Some general functional equations

By K. LAJKO (Debrecen)

Introduction

The purpose of this paper is to find the general solution of the functional equa-
tions

iéﬂ(x;) =g[‘§ x;] GEE =y s Ba =B iy vsiy ER,

(1)
fit R=R (i=1,...,n, g:R-R, G: R"1=+R
and
- o X1 Xn-1
x) = x|Gl—, ..., ¥ Wi e ER L,
(2) igﬂ( ) g[ig;, ] [xu xn] . i

i Ry -R (=1..,n), g:R,-R, G:Ry'-R,

where R is the set of real numbers and R, ={x|x=0, x¢R}.
Equations (1) and (2) have applications to the characterization of normal and
gamma distributions (see [5]).

1. Preliminary results

We need the following results:

Theorem 1.1. (see [7]). Suppose that the functions f, g, h, k: R—R satisfy the
Sfunctional equation

(1.1) S(x)g(y) = h(ax+by)k(cx+dy) (x,yER),

where a, b, ¢, deR,=R\ {0} are arbitrary rational constants with 4=ad—bc+0
and there exists a subset D C R* of positive Lebesgue-measure, such that f(x)g(»)=0
for all (x, y)€D, then

(1.2) fO) =mexp[4(®+n(®]  (x€R),
(1.3) 809 = % exp | a0 — 22 n(x)|  (x€R),
(1.4) o =hs(Sx)e(-52)  em),
(1.5) ko =hs (-2 o)e(S5)  @em,
where

(1.6) o f1oafy =1
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holds and the functions A;: R—+R (i=1,2) and n: R—~R satisfy the functional equa-
tions

(1.7 Ax+y)=AXx)+A(y) (x, y€R)

and

(1.8) n(x+y)+n(x—y)=2n(x)+2n(y) (x, y€R)
respectively.

Corollary 1.1 (see [1], [7]). The general measurable solutions of (1.1) are

(1.9) £(x) = o, exp [a, x+byx?] (x€R),
(1.10) g(x) = azexp [a,x—% b, x“] (x€R),
(1.11) h(x) = Ba g €Xp ["‘“‘Aﬂwgb&] (x€R),
(1.12) k(x) = Pty oz €Xp [L;“‘f-’ x—% blx2] (x€R),

where a;, by, o;, f:i€R (i=1, 2) are arbitrary constants satisfying (1.6). (Again the
existence of D cR? with positive measure such that f(x)g(»)#0 on D is supposed.)

Theorem 1.2 (see [2] and [6]). Suppose that the functions f, g, p,q: R, —=R
satisfy the functional equation

(113) ) = pix+na(2) @ yero)

and there exist sets Ty, Ty R, of positive Lebesgue-measure such that f(x)g(y)=0
for all xeT,, yeT,. Then

(1.14) S(x) = A exp [a(x)+m,(x)] (x€R,),
(1.15) g(x) = Bexp [a(x)+ my(x)] (x€R,),
(1.16) p(x) = Cexp[a(x)+m(x)+my(x)]  (x€R,),
(1.17) q(x) = Dcxp[ml [xiﬂ]—m, (x+ 1)] (x€R,),
where

(1.18) AB = CD

holds and the functions a: R—~R, m;: R, =R (i=1, 2) satisfy the functional equa-
tions (1.7) and

(1.19) m(xy) = m(x)+m(p) (x, yER,)

respectively.

We remark that a simple proof of Theorem 1.2 can be based on a theorem of
Z. DArGCzY—K. LAIKO—L. SzEKELYHIDI (see [3]).
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Corollary 1.2 (see [2]). The general measurable solutions of (1.13) are the func-
tions

(1.20) f(x) = A exp[ax+b In x] (x€R,),
(1.21) g(x) = Bexp [ax+cIn x] (x€R,),
(1.22) p(x) = Cexp [ax+(c+b) In x] (x€R,),
(1.23) g(x) = D exp [b In xi -—cln(x+ 1)] (x€R,),

where a, b, ccRand A, B, C, DER, are arbitrary constants with (1.18). (Again the
existence of Ty, T;,cR, with positive measure such that f(x)g(y)=0 for all
x€T,, yeT, is supposed.)

2. On the functional equation (1)

Lemma 2.1 (see [5]). Suppose that the functions f,, g, G satisfy the functional
equation (1) and there exist sets A;CR (i=1, ...,n) of positive Lebesgue-measure

such that 1] filx) =0 (x,€4;; i=1, ..., n). Then [Ifi(x)g(u)G(us, ..., u)=0 for
i=1
all x;, u;ER =l ..y B)
Using this lemma and the Theorem 1.1, we get the general solution of (1):

Theorem 2.1. Suppose that the functions f;, g and G satisfy the conditions of
Lemma 2.1. Then we have

(2.1) Si(x) = o exp [a;(x) +n(x;)] (x€R, i=1,...,n),

(2.2) g(x) = ﬁ‘é a; eXp [-;Iz- [é; a,-(x)+n(x)]] (x€R),

“I}If(xi)
(2.3) Bl ot e i (x€R, i=1,..,n-1),
g Z X;

i=1

where the functions a;: R—R (i=1, ...,n) and n: R—~R fulfil the functional equa-
tions (1.7) and (1.8) respectively, «;, BER, (i=1, ..., n) are arbitrary constants.

