Full cubes in the Fibonacci sequence

By A. PETHO (Debrecen)

1. Introduction

Let A, B, G,, G, be integers and G,=AG,_,+ BG,_, for n=2. The sequence
of integers G, is a binary recurrence sequence.

If G, is non-degenerate and w Is an integer, SHOREY and STEWART [11] proved
the existence of an effectively computable constant ¢, depending only on A4, B, G,,G,
and w such that any integer solutions n, |x|>1, ¢=2 of the Diophantine equation

(1) G, = wx?
satisfy max {n, |x|, g}<c,.

Let S be the set of non-zero integers composed solely of a finite number of
primes. If (4, B)=1 and G, is non-degenerate, we proved in [9] independently
from [11] the existence of an effectively computable constant ¢, depending only
on A, B,G,, G, and S such that any integer solutions », |x|>1,¢=>2 and w¢S
of (1) satisfy max {n, |x|, g, |w|}<c,.

A special but important binary recurrence sequence is the Fibonacci sequence.
It is defined by G,=0, A=B=G,=1.

WryLIE [14] and ConN [1], [2] have established, applying an elementary method,
all terms of the Fibonacci sequence {F,}, which are full square and which are
twice a full square. Cohn applied this result to solve completely some Diophantine
equations.

LonDpoN and FINKELSTEIN [5], [6] established all full cube Fibonacci numbers.
They reduced this problem to solving the equations y*—100=x* and )»*+100=x3
with x=y=0 (mod 5), x>0, y=0 and x/5 a square. To solve these equations
they used results of algebraic number theory.

The main purpose of this paper is to give a new proof of the theorem of London
and Finkelstein, applying Baker’s method and computer investigation. Our method
is applicable also in determining for small p all full p-th power in the Fibonacci
sequence, having enough computer time. We give also the solutions of F,=gx*®
and F,=¢x* for infinitely many primes gq.

Theorem 1. The Diophantine equation
(2 F,=x

has only four solutions: n=x=0,n=x=1,n=2, x=1 and n=6, x=2.
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If p is a prime, let r(p) denote the smallest positive integer with p|F,,.
From the Theorem 1 we are able to derive

Theorem 2. Suppose that for the prime p at least one of the following conditions
holds
(1) r(p) is not a prime power.
(i) F,p=qir-...-q3w, with qy, ...,q, distinct primes, v=2 and 3{a;, 3{u,.
(iii) r(p) is a power of 2,3,7,13 or 17. Then the Diophantine equations

(3) F, = px3
(3) F, = p*x®

have only one solution n=x=0, except when p=2,p=3, p=13, p=233 and p=1597
in which cases (3) has one further solution x=1 and n=3, n=4, n=17, n=13 and
n=17 respectively.

Remarks.

Condition (i) of Theorem 2 is satisfied for infinitely many primes. Namely,
there exists for any m=12 a prime ¢ such that g/F, and ¢{F, for any
0<t<=m, [12].

From the proof it will be clear that Theorem 2 is true for a wider class of primes,
but we were unable to characterize it.

In [10] we shall apply these results to solve completely some Diophantine

equations.
I am indebted to Dr. Z. L. Paprp and D. SzusBocsev for their assintance in

preparing and writing the computer programs.

2. Elementary properties of the Fibonacci sequence

Lemma 1. F, is divisible by F,, if, and only if, n is divisible by m.
PROOF. [12], page 46.

Lemma 2. Let p be an odd prime. If p=+1 (mod5), then p|F,_,, and if
p=+2(mod 5), then p|F,,,

PROOF. [12], page 54.

Lemma 3. Let q be a prime divisor of F, and p#q aprime, then (F,,|F,,q)=1.
PROOF. [12], page 60. See also [14].

Corollary 1. If p=7 is a prime, then any prime divisor of F, is greater than p.

PROOF. Let g be a prime divisor of F,, then by Lemma 1 r(¢)=p. Further-
more g=7, so neither g—1 nor ¢g+1 are primes. From Lemma | and Lemma 2
follows plg—1 or plg+1, which proves the assertion.

Corollary 2. Let q be a prime divisor of F, and m be an integer with (m, q)=1.
Then (Fuman’ Q)= L.
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PrOOF. Let m=pfi. ... .p¥ be the prime decomposition of m. Then by the
assumption p,;#q for i=1,...,r. Applying Lemma 3 several times we have the
proof.

