A minimax theorem for additive functions

By I. KÁTAI (Budapest)

1. Let g(n) be a nonnegative additive function, assume that tends to zero monotonically on the set of primes. Let

$$\psi(y) = \sum_{p \le y} g(p),$$

$$\beta(p) = \sup_{\alpha \ge 1} g(p^{\alpha}),$$

(1.3)
$$\sup_{\alpha \geq 1} |g(p^{\alpha}) - g(p)| \leq t(p).$$

Assume that

(1.4)
$$\psi(2y) - \psi(y) = o(1) \quad (y \to \infty)$$

$$(1.5) \psi(y) \to \infty,$$

$$(1.6) \sum_{p} t(p) < \infty.$$

Let $k \ge 1$,

(1.7)
$$E_k(x) = \max_{n \le x} \min_{j=1,\dots,k} g(n+j).$$

We should like to determine $E_k(x)$ as $x \to \infty$ for every fixed k. For every integer n let

$$A_k(n) = \prod_{\substack{p^{\alpha} || n \\ n \leq k}} p^{\alpha}$$

$$(1.9) - (1.10) \quad B_k = \sup_{n \ge 1} \frac{1}{k} \left\{ \sum_{j=1}^k g(A_k(n+j)) \right\}, \quad C_k = \frac{1}{k} \sum_{p > k} (\beta(p) - g(p)).$$

We shall prove the following

Theorem 1. On the assumptions stated above

(1.11)
$$\lim_{x \to \infty} \left(E_k(x) - \frac{\psi(\log x)}{k} \right) = B_k + C_k - \frac{\psi(k)}{k}.$$

Supposing furthermore that $g(p) \le g(p^2) \le g(p^3) \le ...$, we have

$$(1.12) B_k = \frac{1}{k} \sum_{p \le k} \varrho_{p,k},$$

250 I. Kátai

where

(1.13)
$$\varrho_{p,k} = \beta(p) + \sum_{r=1}^{\infty} g(p^r) \left\{ \left[\frac{k-1}{p^r} \right] - \left[\frac{k-1}{p^{r+1}} \right] \right\}.$$

Remarks. 1. Assuming that g(n) is strongly additive, i.e. $g(p^{\alpha})=g(p)$ for $\alpha \ge 2$, we have

(1.14)
$$\varrho_{p,k} = \begin{cases} \left(1 + \left[\frac{k}{p}\right]\right) g(p) & \text{if } p+k, \\ \frac{k}{p} g(p) & \text{if } p|k. \end{cases}$$

2. Putting $g(n) = \log \frac{\sigma(n)}{n}$, where $\sigma(n)$ is the sum of the divisors of n we have

(1.15)
$$L(k) = \overline{\lim}_{n \to \infty} (\log \log n)^{1/k} \min \left(\frac{\sigma(n+1)}{n+1}, \dots, \frac{\sigma(n+k)}{n+k} \right)$$

where

(1.16)
$$L(k) = \left(\frac{6}{\pi^2} e^{\gamma}\right)^{1/k} \exp\left(B_k + C_k - \frac{\psi(k)}{k}\right),$$

(1.17)
$$\psi(k) = \sum_{p \le k} \log\left(1 + \frac{1}{p}\right), \quad C_k = \frac{1}{k} \sum_{p > k} \log\frac{1}{1 - 1/p^2}$$

and B_k is computed from (1.12), (1.13) by putting $\beta(p) = \log(1 - 1/p)^{-1}$, $g(p^r) = \log(1 + p^{-1} + ... + p^{-r})$.

The proof of (1.14) is an obvious consequence of (1.13). To prove (1.15) we have to observe only that

$$\prod_{p \le y} (1 + 1/p) = (1 + o(1)) \frac{6}{\pi^2} e^{\gamma} \log y.$$

3. Putting $g(n) = -\log \frac{\varphi(n)}{n}$, our theorem gives the recent result of M. Haus-MAN [1].

2. Proof of the assertion

Let

$$g_y(n) = \sum_{\substack{p^{\alpha} \parallel n \\ p^{\alpha} \leq y}} g(p^{\alpha}); \quad g(n; y) = \sum_{\substack{p^{\alpha} \parallel n \\ p^{\alpha} > y}} g(p^{\alpha}).$$

