On a property of finite truncations of the Laurent series
of analytic functions

By ALEXANDER ABIAN (Ames, Iowa)

Abstract.*) Is is showed that there exists a sequence of complex numbers ¢, which are zeros
of finite truncations of the Laurent series around an isolated essential singularity of an analytic
function f such that lim f(e,)=0 provided 0 is not Picard exceptional value of f. It is conjectured

that the same conclusion may hold by dropping the above provision.

Let > a,(z—a)™ be the Laurent series (around a) of an analytic function

S and let & and p be nonnegative integers. Then the function whose value at
. - p - -
z is given by Da,(z—a)™ is called a finite truncation of the corresponding Laurent
oy

series of f.

In what follows we prove Theorems 1 and 3 which exhitit some basic prop-
erties of the zeros of finite truncations of the Laurent series around an isolated
essential singularity of an analytic function f in relation with the zero limiting
value of f.

We have presented below both Theorems 1 and 3 regardless of the fact that
they have the same hypothesis while the conclusion of Theorem 3 is s‘ronger than
that of Theorem 1. The reason for doing this is explained in Remark 3.

Thus, we prove:

Theorem 1. Let 2 a,z™ be the Laurent series of a function f which is analytic

in the annulus A given by 0<|z|<r and has an essential singularity at 0 and let
0 be not Picard exceptional value of f. Then there exist a sequence of complex
numbers ¢, and a sequence of finite truncations T, of the Laurent series of f such that

(1) c,cAd for every ncw with lime,=0,
() T,(c)=0  forevery nco,
3) lim f(c,)=0.
ProoF. Since 0 is not Picard exceptional value of f and since 0 is an isolated
essential singularity of f, there exists, in view of Picard’s Great theorem [I, p. 302],

*) AMS (MOS) subject classifications (1980). Primary 3 OB10 Key words and phrases. Essential
singularity, Laurent series, finite truncation.
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a sequence of complex numbers Ak, such that
(4) h,cA  for every ncw with limh,=0,
(5) f(h,)=0 for every ncw. ;
Since f is analytic at every h, and since f is not the zero function, clearly

there exists a sequence of closed disks D, respectively with circumferences C, and
centers /i, such that for every ncw

(6) f(z)=0 for every zeC,,
(7 D,CSA4 with diameter of D,<107",
@) |f(2)|<10"" for every z€D,.
k

Since the sequence of (for instance the particular) finite truncations >’ a,,z™

-k
(with kcw) of the above-mentioned Laurent series of f converges uniformly on
every D,, from (6) and (5), in view of Hurwitz’s theorem [1, p. 148], it follows
that there exists a sequence (e.g. the particular one mentioned above) of finite
truncations T, of the Laurent series of f and a sequence of complex numbers

¢, such that
9 c,¢D, forevery ncw,
(10) T,(c,)=0 for every ncw.
But then (1) follows from (9), (7) and (4). Similarly, (2) follows from (10) and

(3) follows from (8) and (9). Thus, Theorem 1 is proved.
An immediate corollary of Theorem 1 is:

Theorem 2. Let J a,(z—a)" be the Laurent series of a function f which is
analytic in the annulus A given by O<|z—a|<r and has an essential singularity
at a and let b be not Picard exceptional value of f.

Then there exist a sequence of complex numbers ¢, and a sequence of finite
truncations T, of the Laurent series of f such that for every ncw c,cA and
lime,=a and T/(c,)=b and lim f(c,)=b.

n n

PRrOOF. It is enough to apply Theorem 1 to the function f—» while changing
the origin of the z-plane to a.

Remark 1. As mentioned earlier, from the hypothesis of Theorem 1, we can
prove (using basically the proof of Theorem 1) a stronger conclusion than that
of Theorem 1.

Thus, we prove the following:
Theorem 3. Let > a,z™ be the Laurent series of a function f which is analytic

in the annulus A given by 0<|z|<r and has an essential singularity at 0 and let
0 be not Picard exceptional value of f.
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Let there be preassigned a sequence of finite truncations T, of the Laurent
series of f which converges to f in A. Then there exist a sequence of complex
numbers ¢, and a nonnegative integer N such that

(11) c,c4 for every new and li'r'nc,,=0,
(12) Ty, n(c,)=0 for every ncw,
(13) li:n f(c)=0.
Proor. Employing the notations used in the proof of Theorem 1, there exists
a nonnegative integer N such that by virtue of Hurwitz’s theorem:
Tyyn hasaczero c,cD, for every ncw

and there exists a nonnegative integer N, such that

Tyiny+n hasazero cy ,,€D, for every ncw-
and, in general, there exists a nonnegative integer N, such that

Tneny#..+N,+n hasazero cy . n .a€D, forevery ncw.

But then, co, €1, .05 Cnys ON 415 v0s CNy . 4N 4ms =+ is the desired sequence
of complex numbers ¢, which also satisfies (12).

On the other hand, from Picard’s Great theorem it follows that the sequence
of complex numbers £, can be so chosen that li'r'n h,=0. But then since #, is the

center of D,, from (7) and (9) it follows that ¢,€4 and limc,=0 which establishes

(11). Clearly, the proof of (3) also establishes (13). Th"us, Theorem 3 is proved.
Obviously, Theorem 3 can be generalized the way Theorem 1 is generalized
by Theorem 2.

Remark 2. We can further strengthen the conclusion of Theorem 3 via re-
placing the preassigned sequences of 7, by a preassigned sequence of functions
F, which are analytic in annulus 4 and which converge uniformly to f on every
closed disk contained in A.

Remark 3. As yet it is an open question whether or not the conclusion of
Theorem | remains valid if in its hypothesis the clause ““ler 0 be not Picard exceptional
value of f is dropped. The same is the case with respect to Theorem 3. It is our
conjecture that the answer is in the affirmative in connection with Theorem 1.
This is the reason why both of the Theorems 1 and 3 are presented in this paper.
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