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Abstract

Consider a random vector (X,Y) where X=(X},4X,,...,X,) and Y=(Y;, Y, ..., Y,)

with X, Y,, i=1,2,...,5 independent non-negative, integer-valued random variables with finite
support and such that X=Y. We show that in the case where the distribution of (rlﬁY:") is

of a certain structural form then there exists a relationship between the distributions of 1’.' and
of Y|(X=Y) which uniquely determines the distribution of X. The relationship in question is
less stringent that the condition of independence between ¥ and X—Y usually involved in pro-
blems of this nature. Examples are given to illustrate the result. The case where X, ¥ heve infinite
support has been examined earlier by the author.
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1. Introduction

Let (X, Y) be a random vector with non-negative, integer-valued components
with finite support and assume that X =Y. In a recent paper [4] the author
studied the problem of finding the distritution of X (and hence the joint distribu-
tion of (X, Y)) when the conditional distribution of Y on X was of the structural
from

PY=rX=n)= i%—‘- r=0,1,...,n; n=0,1,..,N; N=0.
n

It was pointed out that independence between Y and X—Y was not necessary
in order that the form of the distribution of X be uniquely determined. In fact
it was shown that a relationship between Y and X-—Y less stringent than in-
dependence was sufficient to determine the distribution of X. (This has now been
extended (PANARETOS [6] to a very general case where no assumption is made
regarding the structural form of the distribution of Y |(X =n)). The paper extended
similar results by SHANBHAG [9] and PANARETOS [3] dealing with the same
problem, but for distributions with infinite support.

*) Now at the University of Crete, Greece
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In this paper we provide a multivariate analogue of Panaretos’s [4] result
in the sense that we take X, Y to be random vectors with independent components.
One may argue that in practice the assumption of independent marginal distribu-
tions is unlikely to be satisfied exactly. There are, however, situations where for
reasons of mathematical simplicity one considers such distributions as a first approxi-
mation. This approach has the advantage of making the problem mathematically
tractable.

In the next section of the paper we re-state the result in the univariate case for
ease of reference. We then state and prove the multivariate extension of it. Then
in Section 3 two examples are given as an illustration where the multiple binomial
and the multiple hypergeometric distributions are characterized.

2. The Main result
Theorem 1. (PANARretOs, [4].) Let {(a,,b,): n=0,1,...} be a sequence of
nonnegative real vectors such that a,=0, n=0,1, ...,m; (m=0); by=0; b;,,,=0,
J=0 1. sk~ O-r:ké[%]; N=m. ([Z) denotes the integral part of Z).

Let {c,: n=0,1, ..., N} denote the sequence [Za,b,,_,,: n=0,1, ..., N}. Consider
r=0

a random vector (X,Y) of nonnegative, integer-valued components such that
P(X=n)=g,, n=0,1,....,N with go<1 and X=Y. Let Z=X-Y. Suppose
that whenever g,>0

Q1) P¥=rlX=n)= “'i”'" , r=01.n: n=01.,N
Then .
2.2) PY=rZ=0=P¥=rZ=1)=P(¥=rlZ=m+1)=

=S = HZ = ey [%]
(k relations) if and only if (iff)

g.=go?0" for some 6 =0
0
(2.3) n=0,1,.. km+1, 1;;;;[%]

The multivariate analogue of Theorem 1 can be stated in the following form.

Theorem 2. Consider a random vector (X,Y) with X=(X,, X,, ..., X5) and
Y=(Y,Y,, .., Y) where X, Y;; i=12,..5 are non-negative integer-valued
random variables such that P(X=n=P(X,=n,, Xy=n,, ..., X;=n)=g; n=
=(m, ngs .-sn); m=0,1,..,N;; N>0; i=1,2,...,s with g,<1 and X=Y.
Denote by Z=X-Y. Let {(a..b): n=(m,m; ...;0); m=0,1,...; 1=1,2,..., 5}
be a sequence of real vectors such that a,=0, r=0,1,...,m;, for some m, in
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O, N), i=1,2,...,8; b,=>0 for all n:n=0,1,m+1, 2m+1, ..., (ki—m+1;
O{kfé[ﬂr,:—l]; i=1,2,..,5. Define the sequence {c,} to be: c,= D ab,_
A n n

’ =9 . e
n=(n,,ng, ..., n); m=0,1,....,N;; i=1,2,...,8 where a,E( ) and
Z'o' stands for Z:' 22' Z" Suppose that whenever g,=0
r=0 r=0r,=0 r,=0

a.-bn—.-
(1.4) P(Y =rlX =p=—
=0k utl B=20YaaNg =L .8

Let {hy, hy, ..., h,}, w=s denote any subset of size w of {1,2,...,5}. Then the
conditions
(1.5) PY=rlZ=0)=PY =12, =lL,m+1,2Z,=1,m,+1, ..,

- -

z,u =!th*J+1,Z’,J*l =0 Z,,. =0 ven Z* =0)

for all j=1,2,...,58 and all 1,=0,1,....k,—1; 1=k;= [ ]

hold i ff
Cp s
(1.6) 8 = 89?;"171 07

for some 0,>0; i=1,2,....,5 and all n=(ny, ny, ...,n) such that n=k;m;+1;
lék;‘é[N'—_l—]; i=1.2 .58
m;

PrOOF. (We prove the theorem for s=2. The case for s=2 then follows
easily.)

