On matrix-valued analytic characteristic functions
By B. GYIRES (Debrecen)

1. Introduction

For each point x of the real line R, let f(x) bea p by p matrix with entries
Sfi(x), where f,(x) is a complex-valued function (j, k=1,...,p). We say f is
a matrix-valued function defined on R,. The normalized trace of f is the scalar
function

tr /() = - 3 ful®.

R
p
The normalized trace has the following properties (and is determined by them):
for any matrix-valued functions f, g, and any complex valued scalars «, 8

tr(of+pg) = atrf+ptrb.
tr (fg) = tr(gf)s
x(UfU)=wSf

if U(x) is a unitary matrix-valued function,

tr(ffH =0
f* is the conjugate of the transpose of f.

trE=1,
E the unit matrix.

Let the symmetric and positive semidefinite matrix-valued function F(x)
with components ajy Fu(x) (j,k=1,...,p) be glven where the p by p matrix
A with elements a;, is a stochastic matnx and F;(x) is a probability distribution
function. We say F(x) to be a symmetric and positive semidefinite matrix-valued
distribution function.

If each component function f, of the matrix-valued function f is integrable,
or square integrable with respect to each element of the matrix-valued distribution
function F, we shall say that f is integrable (belongs to L(F), or that f is square
integrable (belongs to L.(F)) with respect to F.
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It follows from definition that a matrix-valued function f is in L,(F) if and
only if the integral

J tr(r*dp)
exists. r
The ring of constant p by p matrices with complex elements possesses the

natural inner product
(a, b) = tr (ab™®).

We can extended this definition to the class of matrix-valued functions in Ly(F)
by setting
o= [w(gan=— [ > fugudF;,

jl k' 1

where fj, gu, F;; are components of the matrix-valued functions of f, g and F,
respectively. This inner product has the following properties:

f.8) = (2 /)
(h+/2.8) = (/.8 +(/2.8):
@ 8) =a(f 8
with arbitrary complex numter «,
(S, )=0 if f0.

Let us introduce addition, and multiplication by complex numbers for the set
of square integrable matrix-valued functions with respect to a matrix-valued distri-
bution functions. Thus L(F) will be a unitary space with norm

171 = Gppe=[ [ wirrap]e.

Therefore the Schwartz inequality

(1.1) I @ =1 fllgl
and the triangle inequality
I/+gll = 1/1+gl

is satisfied in L _(F). By the help of the Schwartz inequality it is easily to prove that
in the ring of scalar matrices inequality

(1.2) labl = |lalllibll
holds, and that in L (F)
I7gl = /10l

provided f and g are commutable.
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Let F(x) be a symmetric and prositive semidefinite matrix-valued distribution
function. Matrix-valued function

(1.3) D(1) = fe“”dF(x)

with elements a,;p,;(t), where

oo

(14) o= [ €*dFyx) ("j=1,..,p)

-

is said to be a matrix-valued characteristic function. The matrix-valued charac-
teristic function (1.3) is said to be analytic, if each characteristic function (1.4) is
analytic ([3], 130).

If @(r) is a matrix-valued analytic characteristic function, then one is analytic
in a horizontal strip, and can be represented in this strip by the Fourier integral
(1.3) too. This strip of regularity is either the whole plan, or it has one or two
horizontal boundery line ([3], Theorem 7.1.1.). We say &(r) is a matrix-valued
entire characteristic function, if one is analytic in the whole plan.

The author has repeatedly dealt with matrix-valued distribution and charac-
teristic functions in his research work. In the present paper the following result
of J. MARCINKIEWICZ ([4]) will be extended for a matrix-valued characteristic func-
tion: Let P,r) be a polynomial of degree ¢=2, and denote by f(z)=exp P(t).
Then f(¢#) cannot be a characteristic function.