Lemma 4. Let g=3 be an integer. If F, is a full g-th power, then either
m=0,1,2,6 or there exists a prime divisor p of m such that F, is a full g-th
power.

ProoF. If m is a prime we have nothing to prove. Assume m to be composite,
and let m=pf - ... p¥ with primes p,<...<p,.

If p,=7, then by Corollary 1 any prime divisors of F, are greater than p,,
hence they are distinct from p,,...,p,. So by Corollary 2 these primes occur in
F,, in the same powers as in F, , which means F, is a full g-th power.

Assume m=2%13%5% with a,,®,,2;=0. An easy calculation shows that
Fy=7, Fy=2-17 and F,;=5%-3001. Again by Corollary 2 F, can be a full
g-th power only if a;<3, 2y<2 and ay<2. Finally F;=35, F,=5-11, F;;=2-5-61
and F,,=2%.3% proves the lemma completely.

Lemma 5. For any n=1

(4) F:+1_Fn+1Fn_FE=(_1)n
holds.

ProoF. This is due to JONES [4].

Lemma 6. If for some integers n=6, x (2) is solvable, then there exist integers
A, B with x*=A*+4B*, and

(5 A3—3A4°B—124AB*+4B* = £1.

ProoOF. By Lemma 4 we may assume n to be odd. Put F,.,=y. Then (4)
yields
yi—yx*—xt+1=0.

This equation is solvable in y only if its discriminant is the square of an integer
z, that is
(6) 5x% = z2+4

If (6) is solvable, then it is solvable mod 5 too, hence z=5v+1 with an integer v.
Writing in (6) this form of z, and dividing by 5 we have

(7 x* = (v£1)*+(2v)%

From this follows obviously (x,v)=1, x odd and v even. The polynomial
remaining on the right hand side of (7) can be written as a product of two linear
functions in the ring of Gaussian integers

X =% = ((1+2)p+1)(1—2i)p+1)

with X=x2. This ring is a unique primfactorisation domain, and its units are +1
and +£i. These units are obviously cubes of Gaussian integers, so there exist integers



120 A. Pethé

A, B, with X=A%+ B}, and
v+1+42vi = (A+B,i)* = A*—34B}+i(34%B,— B}).
1 and i form an integer basis of the Gaussian integers, hence the last equation yields
® v+l = A3—34B}
2v = 34%B,— B}

The right hand side of the second equation of (8) is divisible by 4, because
v is even. A cannot be even, and both 4 and B, cannot be odd, because of the
first equation of (8), hence B, must be odd, i.e. B;=2B. Now solving (8) for v we
have (5), and the lemma is proved.

3. Upper bound for the full cube Fibonacci numbers

Denote ayxV+...+ay the minimal polynomial for the algebraic number f,
while f=p8,, Bs, ..., By are its conjugates. Put

M) =la] [T max (1,5

and
h(p) = — log M(p).

In order to establish an upper bound for the full cube Fibonacci numbers we
shall apply the following result of Waldschmidt [13].

Theorem A. Let ¢&,,...,&, be non-zero algebraic numbers, and ny, 1y, ..., N,
be algebraic numbers. For 1=j=m let log {; be any determination of the logarithm
of &;. Let D be a positive integer, and V1, ..., V,, W, E be positive real numbers,

satisfying
D & [Q(fls veey éll’ ?hn nEry rIm): Q]
V; = max {h(¢)),/log&|/D,1/D}, 1=j=m
W= max {(h(n,)}
V]. =...= V:I'II
and

— > DV . 1
1 = Emin {eP"1;  min_ 4DV /|log &}

Finally define V;*=max {V;, 1} for j=m and j=m—1, with Vi* =1 in the case
m=1. If the number

A =no+mlogé+...+n,logé,
does not vanish, then

|A| = exp {—C(m)D"*2V, - ... -V,(W+log (EDV,}))(log EDV,}_,)(log E)~™-1}
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where
C()=2% CQ2)=2" and C(m)=25"+3 2",

Lemma 7. Suppose A and B are integer solutions of (5). Then
9) max {|4|, |B|} = 5,172 exp (0,6 - 10%)

Proor. We use the ideas of the proof of a general theorem of GYORrY and
PapP [3], so we omit the details.
If B=0, then 4=+1, and we have (9) at once. Suppose B0, and

(10) |B| = exp (40).

