
for every x'cA’eA’cB’ and g Y(B")e3?(A)=>A" <, »B’. Therefore if 3 is
perfect, then by (1.5) 3=3", and thus <%= <,. In view of [1], (4.9) this means
that <, is perfect. |

The semi-topogenous order =, was defined on E’. In another way one can
determine a semi-topogenous order <, on E for an arbitrary g-mapping 3.
This order will be used for the examination of the case of a surjective g.

(2.9) Proposition. If 3 is a g-mapping, we have a semi-topogenous order <, on
E given by the following definition:

(29.1)  A<,Be Bey(g(4)).

ProOF. §<,0 and E<,E are obvious. If A<, B, then Be3(g(A)), there-
fore by (M2) ACg'(g(4))cB. Finally suppose AC A, <, B,CB. Then BD B¢
€3(g(4)), g(4)cg(A,), consequently because of (M0) and (M3) Be3(g(A4)),
that is 4 <, B holds.

Let us observe that if g is the identity of E=E’, then <,= <, for any
g-mapping 3, and the correspondence 3— <, is identical with (0.2).

(2.10) Theorem. Let <" be a semi-topogenous order on E’, and g(E) be
<’-dense. Then we have g='(<")=<,_,.

PrROOF. In fact, Ag ' (<)Beg(A)<'E'—g¢(E—B) (see [1], (5.1))= B¢
€3<(g(A)=A<,_B. 1

(2.11) Proposition. If 3 is a g-mapping, then
(2.11.1) =, is topogenous, if 3 is one.
(2.11.2) < = <, therefore if 3 is perfect, then <, is perfect, too.

PROOF. (2.11.1): Supposing A<, B and C<, D, we get Bej(g(4)) and
De3(g(C)). g(ANC)cg(A)Ng(C) and g(AUC)=g(A)Ug(C), thus BNDe

T
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€3(g(4NC)) (cf. (M3)), and Bl JD€3(g(A1JC)). This means that 4 C<,BND
and AUC<,BUD.

(2.11.2): A<",B<>x<,B forevery xcA<Bej(g(x)) for any x€A<« Be3?(g(4))=
«A<»B. If 3 is perfect, then 3=3°, consequently <% =<, implies that
is perfect. |

&
(2.12) Theorem. Let g be a surjection and 3 be a g-mapping. If there exists
a semi-topogenous order <’ on E' such that 3=3.., then <'=g(<,).
Proor. If 3=3.., then =,=g"'(<’), in accordance with (2.10). By [I1],
(6.36) this implies

3

<'=g(g7(N)=¢(<y- 1
(2.13) Example. Suppose that E’ is a set having at least two elements, and

’

g is not a surjection. Put <{= <, p, and let <] be the biperfect topogenous
order generated by the system €={0,g(E), E’} (see [1], (2.1)). Then ={# <j,
g(E) is <j-and <;-dense, and obviously 3_;= 3;- This gives that in this situation
the correspondence <"—+3.. cannot be injective. [j
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