In section 2 we restrict ourselves to extend the following well-known result
of the theory of analytic characteristic functions for matrix-valued analytic charac-
teristic functions ([3], 134): Let f(z) be an analytic characteristic function. Then
|f(z)| attains its maximum along any horizontal line contained in the interior its
strip of regularity in the imaginary axis. This generalized theorem will be used in
the proof of the extension of Marcinkiewicz theorem.

In the third section we give the above mentioned generalization of the theorem
of Marcinkiewicz. We can find a new characterization of the normal distribution
in section 4. The method, which is used in the proof of Marcinkiewicz theorem,
is also an extension of the proof of Marcinkiewicz theorem.

2. Preliminary

Let &(t) be a matrix-valued analytic characteristic function with strip of
regularity S, and with Fourier integral representation (1.3). Let ¢z be a p by
p scalar matrix with complex numbers as its elements. If the eigenvalues of 7 lie
in S, then ¢ can substitute in @(z), and &(r) is equal to the representation (1.3)
in this case too.

The following Theorem is a generalization of the well-known one ([2], Theorem
3.2.1.).

Theorem 2.1. Let &(t) be a matrix-valued analytic characteristic function
with strip of regularity S, and with Fourier integral representation

d(z) = fﬁmnn Z€ S,
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where F is a symmetric and positive semidefinite matrix-valued distribution function.
Let t be a p by p normal scalar matrix with canonical representation t=¢&+in,
where & and n are H:rmitian commutable matrices. Suppose that the eigenvalues
of t liein S. Then

|tr @(r)] = (tr A)'2| D (in)],
where A= F(=°) is a symmetric and positive semidefinite stochastic matrix.

ProOF. Since ¢ is a normal matrix, matrix-valued functions

S(x) =exp {iéx}, g(x) =exp {—nx}

are commuta“le, moreover g is an Hermitian and positive definite, f is a unitary
matrix in L (F). Thus
o= [ fedF.
Taking the identities
(/. &) = tr (1),

-]

IfI2= [ te(ff*dF)=tr 4,

lglt= [ tr(gg*dF)= [ trexp{-2nx}dF(x) =|®(in)|®

into consideration, we get the statement of Theorem 2.1. on the tasis of the Schwartz
inequality (1.1).
Because A is a symmetric and positive semidefinite matrix, inequality

=frd=1

1
(2.1) >

holds.

3. On an extension of the theorem of Marcinkiewicz

Let a#0 be a p by p matrix with complex components, and let ¢ be an
arbitrary positive integer. Let

(3.1 a = (aa*)'* exp {iB}

be the polar representation of a. The eigenvalues £,,...,4, of (aa)'* are non-
negative, while at least one of them is positive. B is a Hermitian matrix, thus its
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eigenvalues by, ..., b, are real numbers. Let

(3.2) r=tr(ga*)}/* = i A +...+2),
(33) 0= laay) =[2G .r2p)]
. p 1 sne P »
L &4 Ui

(3.4) y(s) = [};- jgl' sin® {E (2ns — bj)}]

(s=0,1,..,q9-1).

On the basis of (3.2) and (3.3) we have r=p with equality if and only if (aa™)'?
is a diagonal matrix with the same diagonal components. Denote by y the smallest
among the numbers (3.4). It obviously that 0=y=1.

Lemma 3.1. Let g=3 be an integer. Then 0=y<]1.

ProOOF. Namely of ¢=3, then by fixed j at least one is smaller then 1 among
the numbers

sin2{%(2ns —b,)] ST T 1

As an extension of theorem Marcinkiewicz we prove the following.

Theorem 3.1. Let the polynomial

00 = Za,d

Ji=1

of degree q=1 be given, where the coefficients are p by p matrices with complex
components, in addition let a,=a=0. Let

®(1) = f ei** dF(x)

be a matrix-valued characteristic function, where F is a symmetric and positive
semidefinite matrix-valued distribution function. If identity

(3.5) () =expQ(1)
holds, then we have
(3.6) r=oy?

where quantities r, g,y are defined by (3.2), (3.3) and (3.4), respectively.