The roots of the equation x*—3x2—12x+4=0 are a=a,=>5,171029785,
2,=0,3115831337 and o,=—2,482612919. Let K=Q(x) and O=Z[x] be the
order of K generated by 1, «, «® The rank of the group of units of O is 2. A system

of fundamental units is
g, = — 181+ 508 + 234>

gy = —54+17a—3a®

and the regulator of O 1s R=40,7388.
Write now (5) in the form

Ngjo(A—aB) = (A—oy B)(A—0yB)(A—ayB) = £ 1.
Put y,=A—o;B (i=1,2,3). It is well known that there exist integers a,,a, with
(11) A—o,B = y; = +e{dme{ar,

where &f" denotes the i-th conjugate of ;. Applying the ideas of [3] a routine

computation shows
la;| = 0,49 log |B| (i =1, 2).

Let |y,|=|y;| forall js#g. From (11) follows
| (%= 27— (2= )7, = (2 — )7,
Dividing this by (x, —a,)y,=0 we get

g — Oy -1 ()
Og— O Vale ™ #

(12) 800003 —1 =

with 8y=2"% and &,=eMe® (i=1,2).
aq—a,,

Furthermore  short calculation shows |y, |<0,5139|B|~* and |y,|'=
0,2569 |B|~* (g=1, 2, 3). Hence we have from (12)

(13) 0 < |8,091 682 —1| < 1,01]B] 2.
Because of (10) the right hand side of (13) is less than 1/3, so (13) yields
(14) 0 # |A| = |aglog d;+a, log 6, +aylog §;+ aglog &, < e—3108 181,
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where log denotes the mean value of the logarithm function,
0s=—1, ap,=1 and 03 |a,| = |a4|+|as]|+1 = log |B|.

Theorem A can be applied to (14). In this case m=4, D=6, W=log log |B|,
Vo=m/6=0,524, ;=17,092, ¥;=9,021, V;=1,884, E=4. By its conclusion we have

|A| = exp {—1,873-10* log log |B|—1,007 - 10*}.

Combining this inequality with (13) there follows

(15) |B| = exp (0,6 - 10%).
Finally
(15a) |4| = |2, B|+|4—a,B| < 5,1711|B|+1 < 5,172 exp (0,6 - 10%),

which proves the Lemma.
Proposition. If (2) is solvable in integers n, x then
(16) n < 3,76 - 10%,

Proor. If (2) is solvable in n, x then by Lemma 6 there exist integer solutions
A, B of (5) with
x* = A*+4B°

By the proof of Lemma 7 B and A satisfy the inequalities (15) and (15a)
respectively, hence

|x| = 5,55 exp (0,6 - 10*).
It is well known that

Fn=%[[ 12V§]"_[ 1—21/3 ]] }%I(H‘zﬁ ]"_1].

%[[ 1+V5 ] —1] < 5,55%exp (1,8 - 10%),

Therefore

2
which implies
n < 3,76 - 10%,
The Proposition is proved.

4. Preliminary results to the computer program
The following two lemmas are basic in number theory. For the proofs see
for example Niven—Zuckerman [8].

Lemma 8. If p is a prime and (a, p)=1, then the congruence x"=a (mod p)
has (n, p—1) solutions or no solutions according as

a(?—l)!("-?—l} = l(mod p) or a(P‘l)f‘("»P—l) $ l(mod p)_
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Lemma 9. The system of congruences
X = ¢, (mod m,)
X = ¢3(mod m,)

are solvable if and only if (my, my)/cy—c,. Any two solutions are congruent modulo
[y, ms].

The integer a 1is called a cubic residue modulo p, if the congruence x*=a
(mod p) is solvable. Put

p

Let F(n,p) be the smallest non-negative residue of F, modulo p. Then the
sequence {F(n,p)};=, is periodic for all p. Put

Lemma 10. If p is a prime, then the sequence {F*(n, p)}i., is periodic for all
p and the length of its minimal period is at most r(p). Finally F*(k,p)=
=F*(r(p)—k, p) for all k=0, ...,r(p).

Proor. If p#1(mod3), then (3,p—1)=1, and by Euler's Theorem
a’ *=1 (mod p) for all integers a relatively prime to p. Further O is always a
cubic residue, hence F*(n, p)=1 for all n.

