Convergence of vector-valued martingales
with multidimensional indices

By ISTVAN FAZEKAS (Debrecen)

1. Introduction

There are several theorems concerning almost sure (a.s.) convergence of multi-
parameter sequences of scalar random variables. The purpose of this article is to
generalize these results to the case of random variables taking values in a Banach
space. After some preliminary remarks we give an extension of Gut's theorem
concerning reversed martingales (cf. [7]) in section 3. Section 4 deals with Cairoli’s
theorem on martingales (cf. [2]). Section 5 contains a multidimensional strong law
of large numbers for vector-valued. random variables (the scalar case is due to
Smythe, cf. [12]). Our method is a modification of Chatterji’s method (see [4], Prop.
5.2 and Prop. 5.3).

2. Notation and preliminary remarks

Let (Q, o, P) be a probability space, B a real Banach space with norm |-|.
B* is the dual of B. X: Q—B will be called a B-valued random variable (r.v.)

if X is Bochner measurable. The expectation of X is defined by EX= f XdP,

a
where the integral is Bochner integral. L'=L"(+/, B) (or L'(Q, o, P, B)), 1=r<es,
denotes the Banach space of random variables X, for which f | X|rdP < ee.
[t}

Let (T, =) and Z denote a directed set and the set of positive integers re-
spectively.

Definition 2.1. Let % (t¢T) be an increasing sequence of o-subalgebras of <.
{X;, #,t€T} is called a martingale if X,cL((#, B) and E(X,|%)=X, (L=1).

The reversed martingale is defined in similar way.

For suitable references on these subjects see [3], [4], [6], [8] and [11].

Definition 2.2. Let c¢(B) denote the set of all convergent sequences in B.
If x=(x,, x;, ...)€c(B), let |]X||¢=Sl!1p (x;). Let cyo(B) denote the set of sequences
converging to 0 (the null element of B).

Proposition 2.3. (1) ¢(B) is a Banach space with the coordinate-wise addition,
scalar multiplication and norm | -||.. ¢ (B) is a subspace of c(B).

(2) If B is separable, then c(B) is also separable.
(3) The convergence in c(B) is the coordinate-wise uniform convergence.
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Lemma 24. (1) Let X; (icZ) be B-valued random variables. If the sequence

X; converges a.s., then
X = (Xl’ Xs, ...)

is a c(B)-valued random variable.

(2) Let X=(X,,X,,...) be a c¢(B)-valued r.v. and let F be a o-subalgebra
of o. If E|X| <o, then (E(X|#)),=E(X\|#) (icZ), that is the conditional
expectation in c¢(B) can be constituted coordinate-wise.

ProOF. We can suppose that B is separable.
(1) Let y*=(1,)?,...) be a fixed element in ¢(B), let y=(y., Vs, ...)
denote an arbitrary sequence of elements of B. For &=0

s yec®, Iy=l = b= () 2 =28 =a))ne@® = 6.

X ~Y(G)esf, so the inverse image of an arbitrary sphere in c¢(B) is measurable.
The Borel o-field of ¢(B) is generated by the spheres of ¢(B), because c(B) is
separable (cf. [10]). Thus X is measurable.

(2) Let feB* and for a fixed i€Z we define f,¢[c(B)]* by the following

equation:
fi(a) = f(a), a=(ay,a,,...)Ec(B).
SUEX|#)}) = £(EX|F)) = E(fi(X)|F) =
= E(f(X0)|#) = (E(X|#)) as.

according to Theorem 2.3 of [11]. That is f[{E(X|#)},—E(X,|#)]=0 a.. There
is a countable norm-determining set in B* because B is separable. Thus
{E(X|#)},=E(X,|#) as. -

We need the following results from the theory of scalar martingales.

Lemma 2.5. (1) If {Z,, #,,kecZ)} is a scalar positive submartingale, then
{Z, (log* Z,) 2 #,,keZ} is also a positive submartingale (r=2).