ProOOF. Using Lemma 2.1, it follows that
‘]{ Ji(x) g(uy) G (uy, ..., u,) # 0

for all x;, y;€R (i=1, ..., n).
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Now let j<n be fixed and x;=x, if i#j. From (1) we get

£(x) iéj](x,) = g(x;+(n—1)x,) GO, ..., 0, x;—x,, 0, ..., 0)
i

for all x;, x,€R. This implies the functional equation

(2-4) f_}(xj)fn(xu) - g(xj'i'(n_l)xn)(_;(xj_xn) (xj’xnek)9
where
(2.5) Ja(xn) = AT /i(x2)  (x,ER),
ij
(2.6) G(») = G(, ...,0,x,0,...,0) (x€R).
J

The functional equation (2.4) is a special case of (1.1) with a=1,b=n—1,c=1,
d= —1. Further f,(x,)#0 forall x,€R. Thus the functions f; sansfy the condmons
of Theorem 1.1. Therefore f;, f,, g and G are of the forms

2.7 Ji(x) = ayexpla;(x)+n;(x)]  (x;€R),
@9) Ju(5) = ddexplai(m) +(n—Dmy(5)] - (€ R),
29) ew=053nE eem,
(210) 6@ =p4(22 H)n(-2) e

for any fixed j<n, where a;, o), B}, B3R, are arbitrary constants with «;o)f}p}=
and the functions a;,a): R—~R and n;: R—R satisfy the functional equations (1.7)
and (1.8) respectively.

From (2.5) using (2.7) and (2.8), we get

Sul) = 2 exp [y )+ adx) — 3 @) +mny () — 3 )]
H %
i=1
for any fixed j<n and for all x,€R. Thus n;(x)=n(x) (x€R) (_,r—l ,n—1).

By aj(x)+a-'(x) a,‘(x)+a"(x) (reR) and ofx;=ofx, the expression aj(x)+
+al(x)— Z a;(x) and —-f- depend only on n. Denoting these by a,(x) and

i=1
Z %
i=]
x, respectively, we get that
(2.11) Ja(x,) = o, exp[a,(x,)+n(x,)] (x,ER).

(2.7) and (2.11) gives (2.1).
From (2.9) using (2.5) and (2.1), we get the representation (2.2) for g.
From (1) by x,=0 and using (2.1) and (2.2), we get (2.3).
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It is easy to see that functions (2.1)—(2.3) satisfy the functional equation (1).
From Theorem 2.1 we can easily obtain

Corollary 2.1. If the measurable functions f;, g and G satisfy the conditions of
Theorem 2.1, then

(2.12) fi(x) = o exp [a;x;+bxi] (x€R; i=1,...,n),
@.13) g =p g o, eXp [% [=zl a,x+bx2]] (xER),
T /i
(2.14) G(Xyy eues Xpy) = Oy ——— (5€R; i=1,...,n-1),
(2]

where a;, b€R, «;, fER, (i=1, ..., n) are arbitrary constants.

PrOOF. The functions f, and G (defined by (2.5) and (2.6) respectively) are mea-
surable. Thus the functions f;, f,, g and G satisfy the conditions of Corollary 1.1
if a=1, b=n—1, ¢=1, d=—1, therefore the functions (x;, n; in 2.7), (2.8) have
the form

aj(XJ) = ajx!, nl(xj) = bjxf, aﬂ(x,,) = aﬂx,, (xj-, x“ER)

for any fixed j<n, where a;, b;, aj¢R are arbitrary constants. Then following the
proof of Theorem 2.1, we get that

a;(x) =a;x; (x€R) (i=1,...,n); nj(x)=n(x)=>bx* (x€R; j=1,..,n—1),

where a;, b€R are arbitrary constants and from (2.1)—(2.3) we can deduce the
expressions (2.12)—(2.14) for f;, g, G respectively.

3. On the functional equation (2)

Lemma 3.1. Suppose that the functions f;, g and G satisfy the functional equation
(2) and there exist sets T;cR, (i=1, ..., n) of positive Lebesgue-measure such that

T £G)=0 for all x€T, (=1, .., n). Then [J fi(x)@()G (s, ..., ) =0 for
:::7!1 X ER . =1, ... 7m). e
PROOF. (2) implies that g hz"lxi]ce-:, X;—:‘]ﬂ for all xe€T,
=1, thit B
(3.1
g(U)Gus, ..., u) # 0 for ulEél'T;,(us,...,u,,GxET [x—x...x
Substituting T

n
X "
= Jx, Uhgy=— (=1,..,n-1),
i=1 Xn
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we get from (2) the equation