Assume in the sequel p=1 (mod 3) i.e. (3, p—1)=3. First we prove

(17 F(r(p)—k, p) = (=1)"*F(k, p) F(r(p)—1, p) (mod p)

forall k=0, ...,r(p). For k=0 and k=1 (17) holds at once. Assume it is true for
k=0 and k+1. Then

F(r(p)—(k+2), p) = F(r(p)—k, p)— F(r(p)—(k+1), p) =
= (D' F(r(p—1, p)[F(k, p)+ F(k+1,p)] =
= (-1 F(k+2, p)F(r(p)—1, p) (mod p),

and this proves (17).
Putting in (17) k=r(p)—1 we have

F(1,p) = (=1y®F(r(p)—1, p)* (mod p).
F(r(p)—1,p)= £1 (mod p),
which shows that F(r(p)—1, p) is a cubic residue mod p because both 1 and —1

are cubic residues and (2, 3)=1.
[F(r(p)HI, p)] =4
P 3

[a] 1, if @ is a cubic residue modulo p
s |0 otherwise.

This implies

The last assertion of the Lemma follows from (17) using

and the multiplicative property of the cubic residue.
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One can prove by induction
(18) F(r(p)+k, p) = F(k, p)F(r(p)—1, p) (mod p)
for all k=0. F(r(p)—1, p) being a cubic residue, (18) implies
F*(r(p)+k, p) = F*(k, p)
for all k=0, and the lemma is proved.

5. Description of the computer program

In this chapter p and p;; denote primes congruent to 1 modulo 3. The least
common multiple of the integers a,, ..., a, is denoted by [a,, ..., a,].

First we have determined r(p) for all p=10000. Afterwards we have used
the following sieve method.

In the i-th step are choosen integers M;, N;, with N,=2 and N, for i=2
a divisor of ]] and primes py,...,p, Wwith [r(py), ..., r(pi)]=M; and

(r(paa)s s 1 ( P-r.)) N For convenience M, is taken such that it is divisible by 10.

Computmg the ﬁrst period of F*(k, pij) for all p;; it is possible to determine
the index of the possible full cube Fibonacci numbers up to M, with the following
sieve method. Put

i
S, = jH], F*(hN;—1(mod r(pi)), Pu)
and

- 1]"] F*(hN;+1(mod r(pi)s Pij)
=1

with h=0,1, ..., (M, /N;+1)/2.

If either S, or S; is 1, then the corresponding Fibonacci numbers with
indices #N,+1 and M;—(hN;x1) are candidates for being a full cube. In the
opposite case, namely if either S, or S, is 0 they cannot be full cubes.

We make an effort to choose the p,;-s so that apart from Sg the others are 0.
In this we succeded always, if not in the first step, then choosing new primes to the
given ones.

With this method we were able to prove in each step that F, can be a full
cube only if
(19) n=+1 (modM)).

Consider (19) for two distinct modules M; and M,;,. The received system of
congruences is solvable by Lemma 9 if and only if (M,- , M) divides 0,2 or -2,
but because of the choise of the M;-s it does not divide 2'and —2. Hence the system
of congruences is solvable only if n=1(mod M;) and n=-—1(mod M;) for
j=1,2. Again by Lemma 9 these have only one solution n=1 and n=—1 re-
specnvely modulo [M; , M,].

Applying this sieve method successively for M,, M,, ... we obtain that F,
with n odd, can be a full cube only if n=1 or n=[M;, M,, ...]—1.



Full cubes in the Fibonacci sequence 125

6. Proof of theorem

PROOF OF THEOREM 1. Apply the above described sieve method with the following
values of N;, M;/N; and p,;.

=12

2: 2¢4.3.5.7.19;
7, 13, 31, 37, 211, 223, 241, 421, 571, 607, 769, 1063

s 2eJeSs I«13417;

19, 67, 181, 409, 541, 859, 883, 919, 1021, 1171, 1531, 1597, 1951

s 2995513 2:3.3:13:

109, 127, 151, 271, 337, 601, 1087, 1459, 1621, 2029, 2269, 5407

2 ey ly B3l T1;

139, 283, 487, 643, 691, 829, 853, 1279, 1831, 1987, 2131, 4513

; 25.3%.5.7; 11.29.67;

43, 199, 307, 331, 349, 463, 661, 937, 967, 991, 1609, 1741, 2011, 2143

= P dedv]i. T3}

433, 1471, 1489, 1567, 1861, 3037, 3529

s P8 T+13; - 19303

619, 823, 2053, 2371, 2677, 3319, 3709, 5689

24.3%.5.13.29; 41.43
163, 739, 1117, 1231, 1291, 1549, 2377, 3691, 4129, 4987

; 24.3.5.11.29; 83

499, 1327, 4813, 5479

i=10; 2*-3-5-11-13-19-23; 59

1297, 2713, 3067, 3541, 4483

i=11; 24.3.5.19.23; 89

1069, 1423, 2671, 3739, 4093, 6763

i=12; 22.3%.5.11-41; 47

1033, 1129, 2539, 3853, 4231, 5641

i=13; 22.3.5.7-11.23; 33

2437, 3181, 3499, 6361, 6679
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An easy computation shows that
M=[M,, .. My]=28.38.52.72.11.132.17.19.23.29.31.41.43.47.53.59.
-61-67-71-79-83-89-103 =~ 3,2.10%.