(2) Doob’s maximal inequalities. If {X,, %, k=1,2,...,n} is a real positive
submartingale, then

e ¢ "
(a) E(ll;lkai(n X)= —=r¥=—= E(X,log* X,)
and
@ a .
(b) E(&‘f;‘,, XH= [cx—l] E(X®, =>1.

(3) Cairoli’s inequality:
t(logt )y ~2log*[t(log* ey ~f = (r—Dit(log*y~Y, r=2, t=0.
Proor. (1) t(log* t)’~* is a convex increasing function if r=>2.

(2) See[5], p. 317.
(3) See [2] and [12].

Notations. Let d=1 be an integer and let Z¢ denote the positive d-dimensional
integer lattice points. The notations m=#i, where m=(m,,m,,...,m;) and
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n=(ny, Ny, ..., ny)€Z% means that m;=n;, i=1, 2 ., d. With this partial ordering
Z? is a directed set. |i| is used to denote H n,. f—~c means that n— oo,

i=1,2,...,d. If neZ® and meZ, then (nl,ns,. . Mg, m)EZ4*1 is denoted by
(71, m). (l 1, ...,1)€Z? is denoted by I.

3. Reversed martingales

Theorem 3.1. Let {X;, #;,i<Z% be a B-valued reversed martingale and let
E(E( ’ !fﬁ)]f§)=£‘( ’ lfmax(ﬁ.i))s

where max (i, i) is the coordinate-wise maximum. Let F= (| Fu.
mezd

If E(|X;l(log*|X;))*~)<oo, then there exists a random variable X which
is F-measurable and X;—~X a.s. as ii—oe.

ProOOF. We consider first the case d=1 and proceed by induction. For d=1
the theorem is a consequence of a theorem of Chatterji (cf. Theorem 4 of [3]).
Suppose that the theorem is true for d—1. Let ne¢Z?~! and

Y= X@1s Xa,ns )

We shall prove that (Y, 1y, R€Z41} is a c(B)-valued reversed martmgale
which satisfies the assumptions of the theorem. For every fixed neZ!™! {X; ;.
F. 5y J =1} is a B-valued reversed martingale and thus from the above mentioned
theorem of Chatterji

D Fa. ,,} a.s.

According to Lemma 2.4 Y, is an %, ,-measurable c(B)-valued r.v.
To prove that Y,cL{F,,c(B)) let {V,, %, k=1} be the following
B-valued reversed mdrtmgale

'_i_fﬂ Xan=E {X (1)

V,=X: (IeZ9,
Ve=Xgs-1 for k=23,.. (@€Zé-),

and #, is the corresponding ¢-suba'gebra. {|V,“, F., k=1} is a real submartingale
in the reversed ordering. According to Doob’s maximal inequality

e e
E{ max |V,|} = —+— E{|Vi|log* [V} <.

1sks=m
From the monotone convergence theorem E {sup [Vil}<ee. Thus || Y;ll.= sup X, nl
=j=

is integrable and this proves that Y, eLY#,,,, c(B)). Since E {X(_ W¥an}=
=Xg,j for k=a, it follows from Lemma 2.4 that E{Y;|#,}=Y; for k=i,
that is {Y;, #;.1), 1€Z%"1} is a c(B)-valued reversed martingale.

Now we show that Y;eL(log* L)y'-*Tez‘™). {X; |, %z, i=1}

(TeZ4-Y) is a positive submartingale. It is a consequence of Lemma 2.5 (1) that
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{IXz ;| (og*|X; D*"% #5 ., j=1} is a positive submartingale. By virtue of
Lemma 2.5:
E{|Y;]l (log* Y5l )~%} =

= E{sup X, | [log* (s3p X, )14~} = E{syp 1K, log ¥, ¢} =

e
e—1

+—7 E{lX,,)| (og™ | X5, )" log* [|X5 ;)| (log™ | X5 ,, )]} =

[ 4
e_

=

(1 l)l (103+ | a, 1)!)"‘1} e,

Hence by the induction assumption the c¢(B)-valued reversed martirgale
{Y:, Fs.1y, A€Z71} converges to Y,,=E{Y-1| N #as1) as. Now using the
5€2d-1

induction assumption we can show that the components of Y.. form the reversed
martirgale
{E( (l n)