Proor. Let the sequence {R,};=, with positive numbers as its elements be
given satisfying condition R,—<, n—+<. Let

G.7) t,, = R, exp {’E (2m:-3)}

(s=0,1,..,q-1)
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if (3.1) is the polar representation of a. Then for sufficiently large n we have
Q(tng) = (aa*)*RI+O(RI™Y),

where O(R2-') is a p by p matrix with components of order O(RI™Y). If we
use condition (3.5) we obtain

(3.8) ®(1,,) = exp {(aa*)* R+ O(RI~1)}
(s=0,1,..,9-1)
for sufficiently large n. If 4,, ..., 4, denote the eigenvalues of (aa*)'?, then
PrQ(ty) = (gt ...+ 4,) Ri+ O(RI™Y),
i.e. matrix (3.8) has its eigenvalues in the form
exp (L, RI+ORID) (j=1,..., D)
for sufficiently large n. In consequence of this
;j;; exp {4; Ri+O(R} ™))}

for sufficiently large n. Thus for sufficiently small é=0 we get

tr o(1,,) =

P
tr @(2,,)| = i 2 exp {4;R1—eR3}.
P j=1

Using the inequality of the arithmetic and geometric means we obtain
(3.9 log |tr @(1,))| = (r—2) R}
(5 =0 Ty g l)s

for sufficiently large »n and sufficiently small &, where r is defined by (3.2).
We consider next @(in,,), where

N.s = R, sin {% (2rsE— B)}

(s=0,1,..,g=—1)
on the basis of (3.1), and @(r) is defined by (3.5). For sufficiently large n we have

Q(iny,) = (aa®)"exp {iB}i'nf,+ O (nis").
Since identity

sl = R,

sin {% (2rnsE— B)}“ = R,y(s)

$=0,1,...,q-1)
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holds, we obtain for fixed é>0 and for sufficiently large n
(3.10) 1Q(in.s)ll = (e+&)Riv s,
=01 ..0-1)
where ¢ and y(s) are defined by (3.3) and (3.4), respectively.
Using repeatedly the triangle inequality and inequality (1.2) we get

= [1+ =101 =

e+ o]

R St = exp [ Q (i)l
Using limit
X y 1 L
®(in,) = lim [E+—- QGin,)] |
we have
(3.11) @ (inay)ll = exp |Q (inay)ll = exp {(e+€) Riyls)}

(s=0,1,..,9-1)

on the basis of (3.10) for fixed ¢>0, and for sufficiently large n.
Since @(t), which is defined by (3.5), is a matrix-valued entire characteristic
function, and since quantities (3.7) are normal matrices, the conditions of Theorem

2.1. are satisfied. Thus
|tr @(,5)| = [P (in,)l

(s=01,..q9-1
using inequality (2.1).
Comparing inequalities (3.9) and (3.11) by the help of the last inequality, we get
the following result: Let the matrix-valued characteristic function be defined by
(3.5). Then inequalities

r—e=(o+eyy (5=0,1,..,q9-1)

holds for any &=0, i.e. inequality (3.6) is satisfied. Thus the proof of Theorem 3.1.
1s completed.
The inversion of Theorem 3.1. is the following.

Corollary 3.1. Let the polynomial Q(t) of degree q=1, and the quantities
r, 0,y be defined as in Theorem 3.1. If r=y?, exp Q(t) can not be equal to a
matrix-valued characteristic function of a symetric and positive semidefinite matrix-
valued distribution function.

Corollary 3.2. Let the polynomial Q(t) of degree q=3 be defined as in Theorem
3.1. Suppose that a=AiU, where /i is a positive number and U is a unitary matrix.
Then exp Q(t) can not be a matrix-valued characteristic function of a symmetric
and positive semidefinite matrix-valued distribution function.
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PRrOOF. In this case r=p=4. Moreover 0=y<1 in consequence of Lemma 3.1.
Thus r=py%.