“If Part: From (1.4), (1.6), for s=2 and for given j, and j, such that
0=,,=N,, i=1,2 we have

. : PY=r Xi=n+j, Xi= j
PY=rZ =), Zy=]) = =5 X =rtij X r2+h)~_—

P(Z =))

ﬂrbj

Cr+j 8r+f arb; g
— — —_ 9'1+119'n+u

PZ=)) P(Z=)) c

Hence
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1. So,

We have, however, that 3 P(Y=r|Z=j)
- J

0(j 0 = 3 P(Y =11Z = j)0p0p = A(0).
Hence 2

(1.7) PE =il i ) ERE
A(0)

Note that j,, j, were fixed but arbitrary. So (1.7) is valid for any j,, j, such that

0=j,=N, i=1,2. The fact that the right-hand-side of (1.7) does not depend on

Jj for j;=0,1,...,N;, i=1,2 implies that the probabilities P(Y=r|Z=j) are

independent of j and therefore they are all equal for a given r. This establishes (1.5).

teo,
S

Note. One may observe that if (1.4) and (1.6) are valid then ¥ and X-Y
not only satisfy (1.5), but they are in fact completely independent.

“Only if” Part.
From P(Y=r|Z,=lim+1, Z;=0)=P(Y=r|Z=0) and using (1.4) we have
(by an argument similar to that employed by PANARETOS [4] in the univariate case)

Eritimy,r £o,re

(1.8) = Gy +himi+1

crﬁ-h my,ry Cﬂ.l’z

ri=0,1,...,m;, i=1,2 for some 6,>0 and for every /,=0,1, ...,k —1.
Similarly from
P(Y=r|Z2,=0, Zy=Ilymy+1)=P(Y =r|Z=0)
we find

(1 9) Eri.ratlama+1 — 8ry.0 0;,+lgmg+1
Crirat+lsmy+1 Crp0

r;=0,1,...m;; i=1,2 for some 0,>0 and for every /,=0,1, ..., k;—1.
Moreover, from P(Y=r|Z,=Iim+1, Z,=Lmy+1)=P(Y=r|Z,=l,m+1,
Z,=0), for fixed 0=/,=k,—1 and for every /,=0,1, ..., k;—1 we find

gr1+hm|+l,l'g+llm=+l = gr1+hm+l.o 0;g+lgmg+l

(1.10)

Crytlymy+1,ra+lama+1 Cry+lymy+1,0

r=01, ...,_?1},,;{ i=1,2, and some B%?;O.O.

Fp=— Uy Ly s P —'1, 4, @llu DULIC

It can be checked easily that 0,=0,. On the other hand, /, was fixed but
arbitrary. Hence (1.10) is valid for every

II‘IS:I('=09 l, .,.,ki_l; i=1,2.
Combining (1.10) and (1.8) (for r,=0) yields

gi'u. na gﬂ.ﬂ Gg" 8;2

cﬂ]. nz CU, 0
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for some 0,,0,=0 and for all
N;—
nmy

n,'=0, l,...,k‘m,--i-l, lék.:‘[ 1], N;>‘0, i=1,2.

This completes the proof.

The theorem that has just been established extends to multivariate discrete
distributions with finite support a similar existing result concerning multivariate
discrete distributions with infinite support (PANATEROS [2], [5]).

3. Some Applications

As a consequence of Theorem 2 the following characterizations of the multiple
binomial and the multiple hypergeometric distritutions can te estatlished.

Corollary 1. (Characterization of the Multiple Binomial Distribution.)

Let (X,Y) be arandom vector with X =(X,, X,, ..., X,) and Y=(Y;, Ya, ..., Y
where X;, Y, i=1,2,...,5 are non-negative, integer-valued random variables with
X=Y, and P(X=0)<l. Suppose that the distribution of Y |(X=n) is multiple
hypergeometric, i.e. that

mi] [N i—m
& ALF =T

3.1) ¥ § =:[X=E)=i£]1 N,
n;

ri, ni, m,-, N;‘-'—'*O, r;‘:"'n;; i=1,2, seig 5

Ni_l

Then the condition (1.5) for k;=

i
for X to follow a multiple binom:ial distribution, i.e.,

], i=1,2,...,5 is necessary and sufficient

3 Nf " —-n
(32) Px =n)= I () preari=m

n=0,1,..,N;,, Ny>0, forsome O<p,<]l, gg=1—p;; i=12, ...5
Proor. Consider the sequences
(3.3) a, = 17[’”‘] and b, = H[N“'"‘]
=1\ "= n;
I"‘=0, l, weey My, NI:O, 1, veny N‘, i= l, 2, erry 5o

It follows easily that the sequence {c,} defined in Theorem 2 in this particular
case takes the form 3

(3.4) Cx = ]][N‘], m=0LiaNgt=hy .l
T i=1\l

Clearly, a,,b,, c, as given by (3.3) and (3.4) can be used to express (3.1) in the form
a,b__ : /c,_,. Moreover they meet all the conditions set by Theorem 2. Consequently,
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-1

J.imt.2.