This reversed martingale is convergent:
lim E{X, n)liel;l_l ‘F(in‘.l)} =

E{E( (1.1)'_ e I, 1))] ‘9(-3,&)} -

€zd -1 (Fl)) WEZ -t;fl‘ﬁ")’ "=1’2""}'

E{ 11)|_€“ (i.,‘)} as. (Tez4)

k=1,2,.

and the limit is equal to E{X: | N %}, where T¢Z% From here we have that
Aezd

lim Xz = E(Xz| N #3) as.

Agzd

Remark. In the preceding theorem the limit can be considered as the last term
of the martingale.

Lemma 3.2. Let {X,,#,1<T} be a B-valued reversed martingale, where
T is a directed set. If X, €L" (1=r<o) for some t,¢T, then X, is convergent
in L" and in probability.

Proor. The convergence in L' is an immediate consequence of Prop. 4.1
of [4] and Lemma V—I—1I of [9]. Accordii g to Chebyshev’s inequality convergence
in L' implies convergence in probability.

Theorem 3.3. Let {X;, %, icZ' be a B-valued reversed martingale. If

E(E(-|Z)F)=E(- |Fnaxm,ny) Sfor every m,i€Z and E|XiI'<e (l<r<e),
then lim X,_E(X-| N %) a.s. and in L.
L ado Agzd
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PrROOF. According to Lemma 3.2 we have to prove only a.s. convergence.
For d=1 it is a consequence of Prop. 4.1 of [4]. We proceed by induction. Let

im be an element in Z9-1, Let
Ym = (X(m,n’ Xtm,z) ore)s
It follows from Prop. 4.1 of [4] that

oo

ﬂ.ﬁﬁ’”] as. (I, mezZ4).

m X = E[Xd,n 18

Thus Y, is a c¢(B)-valued r.v. Using Lemma 2.5 (2b) one can prove that
Y:eL(, <, P, ¢(B)) (16 Zi).

Hence by the induction assumption the reversed martingale (Y5 Z 1)
meZ4='} converges

J%tjll Y.ﬁi = E(leﬁerzl“ f‘ﬁ‘ “) a.s.

Finally, the proof can be completed as the proof of Theorem 3.1.

4. Martingales
Lemma 4.1. (Cf. [4].) If {X,,#,, n=1} is a B-valued martingale and
sup E{|X,| (log* |X,|)} <

Jor a k€Z, then sup |X,| €L

Proor. Since {|X,|,#,, n=1} is a real positive submartingale, then Lemma 2.4
(2a) is applicable. The monotone convergence theorem implies the required result.

Lemma 4.2. For every XcLYQ, o, P, B) the family of random variables
E(X|#) obtained when #F varies over all the o-subalgebras of o is uniformly
integrable.

Prookr. It is a simple consequence of Lemma IV—2—4 of [9] and the inequality
E(X[|F)=|EX|#F)| as.

Theorem 4.3. Let B have RNP (see [3],[4)) and let {X,, %, t¢T} be a B-valued
martingale, where T is a directed set. For X, to be of the form X,=E(X|#)(t€T)
Jorar.w. Xe LR, </, P, B), it is necessary and sufficient that it be uniformly integrable.
In this case lim X,=E(X|e{J #)} in L', where o{|) %} denotes the c-algebra

€T €T
generated by | #,.
1ET

ProoF. This theorem is an analogue of Prop. V—I1—2 of [9]. Sufficiency.
We prove it under the following weaker condition: *‘every increasing subsequence
{X,., ncZ} is uniformly integrable”. The proof is the same as that of the above
mentioned proposition if we use Chatterji's theorem (Prop. 4.2 (a) of [4]) on B-valued
martingales instead of results on real martingales.