First we observe that $g(n; \log n) \to 0$ as $n \to \infty$. Indeed, if $q_1 < q_2 < ... < q_r$ are the sequence of all prime divisors of n that are greater than $\log n$, then from the monotonity of g(p) we have

$$g(n; \log n) = \sum_{i=1}^{r} \beta(q_i) \le \sum_{i=1}^{r} g(p_i) + \sum_{p>y} t(p)$$

where $p_1 < p_2 < ... < p_r$ the smallest r primes greater than $\log n$. Since

$$(\log n)^r \leq \prod_{i=1}^r p_i \leq \prod_{i=1}^r q_i \leq n,$$

we have $r \le (\log n)(\log \log n)^{-1}$, and so $p_r \le 4 \log n$. So, by (1.4) we have

$$\sum_{i=1}^{r} g(p_i) \leq \psi(4\log n) - \psi(\log n) \to 0.$$

Now we give an appropriate upperestimation for $E_k(x)$. It is obvious that

$$E_k(x) \le \max_{n \le x} \{ k^{-1} \{ g(n+1) + \dots + g(n+k) \} \}.$$

From (1.9) we have

$$E_k(x) \le B_k + \max_{n \le x} \left\{ k^{-1} \sum_{j=1}^k g(n+j; k) \right\}.$$

Since for p > k p divides n+j at most once and $g(n+j, \log x) = \sigma(1)$, we have

$$k^{-1} \sum_{j=1}^{k} g(n+j; k) \le k^{-1} \sum_{k$$

whence in (1.11) the inequality \leq holds.

Let ε_1 , ε_2 , ε_3 be arbitrary small positive constants. Let n_0 be chosen so that

$$(2.1) k^{-1} \sum_{j=1}^{k} g(A_k(n_0+j)) \ge B_k - \varepsilon_1.$$

Let $P^{(1)} = \prod_{p \le k} p$,

$$P^{(2)} = 1.c.m. \{A_k(n_0+j) \ (j=1,...,k)\}.$$

It is obvious that $A_k(n+j) = A_k(b_0+j)$, $j \in [1, k]$ for $n \equiv n_0 \pmod{P^{(1)}P^{(2)}}$. Let y be so large and the exponents β_j for the primes p_j in the interval (k, y) be chosen so that

(2.2)
$$\Sigma g(p_j^{\beta j}) \ge kC_k + (\psi(y) - \psi(k)) - \varepsilon_2.$$

Let $P_3 = \prod p_j^{\beta_j}$. Let now

$$P = \prod_{y$$

 $Q_1, Q_2, ..., Q_k$ be the products of primes from $\left(y, \frac{1}{2} \log x\right)$, so that $P = Q_1 ... Q_k$ The congruence system

$$n \equiv n_0 \pmod{P^{(1)}P^{(2)}}, \quad n+1 \equiv 0 \pmod{P^{(3)}},$$

 $n+1 \equiv 0 \pmod{Q_1}, \quad n+j \equiv 0 \pmod{Q_j} \quad (j=2, ..., k)$

has a solution in the interval $[1, P^{(1)}P^{(2)}P^{(3)}P]$. From the nonnegativity of g we have

(2.3)
$$\begin{cases} g(n+1) \ge \gamma_1 + \delta + g(Q_1) \\ g(n+j) \ge \gamma_j + g(Q_j) \quad (j = 2, ..., k), \end{cases}$$

where

$$\gamma_j = g(A_k(n_0+j)), \quad \delta = g(P^{(3)}).$$

We have

$$\psi\left(\frac{1}{2}\log x\right) - \psi(y) = g(P) = g(Q_1) + \dots + g(Q_k).$$

Let $A = \psi\left(\frac{1}{2}\log x\right) - \psi(y) + (\gamma_1 + \dots + \gamma_k + \delta)$. Since $g(p) \to 0$ for $p \to \infty$, we can choose a partition of the primes in $\left(y, \frac{1}{2}\log x\right)$ such that

$$(2.4) \left| g(Q_1) + (\gamma_1 + \delta) - \frac{\Lambda}{k} \right| \le \varepsilon_3, \left| g(Q_j) + \gamma_j - \frac{\Lambda}{k} \right| \le \varepsilon_3.$$

Taking into account (2.1), (2.2) we get

$$k^{-1}(\gamma_1+\ldots+\gamma_k+\delta) \geq B_k+C_k+k^{-1}(\psi(y)-\psi(k))-k^{-1}(\varepsilon_1+\varepsilon_2),$$

and from (2.3), (2.4) we deduce

$$\min_{j=1,\ldots,k} g(n+j) \ge B_k + C_k + k^{-1} \left(\psi \left(\frac{1}{2} \log x \right) - \psi(k) \right) - k^{-1} (\varepsilon_1 + \varepsilon_2) - \varepsilon_3.$$

Since $\psi(\log x) - \psi(\frac{1}{2}\log x) = \sigma(1)$, we get the desired result.

Reference

[1] M. HAUSMAN, Generalization of a theorem of Landau, Pacific J. Math. 84 (1979), 91-95.

(Received September 18, 1981.)