On the measurable homomorphisms

By I. G. KALMÁR (Debrecen)

In [3] R. SIKORSKI examined the necessaey and sufficient conditions that every σ -homomorphism of a σ -field \mathcal{B} (of subsets of Y) into a σ -quotient algebra $\mathcal{A}|\mathcal{I}$ be induced by a function of X into Y, where (X,\mathcal{A}) is a measurable space. According to the definition of Sikorski we say that a σ -homomorphism X of \mathcal{B} into a σ -quotient algebra $\mathcal{A}|\mathcal{I}$ is induced by a function f of X into Y if $f^{-1}(E) \in \mathcal{A}$ and $[f^{-1}(E)] = X(E)$ for all $E \in \mathcal{B}$. $[f^{-1}(E)]$ denotes here the element of $\mathcal{A}|\mathcal{I}$ which contains the set $f^{-1}(E)$. This examination was done by Sikorski under some more special properties of \mathcal{B} , too. We prove the analogous theorems exchanged $\mathcal{A}|\mathcal{I}$ by an abstract σ -orthomodular poset.

A partially ordered set (poset) (\mathcal{L}, \leq) is said to be an σ -orthomodular poset if (i) there are two elements 0 and 1 in \mathcal{L} such that $0 \leq a \leq 1$ for all $a \in \mathcal{L}$, (ii) there exists a mapping ': $a \rightarrow a'$ of \mathcal{L} into itself such that $(a^{\perp})^{\perp} = a$, $a \vee a^{\perp} = 1$ for all $a \in \mathcal{L}$, and if $a \leq b$, then $b^{\perp} \leq a^{\perp}$, (iii) if $a_i \leq a_j^{\perp}$, then $\bigvee_{i=1}^{\infty} a_i$ exists in \mathcal{L} , (iv) if

 $a \le b$, then there is $d \in \mathcal{L}$ such that $a \le d^{\perp}$ and $a \lor d = b$.

Let (Y, \mathcal{B}) be an arbitrary measurable space and suppose $\mathcal{L} = \mathcal{L}(V, \wedge, ', 0, 1)$ is a σ -orthomodular poset with first and last elements 0, 1 respectively. Then for all σ -homomorphism $x: \mathcal{B} \to \mathcal{L}$ $x(\mathcal{B}) = \{x(b), b \in \mathcal{B}\}$ is a sub σ -Boolean algebra of \mathcal{L} .

Definition 1. The σ -homomorphism x is called *measurable* if for every such measurable space (Ω, \mathcal{F}) that there exists a σ -homomorphism h of \mathcal{F} onto $x(\mathcal{B})$ one can find also an \mathcal{F} -measurable function $f: \Omega \to Y$ so that

$$x(E) = h(f^{-1}(E))$$
 for all $E \in \mathcal{B}$.

For brevity let $\operatorname{Hom}(\mathcal{B},\mathcal{L})$ denote the collection of all σ -homomorphism of \mathcal{B} into \mathcal{L} .

Theorem 1. Let (Y, \mathcal{B}) be a measurable space. Then for every σ -orthomodular poset \mathcal{L} every $x \in \text{Hom } (\mathcal{B}, \mathcal{L})$ is measurable if and only if for every σ -quotient algebra $\mathcal{F}|\mathcal{F}|$ (of a set Ω) every element of $\text{Hom } (\mathcal{B}, \mathcal{F}|\mathcal{F})$ is induced by a function of Ω into Y.

PROOF. Let (Ω, \mathcal{F}) , h be the same as in Definition 1. Suppose that every σ -homomorphism of \mathcal{B} into every σ -quotient algebra $\mathcal{F}|\mathcal{I}$ (of the set Ω) is induced by a function from Ω into Y. Let $x(\mathcal{B})$ be isomorphic to a σ -quotient algebra $\mathcal{F}|\mathcal{I}$, where \mathcal{I} is a σ -ideal of \mathcal{F} . (The isomorphism: $l: \mathcal{F}|\mathcal{I} \to x(\mathcal{B})$). Let us denote the natural σ -homomorphism of \mathcal{F} onto $\mathcal{F}|\mathcal{I}$ by h' (See Fig. 1.) Trivially $h = l \circ h'$.

