A minimax theorem for additive functions

By I. KATAI (Budapest)

1. Let g(n) be a nonnegative additive function, assume that tends to zero mono-
tonically on the set of primes. Let

(1.1) () = 2 g(p),
p=Yy
(1.2) B(p) = sup g(p"),
(1.3) o lg(p*)—g(p) = t(p).
Assume that B
(1.4) Y2y) =y ()=o) (y—+=)
(1.5) Y (y) ==,
e 3 1(p) <e.
Let k=1, ’
(1.7) E,(x)=max min g(n+Jj).

We should like to determine E,(x) as x—e for every fixed k. For every integer n
let

(1.8) An) = J] p°

p*lin
p=k

19-(10) 8= swp{ ek}, =% 3 (F0)-¢)

We shall prove the following

Theorem 1. On the assumptions stated above

(110 tim (B, -Y8ED) _ gy, YO

Supposing furthermore that g(p)=g(pH)=g(p®)=..., we have

1
(1.12) B, = Ipé; Qp.k»
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where

(113 o= B0+ Zen {5

Tad b

Remarks. 1. Assuming that g(n) is strongly additive, i.e. g(p*)=g(p) for a=2,
we have

(1.14) poAs [1+[%]]g(p) if p+k,
;g(P) if  plk.
()

2. Putting g(n)=log——, where o&(n) is the sum of the divisors of n we have

= vk [o(n+1) a(n+k)

(1.15) L(k) —E(loglogn}" mm[ - o = ]

where

(1.16) Lk = [nE e"] exp [Bk+C,‘ lMk)]

(1.17) y(k)= 2 log 1+i] = Z’ log —— L
o p) p=k  1—1/p*

and B, is computed from (1.12), (1.13) by putting B(p)=log(1—1/p)7, g(p")=
=log(l4+p~'+...+p™".

The proof of (1.14) is an obvious consequence of (1.13). To prove (1.15) we have
to observe only that

JT+1/p)=(1 +o(l))£§e’ logy.

P=y
3. Putting g(n)= —log oL ), our theorem gives the recent result of M. HAus-
MAN [1].
2. Proof of the assertion
Let

g,(n) = ,% g@); gm;y)= 3 g(p.

pElin
prsy pr=y

First we observe that g(n;logn)—~0 as n—e. Indeed, if g,<g,<...<gq,
are the sequence of all prime divisors of n that are greater than log n, then from the
monotonity of g(p) we have

g(n;logn) = Zﬂ(fm = Zg(P;H 2 (p)

=y
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where p,<p,<...<p, the smallest r primes greater than log n. Since

(log n)y E;q pi = ‘IZ q; = n,

we have r=(logn)(loglogn)~!, and so p,=4logn.
So, by (1.4) we have

2 g(p) = ¥ (4log n)—y (log n) — 0.

Now we give an appropriate upperestimation for £, (x). It is obvious that

E,(x) = max {k~gn+1)+...+g(n+k)}}.
From (1.9) we have

k
E,(x) = B,+max {k"l 2, g(n+j; k)].
n=x ji=1
Since for p=k p divides n+j at most once and g(n+j, log x)=a(1), we have
k
k™ 121 g(n+j; k) = k“ji %‘ B(p) = Ce+k~ (¥ (logx) =y (k)),
= =p=Il0gx

whence in (1.11) the inequality = holds.
Let &,, &, & be arbitrary small positive constants. Let n, be chosen so that

k
(2.1) k_l JZ; g(At(no‘i'j)) g 33—81.
Let PR ITp,
p=k

P® = lem. {A,(no+j) (J=1, ..., k)}.

It is obvious that A,(n+j)=A4,(by+j), je[l, k] for n=n,(mod PMP®). Let y
be so large and the exponents f8; for the primes p; in the interval (k, y) be chosen so
that

(2.2) Zg(p/) = kGt (Y () — Y (k) —e..

Let Pg=]] pfi. Let now
P= I b

y<p=ilogx
0,, Q,, ..., O, be the products of primes from [y, %log x], so that P=0,...0,
The congruence system
n = ng(mod PYP®) n+1=0(mod P®),
n+1=0(modQ,), n+j=0(modQ) (=2 ..,k
has a solution in the interval [1, PP P® P P]. From the nonnegativity of g we have
{g(nH) =0 +0+g(Q)

23) e N LR )
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where
vy = 8(Ax(no+Jj)), &= g(P®).
We have

v (3102 x) v () = £(P) = 8@ + ... +2(Q0.
Let A=y [%logx]—dl(_}')—l—(?,+...+}',‘+5). Since g(p)—+0 for p—e<=, we can

g ’ : 1
choose a partition of the primes in [y, 5log x] such that

A
g(Qj)+?j"""E’l = &3.

A
24 ls@)+6:+0) -7 = .

Taking into account (2.1), (2.2) we get
k=2(n+ ..+ +0) = B+ Co+ k(Y () — ¥ (k) — k(e + &),
and from (2.3), (2.4) we deduce

. L 1
min g(n+) = Bt Gk [0 (5 tow o)~y 0] k-1 40—
Since Y (log x)—y [% log x] =g(1), we get the desired result.
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