The necessity is a simple consequence of Lemma 4.2.

11
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Theorem 4.4. Let {X,, #,, mcZ% be a B-valued martingale. Suppose that
E{X @0 ®x = =Xgs f k=m, where
(m, 1) = (my, mg, ..., my, ny, Ny, ..., NY)EZY,
(k, 7)) = (ky, kg, .ovy kyy 1y, By, ...y nYEZY,
and 9};,@,=a{iyz‘sﬁm}, (i+j=d;i,j=1).

Let B have RNP or let X5 be of the form Xz=E{X|%,} for a rv. XcL'.
If sup‘lJu‘:"{|)1’,ﬁ](log+ |Xa))~1} <o, then hliim X exists a.s. (andin L', if d=2).
ez >0

Proor. If d=1 the theorem is an immediate consequence of propositions
4.1 and 4.2 (a) of [4]. Let d=1. Assume the validity of the proposition for d—1.
Lemma 4.1 and Theorem 4.3 imply that X;=E{X|#;} (mcZ’) for a r.v. XecL!
in both cases and lim X=X in L. Let

Y; = (X(.I.l)'! A,(I.Sh s2) (FEQZ"—I)_
According to Prop. 4.1 of [4] J_lim X, ) exists as., thus Yz;ec(B). It follows

from Lemma 4.1 that Y;¢L!. Since the martingale property in ¢(B) can be proved
coordinate-wise {Y;, F; =y, 1€Z%7 '} is a c(B)-valued martingale.
To show that Y;=E(Y|#; ~)(n€Z") for a suitable YeL' put

X(w,n) = E{X|F (0, m}
= lim E{X|#m} in L'

— 511]-1-129 ‘.Y(E,ll) in Ll,
where

Feom) = a{meLfl‘-‘ 'g"(ﬁ.n)}' Let Y= (X(m.l)’ X(;a.z)s cor)s

Since the components of Y form martingale thus

tim X,.. ., =E [X|a'{ U 95.,,,.)}] a.s.
et n=1

that is Yec(B). Using Lemma 4.1 we can show that sup |X . ,|€L' thus YeL.
It follows from our e-algebra condition that j
E(Y|Fim =) =Yy (MEZ4D),
Furthermore by the Cairoli’s inequality

sup E{|Ygl. (log* | Y5]c)* % < <.

meZe-1

Hence the martingale (Y, #; «), MmcZ?"} converges a.s. if the theorem is
true for d—1. Thus
Jlim X; = EX|e{ U %)) as.

d
ngzd s
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Lemma 4.5. Let {X,, #, tcT} be a B-valued martingale, where T is a directed
set. Suppose that X,=E(X|#,), where XcL" (1 <r<w==) or the following conditions
are satisfied: B has RNP and sup E |X,|"< .

teT
Then {X,,tcT} is uniformly integrable and X,=E(X|#,), X¢L". Furthermore
X, convergesin L'.

Proor. In the first case the assertion is trivial. In the second case it follows
from Prop. 4.2 (b) of [4], Lemma V—I1—1 of [9] and Theorem 4.3.

Theorem 4.6, Let {Xj, 7y, mcZ% be a B-valued martingale. Suppose that
B has RNP or Xz=E(X|7;) (meZ% for XeL™ (1<r<-<e). Suppose that

E{X(ﬁi,i)]'?.(i.ﬁ)} = X, » if k=m,
where (m,n), (k,i) and F .., are defined in Theorem 4.4.

If sup E|Xgz|" < e, then ilim X exists a.s. and in L',
mezZ4 o

The proof is a modification of the proof of Theorem 4.4.

5. A strong law of large numbers

Lemma 5.1. Let YcL'(Q, s/, P,B). Let ¢ and n be random objects. If
(Y,&) and n are independent, then

E(Y[S,n) = E(Y[Q) a.s.
Proor. It follows from the scalar case by the help of linear functionals.
Lemma 5.2. Let X, X,, ..., X, be independent identically distributed (i.i.d.)
B-valued Bochner integrable random variables. If S,= 2"’ X;, then

Jj=1

E(X,JS,,):%‘ ik TS
If 9,=0{S,, Sy41>:-} (n=1,2,...), then {%,@,, n‘g.l} is a B-valued
reversed martingale.