Fig. 1

Now $l^{-1} \circ x$ is a σ -homomorphism of \mathcal{B} onto $\mathcal{F}|\mathcal{I}$, so there exists an \mathcal{F} -measurable mapping $f: \Omega \to Y$ such that

$$l^{-1}(x(E)) = h'(f^{-1}(E))$$
 for all $E \in \mathcal{B}$. Hence $x(E) = l \circ h'(f^{-1}(E)) = h(f^{-1}(E))$.

Necessity. Let $x \in \text{Hom }(\mathcal{B}, \mathcal{L})$ be measurable for every σ -orthomodular poset \mathcal{L} and for all $x \in \text{Hom }(\mathcal{B}, \mathcal{L})$. Suppose (X, \mathcal{G}) is a measurable space, $\mathcal{G}|\mathcal{J}$ is a σ -quotient algebra and $y \in \text{Hom }(\mathcal{B}, \mathcal{G}|\mathcal{J})$. Then there exists a \mathcal{G} -measurable function g of X into Y such that

$$n(g^{-1}(E))=y(E)$$
 for all $E\in\mathcal{B}$,

where n is the natural homomorphism of \mathcal{G} onto $\mathcal{G}|\mathcal{J}$. So y is measurable. Q.e.d.

Let us consider Theorems 3.2, 4.3 and 4.4 of R. SIKORSKI [3]. With the help of our Theorem 1 we have the following three theorems.

Theorem 2. Let $\emptyset \neq E \subseteq R$. In order that every σ -homomorphism x of the Borel σ -field $\mathcal{B}(E)$ into an arbitrary σ -orthomodular poset \mathcal{L} be measurable, it is necessary and sufficient that $E \in \mathcal{B}(R)$, where $\mathcal{B}(R)$ is the Borel σ -field of the real line R.

Theorem 3. Suppose that there exists an enumerable sequence $\{E_i\}$ in \mathcal{B} such that \mathcal{B} is the least σ -field containing all the sets E_i (i=1, 2, ...). Then in order that every $x \in \text{Hom } (\mathcal{B}, \mathcal{L})$ be measurable for every σ -orthomodular poset \mathcal{L} , it is sufficient and necessary that \mathcal{B} be isomorphic to the Borel σ -field $\mathcal{B}(\tau)$ of a Borel space τ .

Definition 2. The topological space τ is a Borel space iff \mathcal{B} is homeomorphic to a Borel set of the Hilbert cube.

Theorem 4. Let Y be a separable metric space and $\mathcal{B}(Y)$ its Borel σ -field. Then in order that every $x \in \text{Hom}(\mathcal{B}, \mathcal{L})$ be measurable for arbitrary σ -orthomodular poset \mathcal{L} , it is necessary and sufficient that \mathcal{B} be a Borel space.

Finally we shall prove two corollaries of our theorems*.

Corollary 1. Let Y be a separable complete metric space and denote $\mathscr{B}(Y)$ its Borel sets. Let \mathscr{L} be a σ -orthomodular poset. Then every σ -homomorphism x from $\mathscr{B}(Y)$ into \mathscr{L} is measurable.

PROOF. Since every separable complete metric space is a Borel space (see [1], IX. 6.1. Corollary 1. of Theorem 1., for example), our statement follows from Theorem 4.

In theoretical physics it is almost the case that a measurable quantity takes its values in a locally compact second countable Hausdorff space. This fact makes the following theorem interesting.

Corollary 2. If Y is locally compact second countable Hausdorff space, then every $x \in \text{Hom } (\mathcal{B}(Y), \mathcal{L})$ is measurable for every σ -orthomodular poset \mathcal{L} .

PROOF. It follows from [1], IX. 2.9. Corollary of Proposition 16., and IX. 6.1. Corollary of Proposition 2. that every locally compact second countable Hausdorff space is metrisable and what is more, it is a separable complete metric space. So our Corollary 1. implies Corollary 2.

References

- [1] N. BOURBAKI, General Topology, Addison-Wesley, Reading (Mass.), 1966.
- [2] L. LOOMIS, On the representation of σ -complete Boolean algebras, *Bull. Amer. Math. Soc.* 53 (1947), 757—760.
- [3] R. Sikorski, On the inducing of homomorphism by mappings, Fund. Math. 36, 1949.

I. G. KALMÁR DEPT. OF MATHEMATICS UNIVERSITY OF DEBRECEN H—4010 DEBRECEN 10, PF. 12 HUNGARY

(Received March 10, 1981.)

^{*} Our original proofs of these corollaries were more complicated then the ones presented here. The author wishes to thank Prof. *Tamás Matolcsi* for pointing out these simple proofs.