., 5 holds iff A satisfies (1.6). A direct substitution then gwes that £ is multiple

bmomlal of the form (3.2) with p,=0/(1+0) i=1,2,.

Other characterization problems of this or similar nature where the multiple
binomial distribution was involved have been studied by, among others, SRIVASTAVA
and SRIVASTAVE [11], TALWALKER [12], SHANBHAG [9] AczEL [1], XEKALAKI [13] and
PANARETOS and XEKALAKI [7].

as a result of Theorem 2 we have that condition (1.5), for k;= [ sl

Corollary 2. (Characterization of the Multiple Hypergeometric Distribution).
Let (X,Y) be a random vector as in Corollary 1. Moreover, assume that the
conditional distribution of Y on X =n is of the structural form (1.4). Let X follow
—1
a multiple binomial distribution as in (3.2). Then condition (1.5) for ki=[N‘T ,
i=1,2,...,5 holds iff Y|(X=n) follows a multiple hypergeometric distribution
as in (3.1).

To prove the above corollary we need first to establish that the multiple binomial
distribution is uniquely decomposable into multiple binomials. This is done in the
form of the following lemma.

Lemma. Let G,(t) and G.(t) be the probability generating functions (p.g.f.’s)
of two independent random vectors X and Y, and let G(t) denote their convolution.
(i.e., G(1)=Gy(1)G.(1)). Assume that G(t) is the p.g.f. of a mulnple binomial distri-

bution with probability distribution as in (3.2). |i.e. G(1)= H (qi+pit)Ni ] Then
Gy(t) and Gyt) are also p.g.f’s of mufnple binomial d;smbuttons with the same

p ie. Gl(.)z.g(‘h +pit)™ and Gz(.J:lH(‘It +pit)" with ;; (mt'l‘”L):iZ;N:-

Proor. We give a proof for s=2. Then the general case follows easily.
We are given that

(3.5) Gy (11, ) Ga(ty, 1) = (g1 + 1) (ga+ Pat)™2.
Dividing (3.5) be its value at 7,=1 gives

Gy (1, 1) Ga(h, 1)

36 —_— t N;‘
( ) Gl(ls !2) Gﬂ(l! lﬂ) (q1+pl 1)
G\(t:, ty) Gy(ty, 1) ; o iy .
- R .g.5. i 4 t
Clearly, G, (L. 1) and Gul. 1) are valid p.g.f’s in #;. Therefore, since the

lemma is valid in the univariate case (see e.g. RAMACHANDRAN [8]), (3.6) is equiv-
alent to

Gl (fp fz) my Gs(fn rs) il 1
(3.7 G = (g1 +pt)™, A (g1 +p 1))

m;‘l’nl = Nl'
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If we use the same technique for 7,=1 we will find that

Gl (tls ’2) sy mg Gl (!ls ri) . ng
(3.8) AT (g2+ pata)™, G D (g2+pata)
m=+n2 = Ng

Combining the first relation of (3.7) for #,=1 with the first of the rclations in (3.8)
gives
(3.9 Gi(ty, 1) = (g1 + P 1)™ (g2 + pata)™.

Similarly combining the second of the relations in (3.7) for #,=1 with the second
of the relations in (3.8) yields

(3.10) Gy(ty, 12) = (@ + pr1)" (g2 + pata)™
where m,+my+n,+n,=N,+N,. Hence (3.9) and (3.10) complete the proof of

the lemma.

ProOF OF COROLLARY 2. First of all it can be checked easily that “necessity”
is a side result of Corollary 1. To prove the “sufficient” part we first observe that
since all the assumptions for theorem 2 hold we have that the conditions (1.5) for

k,:[N""], i=1,2,..,3 hold iff
my

2 Nr]( Pi ]"'l
Ch = ¢ —
X gi-—q[”i q:9,

which gives
c! - 7 N'l n . N,—n,
== I () ==
where =; = o S =1 s i

960, +p;’
So, ¢; multiple binomial distribution and therefore, according to the lemma and
the definition of ¢,, the same holds true for @, and b, ,. The result follows easily

if we take into account the fact that P(Y=r|X =n) was assumed to be of the struc-
tural form (1.4) and if we substitute in it a,,b,, c,.

Note. The reader may observe that here, as in the univariate case, the number
of conditions needed to characterize the multiple binomial, or the multiple hyper-
geometric distribution, depends on m; and N,, i=1,2,...,s5. The smaller m, is
in relation to N, the fewer the number of conditions required is.
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