PROOF. One can use the method of 7.8.1 Lemma and 7.8.3 Theorem of [1] and
Lemma 5.1.

Theorem 5.3. Let X; (kcZ¢, d=1) be a sequence of i.i.d. B-valued random
variables. Then
Sy 1
W= o T B X,
T W

k=i
converges a.s. if and only if E{|X;|(log* [X;))*1}<eo.

Proor. 1. Let E{|X;/(log*|X;))*"'}<es. Suppose that E(X;)=0. For d=1
our theorem is equivalent to Prop. 3.1 of [4]. We proceed by induction. Let d>1

11*
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and suppose that the theorem is true for d—1. Let mcZ% ! be fixed, let
k

VE= ZX{ﬁ.j),g,;:a{V,'f—,, at, .., (k=1,2,..). From the preceding lemma
=

k
{%, 95, k= l} is a reversed martingale. Since the sequence of the components
of the vector
(Vs Vam Vam ]
Y= (32 5 2

converges to 0 a.s. it follows that Y, is a ¢,(B)-valued r.v. The random variables
Yy (MeZ4"") arei.i.d. and their common expectation is 0¢¢y(B). Since the compo-
nents of ¥; (TeZ%-1) form a reversed martingale thus Y;eL (log* L)'~ By the

induction assumption, we then have that

. 1 .
lim Al 2 Ya=0 as. (in ¢o(B)).
ReZzd-1 ” ﬁénzz:ltl

1 1 WPN o .
But _—!(E:j)lsw’j)=ﬁ(ﬁé:i Yz);, where n,meZ?l, jeZ, and (ﬁ%’iYﬂ)j

denotes the j-th component of the vector > Y. From here we have that

m=h

_]im - S(ﬂ j)=0 a.S.
G h== (A, j)] ™ .
2. Let E{|X;|(log™ |X;])*~"}=ece. From [12] (p. 165) it follows that for A=0

P{|W¢|=A occurs for arbitrary large indices}=1.

Thus the sequence W; does not converge a.s.

References

[1] R. B. AsH, Real analysis and probability, Academic Press New York and London (1972).

[2] R. CamroLi, Une inégalit¢é pour martigales a indices multiples et ses applications, Séminaire
de Probabilités 1V, Lecture Notes in Mathematics 124, Springer-Verlag, Berlin, Heidel-
berg, New York (1970), 1—27.

[3] S. D. CHaTTERJ, Martingale convergence and the Radon—Nikodym theorem in Banach
spaces, Math. Scand. 22 (1968), 21—41.

[4] S. D. CuaTTERJI, Vector-valued martingales and their applications, Probability in Banach
spaces, Lecture Notes in Mathematics, 526, Springer-Verlag, Berlin, Heidelberg,
New York (1976), 33—51.

[5] J. L. Doos, Stochastic processes, Wiley, New York (1953).

[6] N. Dunrorp and J. T. ScHWARTZ, Linear operators, Part 1, Wiley, New York (1958).

[7] A. Gurt, Convergence of reversed martingales with multidimensional indices, Duke Math. J.
43 (1976), 269—275.

[8] E. HiLLE and R. S. PuiLLips, Functional analysis and semi-groups, AMS, Providence (1957).

[9] J. Neveu, Discrete-parameter martingales, North-Holland, Amsterdam, Oxford, (1975).

[10] K. R. PARTHA SARATHY, Probability measures on metric spaces, Academic Press, New York
and London (1967).

[11] F. ScaLorA, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347—374.

[12] R. T. SMYTHE, Strong laws of large numbers for r-dimensional arrays of random variables,
Ann. Prob. 1 (1973), 164—170.

( Received Oktober 16, 1980)