(3.2
ned uyu u
g ﬂ :_:_+l j;l "_:_ = g(ul)G(uS! ssey uu) (“l! -2 U,,ER.*),
= 1+ 3 Ujsa i+ Z Ujs1
J=1 J=1
which together with (3.1) implies that
| S13)
X€A; = L i=1,..,n-1)
whint Z T+
n J=1
IT fitx) #0 if 1 g
i=1 n
€4, = U |—=5=|-
n €T, 1+ 215,
i=1 %,

By a theorem of Steinhaus (see [4]) the sets A;(i=1, ..., n) contain intervals

I9=[af®, b{¥]c A;cR, (i=1, ...,n) such that
(3.3) Hﬁ(x;) s 0, if xiE I‘(O) (l = 1, verg n).
i=1

Repeating this argument (using /,* instead T}), we have

( » 1©
e (0) i :
(3.4) mehym Ll A oo
ke xu+j§ Ij +Il
n ¥ i
T AiG) 20, if 1 & g e
i=1 z Ij(o)
x“EBn = U #!’.__ 2
i |14 5
\ J=1 xll
It is easy to see that the sets B; in (3.4) are the intervals
> al® S b©
!}” = ﬁ—-—-—a}“’, S L S b?| (i=1,...
Jj=i }'#I

Thus

(3.5) T/ #0, if xeI® =[af®,b®] @=1,..,n).

wn—1)
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By induction, we get a sequence IM=[a, b®](i=1,...,n;k=0,1,..)
with property

n X k=1 n w k-1
= = J=
(36) L™ =[a®,b¥] 2 || —L—| o, - b{®
a®+ 3 b b+ 3 a®
j=1 j=1
J#i Jj==i
(i=1,...,n)

and
M) =0, if xel® @G=1,..,mk=01,2,..)
=1

From (3.6) one can see that a{® 0, b{¥) - as koo, therefore

fI"Tf.-(x.-);ﬁl), if x¢€R, (@(=1,...,n).
=]

This and (2) gives that
g(u)G(ug, ..., ) #0 if ueR, (=1,..,n),

which completes the proof of Lemma 3.1.
Now we can easily prove

Theorem 3.1. Suppose that the functions f;, g and G satisfy the conditions of
Lemma 3.1, then

3.7 fi(x) = A;expa(x)+m;(x)] (x€R,; i =1,..,n),
(.8) g(x) = Bexp [a(x)+ é mi(x)] (x€R).,
(3.9) G(X15 «e0y X3=1) = Cexp ”Z_'l m; %— —m,|1 +”2-’1x;]
i=1 i=1
1+ ‘;; Xi
(xEGR-i-)’

where the functions a: R—R and m;: R, —R (i=1, ..., n) fulfil the functional equa-
n

tions (1.7) and (1.19) respectively, A;, B, CER, are arbitrary constants with [] A;=
=1

Proor. Using Lemma 3.1, it follows that ﬁ fi(x) g (u)G(us, ..., u,)#0 for all
i=1
x', ll;ER_,_ (i=], vany !l).
Now, let j<n be fixed and x;=x,+x; if i##j, n. Then we get from (2) that
a—1 > X x
L) f10) [T St x)) = gl =00 +x) G (147, 0o 2L,y 143

n n
iptj
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for all x,, x;€R,. This implies the functional equation

(3.10) £ 1) = PGt x)a(2) G xRy,
where
(3.11) py = -E12=D4  (yeR,)
T 7w
ij
and
(3.12) qg(v) = G(1+v, ...,% .y 14+0) (©ER,).

Thus the functions f,, f;, p, g satisfy the condition of Theorem 1.2. Therefore £,
and f; are of the forms

(3.13) fi(x) = A;exp [a(x)+my(x)] (x€R,; i=]j,n)

for any fixed j<n, where the functions a: R—R and m;: R, -R (i=n, j) satisfy
the functional equations (1.7) and (1.19) respectively, 4,€R, (i=n, j) are arbitrary
constants. Hence (3.7) holds.

From (2) by x;=x (i=1,...,n) we get

léﬁ(x) = g(nx)G(1, ...,1) (x€R,),

which together with (3.7) implies (3.8), where B¢R, is an arbitrary constant.
Finally from (2) by x,=1 and using (3.7) and (3.8), we get (3.9) for G, where C
is an arbitrary constant.
It is easy to see that the functions (3.7)—(3.9) satisfy the functional equation (2)

indeed if JJ A,=BC.
i=1

Now, we can easily obtain

Corollary 3.1. If the measurable functions f;, g and G satisfy the conditions of
Theorem 3.1, then

(3.14) fi(x) = A;explax+b;Inx] (x€R,, i=1,...,n),
(3.15) g(x) = Bexp |ax+ Zb;]lnx] (x€R.),

L =]

[ n—1 n—1
(B.16)  G(xy ., Xp) = Cexp| 3 byln [—2—|—b,In[1+ Zx‘]

i=1 l+ Z x‘ i=1

i=1
(xi€R}),

where a,bcR; A;, B, C€R, (i=1, ..., n) are arbitrary constants with [[ A;= BC.

i=1
The proof of this corollary is similar to that of Corollary 2.1. (Here we need
Corollary 1.2 instead of Corollary 1.1.)
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