Since in the case of p=1 conditions of Corollary 3.2. are satisfied automatically,
Theorem 3.1. contains the theorem of Marcinkiewicz too.

4. A new characterization of the normal distributions

By the help of the results of the foregoing section we are proving the following
characterization theorem of the normal low.

Theorem 4.1. Let the elements of the symmetric and positive semidefinite p by
p stochastic matrix A=(a;) be positive numbers. Let

Q(t) = aptayt+...+a,_ 1" 1 +at?

be a matrix-valued polynomial of degree q=1, where the coefficients are p by p
matrices with complex components. Suppose that the coefficients are commutable
with one other, and that a=J,U, where J. is a non-negative number and U is a unitary
matrix. Then ®(t)=exp Q(t) is a matrix-valued characteristic function with
®(==)=A if and only if
4.1) @ (1) = exp {iyt—A1*}A,
where 7y is a real constant.

Proor. The sufficiency half of the thecrem is obvious. Now we prove the

necessary half of the theorem.
Since @(r) is a matrix-valued characteristic function with @(=)=A4, thus

expag=4, g=2, y(0)=y(1)=1

according to Corollary 3.2. In this case the eigenvalues of matrix U can only be

the numbers +1 and —1, therefore a is a diagonal matrix with elements + A

and —/. As a and A are commutable and the elements of A are positive numbers,

each diagonal elements of a are equal either only to +4, or only to —A. Since

@(tr) is a matrix-valued characteristic function, the only solution is a = —1E, 1=0.
In the consequence of the commutability relation

(4.2) Aal = alA
holds. Taking this into consideration we obtain
(4.3) @ (1) = exp {—Ar*}A exp {a,t}

where in consequence of (4.2) matrices A and exp {a,t} are commutable.
Since (4.3) holds for all A=0, it is necessary that

() = A exp {a,1} = (ay0,(1))
to be a matrix-valued characteristic function, i.e. that functions ¢, () to be charac-
teristic functions.
We show that

(4.4) S(t) = A exp {iyt},
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where y is a real numter. Let

4.5) F7(0) = ay = (apvnp)s
where y,; are real numters. On the tasis of (4.2) we get the relations

p p
(4'6) 2; ajvavk?vk = Z‘,Jajv?jvavk (j) k = la ranp p)'
Let

P
}’J = gajv?jv(j - 1! atay p)‘

By summation in both side of (4.6) on ., equation system

P
(4‘7) g: ajv?v = ?] (j — 11 seey P)

holds. Since all elements of A are positive numkbers, 1 is an eigenvalue of A4 with
multiplicity one, and the components of the right hand side eigenvector corresponds
to the eigenvalue 1, are equal to another ([1], 46, theorem of Perron, and 73).
Therefore (4.7) holds if and only if y,=...=y,=y, i.e.

(4.8) a,6 = iy&

on the basis of (4.5), where & is the column vector of order p with components 1.
From the formula

oo IV
f(=4 Z; ay,
and on the basis of equality 46=4¢, and of (4.8) we get
f(é = Z —(i?)” = exp {iy1}é,

v=0

or writting down in detail
P
(4.9) 2; a;,c,;(t) = exp {iyt}
V=

¢ PR |
Let F,,(x) be the distribution function, which corresponds to the characteristic
function ¢,;(r). The equation system (4.9) is equivalent to

(4.10) 2 a;,Fy(x) = e(x—7)

(G=1,..,p)

where

e(x)={g for xfO.
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Since A is a stochastic matrix with positive elements, and since functions F;;(x)
are distribution functions, (4.10) is satisfied if and only if

Fij(x) =e(x—y) (hj=1,..,p)
i.e. (4.4) and thus (4.1) holds. This completes of the proof of Theorem 4.1.
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