Hence there exist no odd integers 1<n<M—1 with F, a full cube. On the
other hand M —1 is greater than the bound given in Proposition 1. This and Lemma
4 prove Theorem 1.

All computer calculations were performed on the ES 10—30 computer of the
Computer Centre of the Kossuth Lajos University Debrecen.

PROOF OF THEOREM 2. In the sequel p*|a will denote the exact power of the
prime p which divides the integer a.

Let the prime decomposition of r(p) be r(p)=pp:.:pir, with p,<...<p,.
If p,=3 and p#2 then let Pj<P,<...<P,=p, be all primes which are not
greater than p,, and write n=Pf:.:Plsm with (P, m)=1 for all i=1,...,s.
If p,=2 or p=2 then put P,=2 and P,=3 and write n=P{1.P*m with
(P1°P21m)=l'

First we are going to prove that the solvability of (3) or (3") implies m=1.
In fact assume m=1. Then m is odd and not less than 5. By Theorem 1 F,, has
a prime divisor Q with QY|F, and 3{u. If Q=P, were satisfied, then we would
have by Lemma 1 r(Q)=PI.'*:‘1: .:P/h=Q=P,. This would imply (r(Q), m)=1,
which contradicts Lemma 3. Hence we have shown Q=P,. Furthermore p#Q
since (r(p), m)=1. Thus by Corollary 2 Q“|F,, and F,=p'x® i=1 or i=2
cannot be satisfied.

Hence we may assume m=1. We distinguish six cases.

Case I. p satisfies the conditions (i) or (i) and P,=7. Now either r(p) is
a power of P,, and F,, has a prime divisor Q besides p with Q"|F,, and
3{u, or r(p) is not a power of P, and then by Theorem 1 Fp, has a prime divisor
Q with Q"|Fp, and 3{fu. In both cases Q=P is true by Corollary 1. Corollary 2
implies QY||F,, which proves this case.

Case II. p satisfies the conditions (i) or (ii) and P,=5, Then 5| F, or 3001 F,
accordingas f,=1 or f,=1. But p=5 and p=3001 do not satisfy the assumptions,
since r(5)=5 and r(3001)=5%

In order to prove the following cases we shall refer to Corollary 2.

Case III. r(p) is a power of 2 or 3. Put n=281.3%2 Since F=2-17-53-109
and F,=3.17-47 we have f,<4 and B,<3. If B,=0, then since F; ;=
=23.17-19 we have B,<2, and if f,=>0 then by F, ,=2*.3% we have f,<2.
Finally Fg=2% and there remain only f,=0, f;<3, and p,<4, f,=0. These
can easily be checked.

In the following we may assume 5{n because of 5| F, and 3001| F, according
as to 5|n or 5%|n with a=1.

Case IV. r(p) is a power of 7. Write n=2/.3%2.70, Since F,;=13-97-w
with (w,13.97)=1 we have By=1. Further F,,=13-29 and F,,=2-13-421
imply f;=0 and S,=0.
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Case V. r(p) is a power of 13. Put n=2F1.3P:.7%.11%:.13%, B,=1 because
of Fy32=233.337.u, with (4, 233-337)=1. B,=p,=p,=0, since F,.,;=233.521,
Fy15=2-233.u, and F,;.,3=89-233.u, with (2233, u,)=(89-233, u)=1. If
Pps=1, then F, is divided by the first power of 97 and 233. Finally F; 3=
=132.233.u, with (uy, 13-233)=1.

Case V1. r(p) is a power of 17. Write n=2F1.302.17%.m with (m,2-3-17)=
=1. Wecan exclude m=1 using r(17)=3? and the ideas described at the beginning
of the proof. B;=1 since F;;2=577-1597-v, with (v,, 577-1597)=1. Finally
p1=P2.=0 because of F,.,,=1597-3571 and F3.4;=2-1597 - v, with (vy, 2-1597)=1.
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